/**CFile**************************************************************** FileName [simSymStr.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Network and node package.] Synopsis [Structural detection of symmetries.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: simSymStr.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "abc.h" #include "sim.h" //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define SIM_READ_SYMMS(pNode) ((Vec_Int_t *)pNode->pCopy) #define SIM_SET_SYMMS(pNode,vVect) (pNode->pCopy = (Abc_Obj_t *)(vVect)) static void Sim_SymmsStructComputeOne( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, int * pMap ); static void Sim_SymmsBalanceCollect_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes ); static void Sim_SymmsPartitionNodes( Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesPis0, Vec_Ptr_t * vNodesPis1, Vec_Ptr_t * vNodesOther ); static void Sim_SymmsAppendFromGroup( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodesPi, Vec_Ptr_t * vNodesOther, Vec_Int_t * vSymms, int * pMap ); static void Sim_SymmsAppendFromNode( Abc_Ntk_t * pNtk, Vec_Int_t * vSymms0, Vec_Ptr_t * vNodesOther, Vec_Ptr_t * vNodesPi0, Vec_Ptr_t * vNodesPi1, Vec_Int_t * vSymms, int * pMap ); static int Sim_SymmsIsCompatibleWithNodes( Abc_Ntk_t * pNtk, unsigned uSymm, Vec_Ptr_t * vNodesOther, int * pMap ); static int Sim_SymmsIsCompatibleWithGroup( unsigned uSymm, Vec_Ptr_t * vNodesPi, int * pMap ); static void Sim_SymmsPrint( Vec_Int_t * vSymms ); static void Sim_SymmsTrans( Vec_Int_t * vSymms ); static void Sim_SymmsTransferToMatrix( Extra_BitMat_t * pMatSymm, Vec_Int_t * vSymms, unsigned * pSupport ); static int * Sim_SymmsCreateMap( Abc_Ntk_t * pNtk ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Computes symmetries for a single output function.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsStructCompute( Abc_Ntk_t * pNtk, Vec_Ptr_t * vMatrs, Vec_Ptr_t * vSuppFun ) { Vec_Ptr_t * vNodes; Abc_Obj_t * pTemp; int * pMap, i; assert( Abc_NtkCiNum(pNtk) + 10 < (1<<16) ); // get the structural support pNtk->vSupps = Sim_ComputeStrSupp( pNtk ); // set elementary info for the CIs Abc_NtkForEachCi( pNtk, pTemp, i ) SIM_SET_SYMMS( pTemp, Vec_IntAlloc(0) ); // create the map of CI ids into their numbers pMap = Sim_SymmsCreateMap( pNtk ); // collect the nodes in the TFI cone of this output vNodes = Abc_NtkDfs( pNtk, 0 ); Vec_PtrForEachEntry( vNodes, pTemp, i ) { if ( Abc_NodeIsConst(pTemp) ) continue; Sim_SymmsStructComputeOne( pNtk, pTemp, pMap ); } // collect the results for the COs; Abc_NtkForEachCo( pNtk, pTemp, i ) { //printf( "Output %d:\n", i ); pTemp = Abc_ObjFanin0(pTemp); if ( Abc_ObjIsCi(pTemp) || Abc_NodeIsConst(pTemp) ) continue; Sim_SymmsTransferToMatrix( Vec_PtrEntry(vMatrs, i), SIM_READ_SYMMS(pTemp), Vec_PtrEntry(vSuppFun, i) ); } // clean the intermediate results Sim_UtilInfoFree( pNtk->vSupps ); pNtk->vSupps = NULL; Abc_NtkForEachCi( pNtk, pTemp, i ) Vec_IntFree( SIM_READ_SYMMS(pTemp) ); Vec_PtrForEachEntry( vNodes, pTemp, i ) if ( !Abc_NodeIsConst(pTemp) ) Vec_IntFree( SIM_READ_SYMMS(pTemp) ); Vec_PtrFree( vNodes ); free( pMap ); } /**Function************************************************************* Synopsis [Recursively computes symmetries. ] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsStructComputeOne( Abc_Ntk_t * pNtk, Abc_Obj_t * pNode, int * pMap ) { Vec_Ptr_t * vNodes, * vNodesPi0, * vNodesPi1, * vNodesOther; Vec_Int_t * vSymms; Abc_Obj_t * pTemp; int i; // allocate the temporary arrays vNodes = Vec_PtrAlloc( 10 ); vNodesPi0 = Vec_PtrAlloc( 10 ); vNodesPi1 = Vec_PtrAlloc( 10 ); vNodesOther = Vec_PtrAlloc( 10 ); // collect the fanins of the implication supergate Sim_SymmsBalanceCollect_rec( pNode, vNodes ); // sort the nodes in the implication supergate Sim_SymmsPartitionNodes( vNodes, vNodesPi0, vNodesPi1, vNodesOther ); // start the resulting set vSymms = Vec_IntAlloc( 10 ); // generate symmetries from the groups