/************************************************************************************************** MiniSat -- Copyright (c) 2005, Niklas Sorensson http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **************************************************************************************************/ // Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko #ifndef satSolver_h #define satSolver_h #include #include #include #include #include "satVec.h" #include "satMem.h" ABC_NAMESPACE_HEADER_START //================================================================================================= // Simple types: #ifndef __cplusplus #ifndef false # define false 0 #endif #ifndef true # define true 1 #endif #endif typedef int lit; typedef char lbool; static const int var_Undef = -1; static const lit lit_Undef = -2; static const lbool l_Undef = 0; static const lbool l_True = 1; static const lbool l_False = -1; static inline lit toLit (int v) { return v + v; } static inline lit toLitCond(int v, int c) { return v + v + (c != 0); } static inline lit lit_neg (lit l) { return l ^ 1; } static inline int lit_var (lit l) { return l >> 1; } static inline int lit_sign (lit l) { return l & 1; } static inline int lit_print(lit l) { return lit_sign(l)? -lit_var(l)-1 : lit_var(l)+1; } static inline lit lit_read (int s) { return s > 0 ? toLit(s-1) : lit_neg(toLit(-s-1)); } static inline int lit_check(lit l, int n) { return l >= 0 && lit_var(l) < n; } //================================================================================================= // Public interface: struct sat_solver_t; typedef struct sat_solver_t sat_solver; extern sat_solver* sat_solver_new(void); extern void sat_solver_delete(sat_solver* s); extern int sat_solver_addclause(sat_solver* s, lit* begin, lit* end); extern int sat_solver_simplify(sat_solver* s); extern int sat_solver_solve(sat_solver* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal); extern int sat_solver_nvars(sat_solver* s); extern int sat_solver_nclauses(sat_solver* s); extern int sat_solver_nconflicts(sat_solver* s); extern void sat_solver_setnvars(sat_solver* s,int n); struct stats_t { ABC_INT64_T starts, decisions, propagations, inspects, conflicts; ABC_INT64_T clauses, clauses_literals, learnts, learnts_literals, max_literals, tot_literals; }; typedef struct stats_t stats_t; extern void Sat_SolverWriteDimacs( sat_solver * p, char * pFileName, lit* assumptionsBegin, lit* assumptionsEnd, int incrementVars ); extern void Sat_SolverPrintStats( FILE * pFile, sat_solver * p ); extern int * Sat_SolverGetModel( sat_solver * p, int * pVars, int nVars ); extern void Sat_SolverDoubleClauses( sat_solver * p, int iVar ); // trace recording extern void Sat_SolverTraceStart( sat_solver * pSat, char * pName ); extern void Sat_SolverTraceStop( sat_solver * pSat ); extern void Sat_SolverTraceWrite( sat_solver * pSat, int * pBeg, int * pEnd, int fRoot ); // clause storage extern void sat_solver_store_alloc( sat_solver * s ); extern void sat_solver_store_write( sat_solver * s, char * pFileName ); extern void sat_solver_store_free( sat_solver * s ); extern void sat_solver_store_mark_roots( sat_solver * s ); extern void sat_solver_store_mark_clauses_a( sat_solver * s ); extern void * sat_solver_store_release( sat_solver * s ); //================================================================================================= // Solver representation: struct clause_t; typedef struct clause_t clause; struct sat_solver_t { int size; // nof variables int cap; // size of varmaps int qhead; // Head index of queue. int qtail; // Tail index of queue. // clauses vecp clauses; // List of problem constraints. (contains: clause*) vecp learnts; // List of learnt clauses. (contains: clause*) // activities double var_inc; // Amount to bump next variable with. double var_decay; // INVERSE decay factor for variable activity: stores 1/decay. float cla_inc; // Amount to bump next clause with. float cla_decay; // INVERSE decay factor for clause activity: stores 1/decay. vecp* wlists; // double* activity; // A heuristic measurement of the activity of a variable. lbool* assigns; // Current values of variables. int* orderpos; // Index in variable order. clause** reasons; // int* levels; // lit* trail; char* polarity; clause* binary; // A temporary binary clause lbool* tags; // veci tagged; // (contains: var) veci stack; // (contains: var) veci order; // Variable order. (heap) (contains: var) veci trail_lim; // Separator indices for different decision levels in 'trail'. (contains: int) veci model; // If problem is solved, this vector contains the model (contains: lbool). veci conf_final; // If problem is unsatisfiable (possibly under assumptions), // this vector represent the final conflict clause expressed in the assumptions. int root_level; // Level of first proper decision. int simpdb_assigns;// Number of top-level assignments at last 'simplifyDB()'. int simpdb_props; // Number of propagations before next 'simplifyDB()'. double random_seed; double progress_estimate; int verbosity; // Verbosity level. 0=silent, 1=some progress report, 2=everything stats_t stats; ABC_INT64_T nConfLimit; // external limit on the number of conflicts ABC_INT64_T nInsLimit; // external limit on the number of implications int nRuntimeLimit; // external limit on runtime veci act_vars; // variables whose activity has changed double* factors; // the activity factors int nRestarts; // the number of local restarts int nCalls; // the number of local restarts int nCalls2; // the number of local restarts Sat_MmStep_t * pMem; int fSkipSimplify; // set to one to skip simplification of the clause database int fNotUseRandom; // do not allow random decisions with a fixed probability int * pGlobalVars; // for experiments with global vars during interpolation // clause store void * pStore; int fSolved; // trace recording FILE * pFile; int nClauses; int nRoots; veci temp_clause; // temporary storage for a CNF clause }; static int sat_solver_var_value( sat_solver* s, int v ) { assert( s->model.ptr != NULL && v < s->size ); return (int)(s->model.ptr[v] == l_True); } static int sat_solver_var_literal( sat_solver* s, int v ) { assert( s->model.ptr != NULL && v < s->size ); return toLitCond( v, s->model.ptr[v] != l_True ); } static void sat_solver_act_var_clear(sat_solver* s) { int i; for (i = 0; i < s->size; i++) s->activity[i] = 0.0; s->var_inc = 1.0; } static void sat_solver_compress(sat_solver* s) { if ( s->qtail != s->qhead ) { int RetValue = sat_solver_simplify(s); assert( RetValue != 0 ); } } static int sat_solver_final(sat_solver* s, int ** ppArray) { *ppArray = s->conf_final.ptr; return s->conf_final.size; } static int sat_solver_set_runtime_limit(sat_solver* s, int Limit) { int nRuntimeLimit = s->nRuntimeLimit; s->nRuntimeLimit = Limit; return nRuntimeLimit; } static int sat_solver_set_random(sat_solver* s, int fNotUseRandom) { int fNotUseRandomOld = s->fNotUseRandom; s->fNotUseRandom = fNotUseRandom; return fNotUseRandomOld; } ABC_NAMESPACE_HEADER_END #endif