/**CFile**************************************************************** FileName [ifDec16.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [FPGA mapping based on priority cuts.] Synopsis [Fast checking procedures.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - November 21, 2006.] Revision [$Id: ifDec16.c,v 1.00 2006/11/21 00:00:00 alanmi Exp $] ***********************************************************************/ #include "if.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define CLU_VAR_MAX 16 #define CLU_WRD_MAX (1 << ((CLU_VAR_MAX)-6)) // decomposition typedef struct If_Grp_t_ If_Grp_t; struct If_Grp_t_ { char nVars; char nMyu; char pVars[CLU_VAR_MAX]; }; // the bit count for the first 256 integer numbers static int BitCount8[256] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 }; // variable swapping code static word PMasks[5][3] = { { 0x9999999999999999, 0x2222222222222222, 0x4444444444444444 }, { 0xC3C3C3C3C3C3C3C3, 0x0C0C0C0C0C0C0C0C, 0x3030303030303030 }, { 0xF00FF00FF00FF00F, 0x00F000F000F000F0, 0x0F000F000F000F00 }, { 0xFF0000FFFF0000FF, 0x0000FF000000FF00, 0x00FF000000FF0000 }, { 0xFFFF00000000FFFF, 0x00000000FFFF0000, 0x0000FFFF00000000 } }; // elementary truth tables static word Truth6[6] = { 0xAAAAAAAAAAAAAAAA, 0xCCCCCCCCCCCCCCCC, 0xF0F0F0F0F0F0F0F0, 0xFF00FF00FF00FF00, 0xFFFF0000FFFF0000, 0xFFFFFFFF00000000 }; static word TruthAll[CLU_VAR_MAX][CLU_WRD_MAX] = {{0}}; extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars ); extern void Extra_PrintBinary( FILE * pFile, unsigned Sign[], int nBits ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// // variable permutation for large functions static inline int If_CluWordNum( int nVars ) { return nVars <= 6 ? 1 : 1 << (nVars-6); } static inline void If_CluClear( word * pIn, int nVars ) { int w, nWords = If_CluWordNum( nVars ); for ( w = 0; w < nWords; w++ ) pIn[w] = 0; } static inline void If_CluFill( word * pIn, int nVars ) { int w, nWords = If_CluWordNum( nVars ); for ( w = 0; w < nWords; w++ ) pIn[w] = ~0; } static inline void If_CluCopy( word * pOut, word * pIn, int nVars ) { int w, nWords = If_CluWordNum( nVars ); for ( w = 0; w < nWords; w++ ) pOut[w] = pIn[w]; } static inline int If_CluEqual( word * pOut, word * pIn, int nVars ) { int w, nWords = If_CluWordNum( nVars ); for ( w = 0; w < nWords; w++ ) if ( pOut[w] != pIn[w] ) return 0; return 1; } static inline void If_CluAnd( word * pRes, word * pIn1, word * pIn2, int nVars ) { int w, nWords = If_CluWordNum( nVars ); for ( w = 0; w < nWords; w++ ) pRes[w] = pIn1[w] & pIn2[w]; } static inline void If_CluSharp( word * pRes, word * pIn1, word * pIn2, int nVars ) { int w, nWords = If_CluWordNum( nVars ); for ( w = 0; w < nWords; w++ ) pRes[w] = pIn1[w] & ~pIn2[w]; } static inline void If_CluOr( word * pRes, word * pIn1, word * pIn2, int nVars ) { int w, nWords = If_CluWordNum( nVars ); for ( w = 0; w < nWords; w++ ) pRes[w] = pIn1[w] | pIn2[w]; } static inline word If_CluAdjust( word t, int nVars ) { assert( nVars >= 0 && nVars < 6 ); t &= (1 << (1 << nVars)) - 1; if ( nVars == 0 ) t |= t << (1<> Shift); } else if ( iVar > 5 ) { int Step = (1 << (iVar - 6)); for ( k = 0; k < nWords; k += 4*Step ) { for ( i = 0; i < Step; i++ ) pOut[i] = pIn[i]; for ( i = 0; i < Step; i++ ) pOut[Step+i] = pIn[2*Step+i]; for ( i = 0; i < Step; i++ ) pOut[2*Step+i] = pIn[Step+i]; for ( i = 0; i < Step; i++ ) pOut[3*Step+i] = pIn[3*Step+i]; pIn += 4*Step; pOut += 4*Step; } } else // if ( iVar == 5 ) { for ( i = 0; i < nWords; i += 2 ) { pOut[i] = (pIn[i] & 0x00000000FFFFFFFF) | ((pIn[i+1] & 0x00000000FFFFFFFF) << 32); pOut[i+1] = (pIn[i+1] & 0xFFFFFFFF00000000) | ((pIn[i] & 0xFFFFFFFF00000000) >> 32); } } } void If_CluPrintGroup( If_Grp_t * g ) { int i; printf( "Vars = %d ", g->nVars ); printf( "Myu = %d ", g->nMyu ); for ( i = 0; i < g->nVars; i++ ) printf( "%d ", g->pVars[i] ); printf( "\n" ); } void If_CluPrintConfig( int nVars, If_Grp_t * g, If_Grp_t * r, word BStruth, word * pFStruth ) { assert( r->nVars == nVars - g->nVars + 1 + (g->nMyu > 2) ); If_CluPrintGroup( g ); if ( g->nVars < 6 ) BStruth = If_CluAdjust( BStruth, g->nVars ); Kit_DsdPrintFromTruth( (unsigned *)&BStruth, g->nVars ); printf( "\n" ); If_CluPrintGroup( r ); if ( r->nVars < 6 ) pFStruth[0] = If_CluAdjust( pFStruth[0], r->nVars ); Kit_DsdPrintFromTruth( (unsigned *)pFStruth, r->nVars ); printf( "\n" ); } void If_CluInitTruthTables() { int i, k; assert( CLU_VAR_MAX <= 16 ); for ( i = 0; i < 6; i++ ) for ( k = 0; k < CLU_WRD_MAX; k++ ) TruthAll[i][k] = Truth6[i]; for ( i = 6; i < CLU_VAR_MAX; i++ ) for ( k = 0; k < CLU_WRD_MAX; k++ ) TruthAll[i][k] = ((k >> (i-6)) & 1) ? ~0 : 0; // Extra_PrintHex( stdout, TruthAll[6], 8 ); printf( "\n" ); // Extra_PrintHex( stdout, TruthAll[7], 8 ); printf( "\n" ); } // verification static void If_CluComposeLut( int nVars, If_Grp_t * g, word * t, word f[6][CLU_WRD_MAX], word * r ) { word c[CLU_WRD_MAX]; int m, v; If_CluClear( r, nVars ); for ( m = 0; m < (1<nVars); m++ ) { if ( !((t[m >> 6] >> (m & 63)) & 1) ) continue; If_CluFill( c, nVars ); for ( v = 0; v < g->nVars; v++ ) if ( (m >> v) & 1 ) If_CluAnd( c, c, f[v], nVars ); else If_CluSharp( c, c, f[v], nVars ); If_CluOr( r, r, c, nVars ); } } void If_CluVerify( word * pF, int nVars, If_Grp_t * g, If_Grp_t * r, word BStruth, word * pFStruth ) { word pTTFans[6][CLU_WRD_MAX], pTTWire[CLU_WRD_MAX], pTTRes[CLU_WRD_MAX]; int i; assert( g->nVars <= 6 && r->nVars <= 6 ); if ( TruthAll[0][0] == 0 ) If_CluInitTruthTables(); for ( i = 0; i < g->nVars; i++ ) If_CluCopy( pTTFans[i], TruthAll[g->pVars[i]], nVars ); If_CluComposeLut( nVars, g, &BStruth, pTTFans, pTTWire ); for ( i = 0; i < r->nVars; i++ ) if ( r->pVars[i] == nVars ) If_CluCopy( pTTFans[i], pTTWire, nVars ); else If_CluCopy( pTTFans[i], TruthAll[r->pVars[i]], nVars ); If_CluComposeLut( nVars, r, pFStruth, pTTFans, pTTRes ); if ( !If_CluEqual(pTTRes, pF, nVars) ) { printf( "\n" ); If_CluPrintConfig( nVars, g, r, BStruth, pFStruth ); Kit_DsdPrintFromTruth( (unsigned*)pTTRes, nVars ); printf( "\n" ); Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" ); // Extra_PrintHex( stdout, (unsigned *)pF, nVars ); printf( "\n" ); printf( "Verification FAILED!\n" ); } // else // printf( "Verification succeed!\n" ); } // moves one var (v) to the given position (p) void If_CluMoveVar( word * pF, int nVars, int * Var2Pla, int * Pla2Var, int v, int p ) { word pG[CLU_WRD_MAX], * pIn = pF, * pOut = pG, * pTemp; int iPlace0, iPlace1, Count = 0; assert( v >= 0 && v < nVars ); while ( Var2Pla[v] < p ) { iPlace0 = Var2Pla[v]; iPlace1 = Var2Pla[v]+1; If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars ); pTemp = pIn; pIn = pOut, pOut = pTemp; Var2Pla[Pla2Var[iPlace0]]++; Var2Pla[Pla2Var[iPlace1]]--; Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; Pla2Var[iPlace1] ^= Pla2Var[iPlace0]; Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; Count++; } while ( Var2Pla[v] > p ) { iPlace0 = Var2Pla[v]-1; iPlace1 = Var2Pla[v]; If_CluSwapAdjacent( pOut, pIn, iPlace0, nVars ); pTemp = pIn; pIn = pOut, pOut = pTemp; Var2Pla[Pla2Var[iPlace0]]++; Var2Pla[Pla2Var[iPlace1]]--; Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; Pla2Var[iPlace1] ^= Pla2Var[iPlace0]; Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; Count++; } if ( Count & 1 ) If_CluCopy( pF, pIn, nVars ); assert( Pla2Var[p] == v ); } // moves vars to be the most signiticant ones (Group[0] is MSB) void If_CluMoveGroupToMsb( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g ) { int v; for ( v = 0; v < g->nVars; v++ ) If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[g->nVars - 1 - v], nVars - 1 - v ); } // reverses the variable order void If_CluReverseOrder( word * pF, int nVars, int * V2P, int * P2V ) { int v; for ( v = 0; v < nVars; v++ ) If_CluMoveVar( pF, nVars, V2P, P2V, P2V[0], nVars - 1 - v ); } // return the number of cofactors w.r.t. the topmost vars (nBSsize) int If_CluCountCofs( word * pF, int nVars, int nBSsize, int iShift, word pCofs[3][CLU_WRD_MAX/4] ) { word iCofs[128], iCof, Result = 0; word * pCofA, * pCofB; int nMints = (1 << nBSsize); int i, c, w, nCofs; assert( nBSsize >= 2 && nBSsize <= 7 && nBSsize < nVars ); if ( nVars - nBSsize < 6 ) { int nShift = (1 << (nVars - nBSsize)); word Mask = ((((word)1) << nShift) - 1); for ( nCofs = i = 0; i < nMints; i++ ) { iCof = (pF[(iShift + i * nShift) / 64] >> ((iShift + i * nShift) & 63)) & Mask; for ( c = 0; c < nCofs; c++ ) if ( iCof == iCofs[c] ) break; if ( c == nCofs ) iCofs[nCofs++] = iCof; if ( pCofs && iCof != iCofs[0] ) Result |= (((word)1) << i); if ( nCofs == 5 ) break; } if ( nCofs <= 2 && pCofs ) { assert( nBSsize <= 6 ); pCofs[0][0] = iCofs[0]; pCofs[1][0] = (nCofs == 2) ? iCofs[1] : iCofs[0]; pCofs[2][0] = Result; } } else { int nWords = If_CluWordNum( nVars - nBSsize ); assert( nWords * nMints == If_CluWordNum(nVars) ); for ( nCofs = i = 0; i < nMints; i++ ) { pCofA = pF + i * nWords; for ( c = 0; c < nCofs; c++ ) { pCofB = pF + iCofs[c] * nWords; for ( w = 0; w < nWords; w++ ) if ( pCofA[w] != pCofB[w] ) break; if ( w == nWords ) break; } if ( c == nCofs ) iCofs[nCofs++] = i; if ( pCofs ) { assert( nBSsize <= 6 ); pCofB = pF + iCofs[0] * nWords; for ( w = 0; w < nWords; w++ ) if ( pCofA[w] != pCofB[w] ) break; if ( w != nWords ) Result |= (((word)1) << i); } if ( nCofs == 5 ) break; } if ( nCofs <= 2 && pCofs ) { If_CluCopy( pCofs[0], pF + iCofs[0] * nWords, nVars - nBSsize ); If_CluCopy( pCofs[1], pF + ((nCofs == 2) ? iCofs[1] : iCofs[0]) * nWords, nVars - nBSsize ); pCofs[2][0] = Result; } } assert( nCofs >= 1 && nCofs <= 5 ); return nCofs; } void If_CluCofactors( word * pF, int nVars, int iVar, word * pCof0, word * pCof1 ) { int nWords = If_CluWordNum( nVars ); assert( iVar < nVars ); if ( iVar < 6 ) { int i, Shift = (1 << iVar); for ( i = 0; i < nWords; i++ ) { pCof0[i] = (pF[i] & ~Truth6[iVar]) | ((pF[i] & ~Truth6[iVar]) << Shift); pCof1[i] = (pF[i] & Truth6[iVar]) | ((pF[i] & Truth6[iVar]) >> Shift); } } else { int i, k, Step = (1 << (iVar - 6)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { pCof0[i] = pCof0[Step+i] = pF[i]; pCof1[i] = pCof1[Step+i] = pF[Step+i]; } pF += 2*Step; pCof0 += 2*Step; pCof1 += 2*Step; } } } // returns 1 if