/**CFile*********************************************************************** FileName [cuddUtil.c] PackageName [cudd] Synopsis [Utility functions.] Description [External procedures included in this module:
f
and g
, depending on whther they appear
in both DDs, only in f
, or only in g
.
Returns 1 if successful; 0 otherwise.]
SideEffects [The cubes of the three classes of variables are
returned as side effects.]
SeeAlso [Cudd_Support Cudd_VectorSupport]
******************************************************************************/
int
Cudd_ClassifySupport(
DdManager * dd /* manager */,
DdNode * f /* first DD */,
DdNode * g /* second DD */,
DdNode ** common /* cube of shared variables */,
DdNode ** onlyF /* cube of variables only in f */,
DdNode ** onlyG /* cube of variables only in g */)
{
int *supportF, *supportG;
DdNode *tmp, *var;
int i,j;
int size;
/* Allocate and initialize support arrays for ddSupportStep. */
size = ddMax(dd->size, dd->sizeZ);
supportF = ABC_ALLOC(int,size);
if (supportF == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(0);
}
supportG = ABC_ALLOC(int,size);
if (supportG == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
ABC_FREE(supportF);
return(0);
}
for (i = 0; i < size; i++) {
supportF[i] = 0;
supportG[i] = 0;
}
/* Compute supports and clean up markers. */
ddSupportStep(Cudd_Regular(f),supportF);
ddClearFlag(Cudd_Regular(f));
ddSupportStep(Cudd_Regular(g),supportG);
ddClearFlag(Cudd_Regular(g));
/* Classify variables and create cubes. */
*common = *onlyF = *onlyG = DD_ONE(dd);
cuddRef(*common); cuddRef(*onlyF); cuddRef(*onlyG);
for (j = size - 1; j >= 0; j--) { /* for each level bottom-up */
i = (j >= dd->size) ? j : dd->invperm[j];
if (supportF[i] == 0 && supportG[i] == 0) continue;
var = cuddUniqueInter(dd,i,dd->one,Cudd_Not(dd->one));
cuddRef(var);
if (supportG[i] == 0) {
tmp = Cudd_bddAnd(dd,*onlyF,var);
if (tmp == NULL) {
Cudd_RecursiveDeref(dd,*common);
Cudd_RecursiveDeref(dd,*onlyF);
Cudd_RecursiveDeref(dd,*onlyG);
Cudd_RecursiveDeref(dd,var);
ABC_FREE(supportF); ABC_FREE(supportG);
return(0);
}
cuddRef(tmp);
Cudd_RecursiveDeref(dd,*onlyF);
*onlyF = tmp;
} else if (supportF[i] == 0) {
tmp = Cudd_bddAnd(dd,*onlyG,var);
if (tmp == NULL) {
Cudd_RecursiveDeref(dd,*common);
Cudd_RecursiveDeref(dd,*onlyF);
Cudd_RecursiveDeref(dd,*onlyG);
Cudd_RecursiveDeref(dd,var);
ABC_FREE(supportF); ABC_FREE(supportG);
return(0);
}
cuddRef(tmp);
Cudd_RecursiveDeref(dd,*onlyG);
*onlyG = tmp;
} else {
tmp = Cudd_bddAnd(dd,*common,var);
if (tmp == NULL) {
Cudd_RecursiveDeref(dd,*common);
Cudd_RecursiveDeref(dd,*onlyF);
Cudd_RecursiveDeref(dd,*onlyG);
Cudd_RecursiveDeref(dd,var);
ABC_FREE(supportF); ABC_FREE(supportG);
return(0);
}
cuddRef(tmp);
Cudd_RecursiveDeref(dd,*common);
*common = tmp;
}
Cudd_RecursiveDeref(dd,var);
}
ABC_FREE(supportF); ABC_FREE(supportG);
cuddDeref(*common); cuddDeref(*onlyF); cuddDeref(*onlyG);
return(1);
} /* end of Cudd_ClassifySupport */
/**Function********************************************************************
Synopsis [Counts the number of leaves in a DD.]
Description [Counts the number of leaves in a DD. Returns the number
of leaves in the DD rooted at node if successful; CUDD_OUT_OF_MEM
otherwise.]
SideEffects [None]
SeeAlso [Cudd_PrintDebug]
******************************************************************************/
int
Cudd_CountLeaves(
DdNode * node)
{
int i;
i = ddLeavesInt(Cudd_Regular(node));
ddClearFlag(Cudd_Regular(node));
return(i);
} /* end of Cudd_CountLeaves */
/**Function********************************************************************
Synopsis [Picks one on-set cube randomly from the given DD.]
Description [Picks one on-set cube randomly from the given DD. The
cube is written into an array of characters. The array must have at
least as many entries as there are variables. Returns 1 if
successful; 0 otherwise.]