Sim_SymmsAppendFromGroup( pNtk, vNodesPi0, vNodesOther, vSymms, pMap ); Sim_SymmsAppendFromGroup( pNtk, vNodesPi1, vNodesOther, vSymms, pMap ); // add symmetries from other inputs for ( i = 0; i < vNodesOther->nSize; i++ ) { pTemp = Abc_ObjRegular(vNodesOther->pArray[i]); Sim_SymmsAppendFromNode( pNtk, SIM_READ_SYMMS(pTemp), vNodesOther, vNodesPi0, vNodesPi1, vSymms, pMap ); } Vec_PtrFree( vNodes ); Vec_PtrFree( vNodesPi0 ); Vec_PtrFree( vNodesPi1 ); Vec_PtrFree( vNodesOther ); // set the symmetry at the node SIM_SET_SYMMS( pNode, vSymms ); } /**Function************************************************************* Synopsis [Returns the array of nodes to be combined into one multi-input AND-gate.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsBalanceCollect_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vNodes ) { // if the new node is complemented, another gate begins if ( Abc_ObjIsComplement(pNode) ) { Vec_PtrPushUnique( vNodes, pNode ); return; } // if pNew is the PI node, return if ( Abc_ObjIsCi(pNode) ) { Vec_PtrPushUnique( vNodes, pNode ); return; } // go through the branches Sim_SymmsBalanceCollect_rec( Abc_ObjChild0(pNode), vNodes ); Sim_SymmsBalanceCollect_rec( Abc_ObjChild1(pNode), vNodes ); } /**Function************************************************************* Synopsis [Divides PI variables into groups.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsPartitionNodes( Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesPis0, Vec_Ptr_t * vNodesPis1, Vec_Ptr_t * vNodesOther ) { Abc_Obj_t * pNode; int i; Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( !Abc_ObjIsCi(Abc_ObjRegular(pNode)) ) Vec_PtrPush( vNodesOther, pNode ); else if ( Abc_ObjIsComplement(pNode) ) Vec_PtrPush( vNodesPis0, pNode ); else Vec_PtrPush( vNodesPis1, pNode ); } } /**Function************************************************************* Synopsis [Makes the product of two partitions.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsAppendFromGroup( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodesPi, Vec_Ptr_t * vNodesOther, Vec_Int_t * vSymms, int * pMap ) { Abc_Obj_t * pNode1, * pNode2; unsigned uSymm; int i, k; if ( vNodesPi->nSize == 0 ) return; // go through the pairs for ( i = 0; i < vNodesPi->nSize; i++ ) for ( k = i+1; k < vNodesPi->nSize; k++ ) { // get the two PI nodes pNode1 = Abc_ObjRegular(vNodesPi->pArray[i]); pNode2 = Abc_ObjRegular(vNodesPi->pArray[k]); assert( pMap[pNode1->Id] != pMap[pNode2->Id] ); assert( pMap[pNode1->Id] >= 0 ); assert( pMap[pNode2->Id] >= 0 ); // generate symmetry if ( pMap[pNode1->Id] < pMap[pNode2->Id] ) uSymm = ((pMap[pNode1->Id] << 16) | pMap[pNode2->Id]); else uSymm = ((pMap[pNode2->Id] << 16) | pMap[pNode1->Id]); // check if symmetry belongs if ( Sim_SymmsIsCompatibleWithNodes( pNtk, uSymm, vNodesOther, pMap ) ) Vec_IntPushUnique( vSymms, (int)uSymm ); } } /**Function************************************************************* Synopsis [Add the filters symmetries from the nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsAppendFromNode( Abc_Ntk_t * pNtk, Vec_Int_t * vSymms0, Vec_Ptr_t * vNodesOther, Vec_Ptr_t * vNodesPi0, Vec_Ptr_t * vNodesPi1, Vec_Int_t * vSymms, int * pMap ) { unsigned uSymm; int i; if ( vSymms0->nSize == 0 ) return; // go through the pairs for ( i = 0; i < vSymms0->nSize; i++ ) { uSymm = (unsigned)vSymms0->pArray[i]; // check if symmetry belongs if ( Sim_SymmsIsCompatibleWithNodes( pNtk, uSymm, vNodesOther, pMap ) && Sim_SymmsIsCompatibleWithGroup( uSymm, vNodesPi0, pMap ) && Sim_SymmsIsCompatibleWithGroup( uSymm, vNodesPi1, pMap ) ) Vec_IntPushUnique( vSymms, (int)uSymm ); } } /**Function************************************************************* Synopsis [Returns 1 if symmetry is compatible with the group of nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sim_SymmsIsCompatibleWithNodes( Abc_Ntk_t * pNtk, unsigned uSymm, Vec_Ptr_t * vNodesOther, int * pMap ) { Vec_Int_t * vSymmsNode; Abc_Obj_t * pNode; int