we have special case of cofactors; otherwise, returns 0 int If_CluDetectSpecialCaseCofs( word * pF, int nVars, int iVar ) { word Cof0, Cof1; int State[6] = {0}; int i, nWords = If_CluWordNum( nVars ); assert( iVar < nVars ); if ( iVar < 6 ) { int Shift = (1 << iVar); for ( i = 0; i < nWords; i++ ) { Cof0 = (pF[i] & ~Truth6[iVar]); Cof1 = ((pF[i] & Truth6[iVar]) >> Shift); if ( Cof0 == 0 ) State[0]++; else if ( Cof0 == ~Truth6[iVar] ) State[1]++; else if ( Cof1 == 0 ) State[2]++; else if ( Cof1 == ~Truth6[iVar] ) State[3]++; else if ( Cof0 == ~Cof1 ) State[4]++; else if ( Cof0 == Cof1 ) State[5]++; } } else { int k, Step = (1 << (iVar - 6)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) { Cof0 = pF[i]; Cof1 = pF[Step+i]; if ( Cof0 == 0 ) State[0]++; else if ( Cof0 == ~Truth6[iVar] ) State[1]++; else if ( Cof1 == 0 ) State[2]++; else if ( Cof1 == ~Truth6[iVar] ) State[3]++; else if ( Cof0 == ~Cof1 ) State[4]++; else if ( Cof0 == Cof1 ) State[5]++; } pF += 2*Step; } nWords /= 2; } assert( State[5] != nWords ); for ( i = 0; i < 5; i++ ) { assert( State[i] <= nWords ); if ( State[i] == nWords ) return i; } return -1; } // returns 1 if we have special case of cofactors; otherwise, returns 0 If_Grp_t If_CluDecUsingCofs( word * pTruth, int nVars, int nLutLeaf ) { If_Grp_t G = {0}; word pF2[CLU_WRD_MAX], * pF = pF2; int Var2Pla[CLU_VAR_MAX+2], Pla2Var[CLU_VAR_MAX+2]; int V2P[CLU_VAR_MAX+2], P2V[CLU_VAR_MAX+2]; int nVarsNeeded = nVars - nLutLeaf; int v, i, k, iVar, State; //Kit_DsdPrintFromTruth( (unsigned*)pTruth, nVars ); printf( "\n" ); // create local copy If_CluCopy( pF, pTruth, nVars ); for ( k = 0; k < nVars; k++ ) Var2Pla[k] = Pla2Var[k] = k; // find decomposable vars for ( i = 0; i < nVarsNeeded; i++ ) { for ( v = nVars - 1; v >= 0; v-- ) { State = If_CluDetectSpecialCaseCofs( pF, nVars, v ); if ( State == -1 ) continue; // update the variable place iVar = Pla2Var[v]; while ( Var2Pla[iVar] < nVars - 1 ) { int iPlace0 = Var2Pla[iVar]; int iPlace1 = Var2Pla[iVar]+1; Var2Pla[Pla2Var[iPlace0]]++; Var2Pla[Pla2Var[iPlace1]]--; Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; Pla2Var[iPlace1] ^= Pla2Var[iPlace0]; Pla2Var[iPlace0] ^= Pla2Var[iPlace1]; } // move this variable to the top for ( k = 0; k < nVars; k++ ) V2P[k] = P2V[k] = k; //Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" ); If_CluMoveVar( pF, nVars, V2P, P2V, v, nVars - 1 ); //Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" ); // choose cofactor to follow iVar = nVars - 1; if ( State == 0 || State == 1 ) // need cof1 { if ( iVar < 6 ) pF[0] = (pF[0] & Truth6[iVar]) | ((pF[0] & Truth6[iVar]) >> (1 << iVar)); else pF += If_CluWordNum( nVars ) / 2; } else // need cof0 { if ( iVar < 6 ) pF[0] = (pF[0] & ~Truth6[iVar]) | ((pF[0] & ~Truth6[iVar]) << (1 << iVar)); } // update the variable count nVars--; break; } if ( v == -1 ) return G; } // create the resulting group G.nVars = nLutLeaf; G.nMyu = 2; for ( v = 0; v < G.nVars; v++ ) G.pVars[v] = Pla2Var[v]; return G; } // deriving decomposition word If_CluDeriveDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * r ) { word pCofs[3][CLU_WRD_MAX/4]; int i, RetValue, nFSset = nVars - g->nVars; RetValue = If_CluCountCofs( pF, nVars, g->nVars, 0, pCofs ); // assert( RetValue == 2 ); if ( nFSset < 6 ) pF[0] = (pCofs[1][0] << (1 << nFSset)) | pCofs[0][0]; else { If_CluCopy( pF, pCofs[0], nFSset ); If_CluCopy( pF + If_CluWordNum(nFSset), pCofs[1], nFSset ); } // create the resulting group if ( r ) { r->nVars = nFSset + 1; r->nMyu = 0; for ( i = 0; i < nFSset; i++ ) r->pVars[i] = P2V[i]; r->pVars[nFSset] = nVars; } return pCofs[2][0]; } word If_CluDeriveNonDisjoint( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g, If_Grp_t * r ) { word pCofs[2][CLU_WRD_MAX]; word Truth0, Truth1, Truth; int i, nFSset = nVars - g->nVars, nFSset1 = nFSset + 1; If_CluCofactors( pF, nVars, nVars - 1, pCofs[0], pCofs[1] ); // Extra_PrintHex( stdout, (unsigned *)pCofs[0], nVars ); printf( "\n" ); // Extra_PrintHex( stdout, (unsigned *)pCofs[1], nVars ); printf( "\n" ); g->nVars--; Truth0 = If_CluDeriveDisjoint( pCofs[0], nVars - 1, V2P, P2V, g, NULL ); Truth1 = If_CluDeriveDisjoint( pCofs[1], nVars - 1, V2P, P2V, g, NULL ); Truth = (Truth1 << (1 << g->nVars)) | Truth0; g->nVars++; if ( nFSset1 < 6 ) pF[0] = (pCofs[1][0] << (1 << nFSset1)) | pCofs[0][0]; else { If_CluCopy( pF, pCofs[0], nFSset1 ); If_CluCopy( pF + If_CluWordNum(nFSset1), pCofs[1], nFSset1 ); } // Extra_PrintHex( stdout, (unsigned *)&Truth0, 6 ); printf( "\n" ); // Extra_PrintHex( stdout, (unsigned *)&Truth1, 6 ); printf( "\n" ); // Extra_PrintHex( stdout, (unsigned *)&pCofs[0][0], 6 ); printf( "\n" ); // Extra_PrintHex( stdout, (unsigned *)&pCofs[1][0], 6 ); printf( "\n" ); // Extra_PrintHex( stdout, (unsigned *)&Truth, 6 ); printf( "\n" ); // Extra_PrintHex( stdout, (unsigned *)&pF[0], 6 ); printf( "\n" ); // create the resulting group r->nVars = nFSset + 2; r->nMyu = 0; for ( i = 0; i < nFSset; i++ ) r->pVars[i] = P2V[i]; r->pVars[nFSset] = nVars; r->pVars[nFSset+1] = g->pVars[g->nVars - 1]; return Truth; } // check non-disjoint decomposition int If_CluCheckNonDisjointGroup( word * pF, int nVars, int * V2P, int * P2V, If_Grp_t * g ) { int v, i, nCofsBest2; if ( (g->nMyu == 3 || g->nMyu == 4) ) { word pCofs[2][CLU_WRD_MAX]; // try cofactoring w.r.t. each variable for ( v = 0; v < g->nVars; v++ ) { If_CluCofactors( pF, nVars, V2P[g->pVars[v]], pCofs[0], pCofs[1] ); nCofsBest2 = If_CluCountCofs( pCofs[0], nVars, g->nVars, 0, NULL ); if ( nCofsBest2 > 2 ) continue; nCofsBest2 = If_CluCountCofs( pCofs[1], nVars, g->nVars, 0, NULL ); if ( nCofsBest2 > 2 ) continue; // found good shared variable - move to the end If_CluMoveVar( pF, nVars, V2P, P2V, g->pVars[v], nVars-1 ); for ( i = 0; i < g->nVars; i++ ) g->pVars[i] = P2V[nVars-g->nVars+i]; return 1; } } return 0; } // finds a good var group (cof count < 6; vars are MSBs) If_Grp_t If_CluFindGroup( word * pF, int nVars, int iVarStart, int * V2P, int * P2V, int nBSsize, int fDisjoint ) { int fVerbose = 0; int nRounds = 2;//nBSsize; If_Grp_t G = {0}, * g = &G; int i, r, v, nCofs, VarBest, nCofsBest2; assert( nVars > nBSsize && nVars >= nBSsize + iVarStart && nVars <= CLU_VAR_MAX ); assert( nBSsize >= 3 && nBSsize <= 6 ); // start with the default group g->nVars = nBSsize; g->nMyu = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); for ( i = 0; i < nBSsize; i++ ) g->pVars[i] = P2V[nVars-nBSsize+i]; // check if good enough if ( g->nMyu == 2 ) return G; if ( !fDisjoint && If_CluCheckNonDisjointGroup( pF, nVars, V2P, P2V, g ) ) return G; if ( fVerbose ) { printf( "Iter %2d ", -1 ); If_CluPrintGroup( g ); } // try to find better group for ( r = 0; r < nRounds; r++ ) { if ( nBSsize < nVars-1 ) { // find the best var to add VarBest = P2V[nVars-1-nBSsize]; nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL ); for ( v = nVars-2-nBSsize; v >= iVarStart; v-- ) { If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize ); nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL ); if ( nCofsBest2 >= nCofs ) { nCofsBest2 = nCofs; VarBest = P2V[nVars-1-nBSsize]; } } // go back If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize ); // update best bound set nCofs = If_CluCountCofs( pF, nVars, nBSsize+1, 0, NULL ); assert( nCofs == nCofsBest2 ); } // find the best var to remove VarBest = P2V[nVars-1-nBSsize]; nCofsBest2 = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); for ( v = nVars-nBSsize; v < nVars; v++ ) { If_CluMoveVar( pF, nVars, V2P, P2V, P2V[v], nVars-1-nBSsize ); nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); if ( nCofsBest2 >= nCofs ) { nCofsBest2 = nCofs; VarBest = P2V[nVars-1-nBSsize]; } } // go back If_CluMoveVar( pF, nVars, V2P, P2V, VarBest, nVars-1-nBSsize ); // update best bound set nCofs = If_CluCountCofs( pF, nVars, nBSsize, 0, NULL ); assert( nCofs == nCofsBest2 ); if ( g->nMyu >= nCofs ) { g->nVars = nBSsize; g->nMyu = nCofs; for ( i = 0; i < nBSsize; i++ ) g->pVars[i] = P2V[nVars-nBSsize+i]; } if ( fVerbose ) { printf( "Iter %2d ", r ); If_CluPrintGroup( g ); } // check if good enough if ( g->nMyu == 2 ) return G; if ( !fDisjoint && If_CluCheckNonDisjointGroup( pF, nVars, V2P, P2V, g ) ) return G; } assert( r == nRounds ); g->nVars = 0; return G; } // double check that the given group has a decomposition void If_CluCheckGroup( word * pTruth, int nVars, If_Grp_t * g ) { word pF[CLU_WRD_MAX]; int v, nCofs, V2P[CLU_VAR_MAX], P2V[CLU_VAR_MAX]; assert( g->nVars >= 2 && g->nVars <= 6 ); // vars assert( g->nMyu >= 2 && g->nMyu <= 4 ); // cofs // create permutation for ( v = 0; v < nVars; v++ ) V2P[v] = P2V[v] = v; // create truth table If_CluCopy( pF, pTruth, nVars ); // move group up If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, g ); // check the number of cofactors nCofs = If_CluCountCofs( pF, nVars, g->nVars, 0, NULL ); if ( nCofs != g->nMyu ) printf( "Group check 0 has failed.\n" ); // check compatible if ( nCofs > 2 ) { nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, 0, NULL ); if ( nCofs > 2 ) printf( "Group check 1 has failed.\n" ); nCofs = If_CluCountCofs( pF, nVars-1, g->nVars-1, (1 << (nVars-1)), NULL ); if ( nCofs > 2 ) printf( "Group check 2 has failed.\n" ); } } // double check that the permutation derived is correct void If_CluCheckPerm( word * pTruth, word * pF, int nVars, int * V2P, int * P2V ) { int i; for ( i = 0; i < nVars; i++ ) If_CluMoveVar( pF, nVars, V2P, P2V, i, i ); if ( !If_CluEqual( pTruth, pF, nVars ) ) printf( "Permutation FAILED.\n" ); // else // printf( "Permutation successful\n" ); } static inline int If_CluSuppIsMinBase( int Supp ) { return (Supp & (Supp+1)) == 0; } static inline int If_CluHasVar( word * t, int nVars, int iVar ) { int nWords = If_CluWordNum( nVars ); assert( iVar < nVars ); if ( iVar < 6 ) { int i, Shift = (1 << iVar); for ( i = 0; i < nWords; i++ ) if ( (t[i] & ~Truth6[iVar]) != ((t[i] & Truth6[iVar]) >> Shift) ) return 1; return 0; } else { int i, k, Step = (1 << (iVar - 6)); for ( k = 0; k < nWords; k += 2*Step ) { for ( i = 0; i < Step; i++ ) if ( t[i] != t[Step+i] ) return 1; t += 2*Step; } return 0; } } static inline int If_CluSupport( word * t, int nVars ) { int v, Supp = 0; for ( v = 0; v < nVars; v++ ) if ( If_CluHasVar( t, nVars, v ) ) Supp |= (1 << v); return Supp; } // returns the best group found If_Grp_t If_CluCheck( word * pTruth, int nVars, int nLutLeaf, int nLutRoot ) { If_Grp_t G1 = {0}, R = {0}; word Truth, pF[CLU_WRD_MAX];//, pG[CLU_WRD_MAX]; int V2P[CLU_VAR_MAX+2], P2V[CLU_VAR_MAX+2]; int i, nSupp; assert( nVars <= CLU_VAR_MAX ); assert( nVars <= nLutLeaf + nLutRoot - 1 ); /* { int pCanonPerm[32]; short pStore[32]; unsigned uCanonPhase; If_CluCopy( pF, pTruth, nVars ); uCanonPhase = Kit_TruthSemiCanonicize( pF, pG, nVars, pCanonPerm, pStore ); G1.nVars = 1; return G1; } */ // check minnimum base If_CluCopy( pF, pTruth, nVars ); for ( i = 0; i < nVars; i++ ) V2P[i] = P2V[i] = i; // check support nSupp = If_CluSupport( pF, nVars ); //Extra_PrintBinary( stdout, &nSupp, 16 ); printf( "\n" ); if ( !nSupp || !If_CluSuppIsMinBase(nSupp) ) return G1; // detect easy cofs G1 = If_CluDecUsingCofs( pTruth, nVars, nLutLeaf ); if ( G1.nVars == 0 ) { // perform testing G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 ); // If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V ); if ( G1.nVars == 0 ) { // perform testing with a smaller set if ( nVars < nLutLeaf + nLutRoot - 2 ) { nLutLeaf--; G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 ); nLutLeaf++; } if ( G1.nVars == 0 ) { // perform testing with a different order If_CluReverseOrder( pF, nVars, V2P, P2V ); G1 = If_CluFindGroup( pF, nVars, 0, V2P, P2V, nLutLeaf, nLutLeaf + nLutRoot == nVars + 1 ); // check permutation // If_CluCheckPerm( pTruth, pF, nVars, V2P, P2V ); if ( G1.nVars == 0 ) { /* if ( nVars == 6 ) { Extra_PrintHex( stdout, (unsigned *)pF, nVars ); printf( " " ); Kit_DsdPrintFromTruth( (unsigned*)pF, nVars ); printf( "\n" ); if ( !If_CutPerformCheck07( (unsigned *)pF, 6, 6, NULL ) ) printf( "no\n" ); } */ return G1; } } } } // derive if ( 0 ) { If_CluMoveGroupToMsb( pF, nVars, V2P, P2V, &G1 ); if ( G1.nMyu == 2 ) Truth = If_CluDeriveDisjoint( pF, nVars, V2P, P2V, &G1, &R ); else Truth = If_CluDeriveNonDisjoint( pF, nVars, V2P, P2V, &G1, &R ); // perform checking if ( 0 ) { If_CluCheckGroup( pTruth, nVars, &G1 ); If_CluVerify( pTruth, nVars, &G1, &R, Truth, pF ); } } return G1; } // computes delay of the decomposition float If_CluDelayMax( If_Grp_t * g, float * pDelays ) { float Delay = 0.0; int i; for ( i = 0; i < g->nVars; i++ ) Delay = Abc_MaxFloat( Delay, pDelays[g->pVars[i]] ); return Delay; } // returns delay of the decomposition; sets area of the cut as its cost float If_CutDelayLutStruct( If_Man_t * p, If_Cut_t * pCut, char * pStr, float WireDelay ) { float Delays[CLU_VAR_MAX+2]; int fUsed[CLU_VAR_MAX+2] = {0}; If_Obj_t * pLeaf; If_Grp_t G1 = {0}, G2 = {0}, G3 = {0}; int nLeaves = If_CutLeaveNum(pCut); int i, nLutLeaf, nLutRoot; // mark the cut as user cut // pCut->fUser = 1; // quit if parameters are wrong if ( strlen(pStr) != 2 ) { printf( "Wrong LUT struct (%s)\n", pStr ); return ABC_INFINITY; } nLutLeaf = pStr[0] - '0'; if ( nLutLeaf < 3 || nLutLeaf > 6 ) { printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf ); return ABC_INFINITY; } nLutRoot = pStr[1] - '0'; if ( nLutRoot < 3 || nLutRoot > 6 ) { printf( "Root size (%d) should belong to {3,4,5,6}.