i, s, Ind1, Ind2, fIsVar1, fIsVar2; if ( vNodesOther->nSize == 0 ) return 1; // get the indices of the PI variables Ind1 = (uSymm & 0xffff); Ind2 = (uSymm >> 16); // go through the nodes // if they do not belong to a support, it is okay // if one belongs, the other does not belong, quit // if they belong, but are not part of symmetry, quit for ( i = 0; i < vNodesOther->nSize; i++ ) { pNode = Abc_ObjRegular(vNodesOther->pArray[i]); fIsVar1 = Sim_SuppStrHasVar( pNtk->vSupps, pNode, Ind1 ); fIsVar2 = Sim_SuppStrHasVar( pNtk->vSupps, pNode, Ind2 ); if ( !fIsVar1 && !fIsVar2 ) continue; if ( fIsVar1 ^ fIsVar2 ) return 0; // both belong // check if there is a symmetry vSymmsNode = SIM_READ_SYMMS( pNode ); for ( s = 0; s < vSymmsNode->nSize; s++ ) if ( uSymm == (unsigned)vSymmsNode->pArray[s] ) break; if ( s == vSymmsNode->nSize ) return 0; } return 1; } /**Function************************************************************* Synopsis [Returns 1 if symmetry is compatible with the group of PIs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Sim_SymmsIsCompatibleWithGroup( unsigned uSymm, Vec_Ptr_t * vNodesPi, int * pMap ) { Abc_Obj_t * pNode; int i, Ind1, Ind2, fHasVar1, fHasVar2; if ( vNodesPi->nSize == 0 ) return 1; // get the indices of the PI variables Ind1 = (uSymm & 0xffff); Ind2 = (uSymm >> 16); // go through the PI nodes fHasVar1 = fHasVar2 = 0; for ( i = 0; i < vNodesPi->nSize; i++ ) { pNode = Abc_ObjRegular(vNodesPi->pArray[i]); if ( pMap[pNode->Id] == Ind1 ) fHasVar1 = 1; else if ( pMap[pNode->Id] == Ind2 ) fHasVar2 = 1; } return fHasVar1 == fHasVar2; } /**Function************************************************************* Synopsis [Improvements due to transitivity.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsTrans( Vec_Int_t * vSymms ) { unsigned uSymm, uSymma, uSymmr; int i, Ind1, Ind2; int k, Ind1a, Ind2a; int j; int nTrans = 0; for ( i = 0; i < vSymms->nSize; i++ ) { uSymm = (unsigned)vSymms->pArray[i]; Ind1 = (uSymm & 0xffff); Ind2 = (uSymm >> 16); // find other symmetries that have Ind1 for ( k = i+1; k < vSymms->nSize; k++ ) { uSymma = (unsigned)vSymms->pArray[k]; if ( uSymma == uSymm ) continue; Ind1a = (uSymma & 0xffff); Ind2a = (uSymma >> 16); if ( Ind1a == Ind1 ) { // find the symmetry (Ind2,Ind2a) if ( Ind2 < Ind2a ) uSymmr = ((Ind2 << 16) | Ind2a); else uSymmr = ((Ind2a << 16) | Ind2); for ( j = 0; j < vSymms->nSize; j++ ) if ( uSymmr == (unsigned)vSymms->pArray[j] ) break; if ( j == vSymms->nSize ) nTrans++; } } } printf( "Trans = %d.\n", nTrans ); } /**Function************************************************************* Synopsis [Transfers from the vector to the matrix.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Sim_SymmsTransferToMatrix( Extra_BitMat_t * pMatSymm, Vec_Int_t * vSymms, unsigned * pSupport ) { int i, Ind1, Ind2, nInputs; unsigned uSymm; // add diagonal elements nInputs = Extra_BitMatrixReadSize( pMatSymm ); for ( i = 0; i < nInputs; i++ ) Extra_BitMatrixInsert1( pMatSymm, i, i ); // add non-diagonal elements for ( i = 0; i < vSymms->nSize; i++ ) { uSymm = (unsigned)vSymms->pArray[i]; Ind1 = (uSymm & 0xffff); Ind2 = (uSymm >> 16); //printf( "%d,%d ", Ind1, Ind2 ); // skip variables that are not in the true support assert( Sim_HasBit(pSupport, Ind1) == Sim_HasBit(pSupport, Ind2) ); if ( !Sim_HasBit(pSupport, Ind1) || !Sim_HasBit(pSupport, Ind2) ) continue; Extra_BitMatrixInsert1( pMatSymm, Ind1, Ind2 ); Extra_BitMatrixInsert2( pMatSymm, Ind1, Ind2 ); } } /**Function************************************************************* Synopsis [Mapping of indices into numbers.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int * Sim_SymmsCreateMap( Abc_Ntk_t * pNtk ) { int * pMap; Abc_Obj_t * pNode; int i; pMap = ALLOC( int, Abc_NtkObjNumMax(pNtk) ); for ( i = 0; i < Abc_NtkObjNumMax(pNtk); i++ ) pMap[i] = -1; Abc_NtkForEachCi( pNtk, pNode, i ) pMap[pNode->Id] = i; return pMap; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////