\n", nLutRoot ); return ABC_INFINITY; } if ( nLeaves > nLutLeaf + nLutRoot - 1 ) { printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", If_CutLeaveNum(pCut), nLutLeaf, nLutRoot ); return ABC_INFINITY; } // remember the delays If_CutForEachLeaf( p, pCut, pLeaf, i ) Delays[i] = If_ObjCutBest(pLeaf)->Delay; // consider easy case if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) ) { assert( nLeaves <= 6 ); for ( i = 0; i < nLeaves; i++ ) { pCut->pPerm[i] = 1; G1.pVars[i] = i; } G1.nVars = nLeaves; return 1.0 + If_CluDelayMax( &G1, Delays ); } // derive the first group G1 = If_CluCheck( (word *)If_CutTruth(pCut), nLeaves, nLutLeaf, nLutRoot ); if ( G1.nVars == 0 ) return ABC_INFINITY; // compute the delay Delays[nLeaves] = If_CluDelayMax( &G1, Delays ) + (WireDelay == 0.0)?1.0:WireDelay; if ( G2.nVars ) Delays[nLeaves+1] = If_CluDelayMax( &G2, Delays ) + (WireDelay == 0.0)?1.0:WireDelay; // mark used groups for ( i = 0; i < G1.nVars; i++ ) fUsed[G1.pVars[i]] = 1; for ( i = 0; i < G2.nVars; i++ ) fUsed[G2.pVars[i]] = 1; // mark unused groups assert( G1.nMyu >= 2 && G1.nMyu <= 4 ); if ( G1.nMyu > 2 ) fUsed[G1.pVars[G1.nVars-1]] = 0; assert( !G2.nVars || (G2.nMyu >= 2 && G2.nMyu <= 4) ); if ( G2.nMyu > 2 ) fUsed[G2.pVars[G2.nVars-1]] = 0; // create remaining group assert( G3.nVars == 0 ); for ( i = 0; i < nLeaves; i++ ) if ( !fUsed[i] ) G3.pVars[G3.nVars++] = i; G3.pVars[G3.nVars++] = nLeaves; if ( G2.nVars ) G3.pVars[G3.nVars++] = nLeaves+1; assert( G1.nVars + G2.nVars + G3.nVars == nLeaves + (G1.nVars > 0) + (G2.nVars > 0) + (G1.nMyu > 2) + (G2.nMyu > 2) ); // what if both non-disjoint vars are the same??? pCut->Cost = 2 + (G2.nVars > 0); return 1.0 + If_CluDelayMax( &G3, Delays ); } /**Function************************************************************* Synopsis [Performs additional check.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int If_CutPerformCheck16( unsigned * pTruth, int nVars, int nLeaves, char * pStr ) { If_Grp_t G1 = {0}, G2 = {0}, G3 = {0}; int nLutLeaf, nLutRoot; // quit if parameters are wrong if ( strlen(pStr) != 2 ) { printf( "Wrong LUT struct (%s)\n", pStr ); return 0; } nLutLeaf = pStr[0] - '0'; if ( nLutLeaf < 3 || nLutLeaf > 6 ) { printf( "Leaf size (%d) should belong to {3,4,5,6}.\n", nLutLeaf ); return 0; } nLutRoot = pStr[1] - '0'; if ( nLutRoot < 3 || nLutRoot > 6 ) { printf( "Root size (%d) should belong to {3,4,5,6}.\n", nLutRoot ); return 0; } if ( nLeaves > nLutLeaf + nLutRoot - 1 ) { printf( "The cut size (%d) is too large for the LUT structure %d%d.\n", nLeaves, nLutLeaf, nLutRoot ); return 0; } // consider easy case if ( nLeaves <= Abc_MaxInt( nLutLeaf, nLutRoot ) ) return 1; // derive the first group G1 = If_CluCheck( (word *)pTruth, nLeaves, nLutLeaf, nLutRoot ); if ( G1.nVars == 0 ) { // printf( "-%d ", nLeaves ); return 0; } // printf( "+%d ", nLeaves ); return 1; } // testing procedure void If_CluTest() { // word t = 0xff00f0f0ccccaaaa; // word t = 0xfedcba9876543210; // word t = 0xec64000000000000; // word t = 0x0100200000000001; // word t2[4] = { 0x0000800080008000, 0x8000000000008000, 0x8000000080008000, 0x0000000080008000 }; // word t = 0x07770FFF07770FFF; // word t = 0x002000D000D00020; // word t = 0x000F000E000F000F; word t = 0xF7FFF7F7F7F7F7F7; int nVars = 6; int nLutLeaf = 4; int nLutRoot = 4; If_Grp_t G; return; If_CutPerformCheck07( (unsigned *)&t, 6, 6, NULL ); // return; Kit_DsdPrintFromTruth( (unsigned*)&t, nVars ); printf( "\n" ); G = If_CluCheck( &t, nVars, nLutLeaf, nLutRoot ); If_CluPrintGroup( &G ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END