SideEffects [None]
SeeAlso [Cudd_bddPickOneMinterm]
******************************************************************************/
int
Cudd_bddPickOneCube(
DdManager * ddm,
DdNode * node,
char * string)
{
DdNode *N, *T, *E;
DdNode *one, *bzero;
char dir;
int i;
if (string == NULL || node == NULL) return(0);
/* The constant 0 function has no on-set cubes. */
one = DD_ONE(ddm);
bzero = Cudd_Not(one);
if (node == bzero) return(0);
for (i = 0; i < ddm->size; i++) string[i] = 2;
for (;;) {
if (node == one) break;
N = Cudd_Regular(node);
T = cuddT(N); E = cuddE(N);
if (Cudd_IsComplement(node)) {
T = Cudd_Not(T); E = Cudd_Not(E);
}
if (T == bzero) {
string[N->index] = 0;
node = E;
} else if (E == bzero) {
string[N->index] = 1;
node = T;
} else {
dir = (char) ((Cudd_Random() & 0x2000) >> 13);
string[N->index] = dir;
node = dir ? T : E;
}
}
return(1);
} /* end of Cudd_bddPickOneCube */
/**Function********************************************************************
Synopsis [Picks one on-set minterm randomly from the given DD.]
Description [Picks one on-set minterm randomly from the given
DD. The minterm is in terms of vars
. The array
vars
should contain at least all variables in the
support of f
; if this condition is not met the minterm
built by this procedure may not be contained in
f
. Builds a BDD for the minterm and returns a pointer
to it if successful; NULL otherwise. There are three reasons why the
procedure may fail:
f
may be the constant 0;
f
.
vars
*/)
{
char *string;
int i, size;
int *indices;
int result;
DdNode *old, *neW;
size = dd->size;
string = ABC_ALLOC(char, size);
if (string == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
}
indices = ABC_ALLOC(int,n);
if (indices == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
ABC_FREE(string);
return(NULL);
}
for (i = 0; i < n; i++) {
indices[i] = vars[i]->index;
}
result = Cudd_bddPickOneCube(dd,f,string);
if (result == 0) {
ABC_FREE(string);
ABC_FREE(indices);
return(NULL);
}
/* Randomize choice for don't cares. */
for (i = 0; i < n; i++) {
if (string[indices[i]] == 2)
string[indices[i]] = (char) ((Cudd_Random() & 0x20) >> 5);
}
/* Build result BDD. */
old = Cudd_ReadOne(dd);
cuddRef(old);
for (i = n-1; i >= 0; i--) {
neW = Cudd_bddAnd(dd,old,Cudd_NotCond(vars[i],string[indices[i]]==0));
if (neW == NULL) {
ABC_FREE(string);
ABC_FREE(indices);
Cudd_RecursiveDeref(dd,old);
return(NULL);
}
cuddRef(neW);
Cudd_RecursiveDeref(dd,old);
old = neW;
}
#ifdef DD_DEBUG
/* Test. */
if (Cudd_bddLeq(dd,old,f)) {
cuddDeref(old);
} else {
Cudd_RecursiveDeref(dd,old);
old = NULL;
}
#else
cuddDeref(old);
#endif
ABC_FREE(string);
ABC_FREE(indices);
return(old);
} /* end of Cudd_bddPickOneMinterm */
/**Function********************************************************************
Synopsis [Picks k on-set minterms evenly distributed from given DD.]
Description [Picks k on-set minterms evenly distributed from given DD.
The minterms are in terms of vars
. The array
vars
should contain at least all variables in the
support of f
; if this condition is not met the minterms
built by this procedure may not be contained in
f
. Builds an array of BDDs for the minterms and returns a
pointer to it if successful; NULL otherwise. There are three reasons
why the procedure may fail:
f
may be the constant 0;
f
.
vars
*/,
int k /* number of minterms to find */)
{
char **string;
int i, j, l, size;
int *indices;
int result;
DdNode **old, *neW;
double minterms;
char *saveString;
int saveFlag, savePoint = -1, isSame;
minterms = Cudd_CountMinterm(dd,f,n);
if ((double)k > minterms) {
return(NULL);
}
size = dd->size;
string = ABC_ALLOC(char *, k);
if (string == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
}
for (i = 0; i < k; i++) {
string[i] = ABC_ALLOC(char, size + 1);
if (string[i] == NULL) {
for (j = 0; j < i; j++)
ABC_FREE(string[i]);
ABC_FREE(string);
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
}
for (j = 0; j < size; j++) string[i][j] = '2';
string[i][size] = '\0';
}
indices = ABC_ALLOC(int,n);
if (indices == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
for (i = 0; i < k; i++)
ABC_FREE(string[i]);
ABC_FREE(string);
return(NULL);
}
for (i = 0; i < n; i++) {
indices[i] = vars[i]->index;
}
result = ddPickArbitraryMinterms(dd,f,n,k,string);
if (result == 0) {
for (i = 0; i < k; i++)
ABC_FREE(string[i]);
ABC_FREE(string);
ABC_FREE(indices);
return(NULL);
}
old = ABC_ALLOC(DdNode *, k);
if (old == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
for (i = 0; i < k; i++)
ABC_FREE(string[i]);
ABC_FREE(string);
ABC_FREE(indices);
return(NULL);
}
saveString = ABC_ALLOC(char, size + 1);
if (saveString == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
for (i = 0; i < k; i++)
ABC_FREE(string[i]);
ABC_FREE(string);
ABC_FREE(indices);
ABC_FREE(old);
return(NULL);
}
saveFlag = 0;
/* Build result BDD array. */
for (i = 0; i < k; i++) {
isSame = 0;
if (!saveFlag) {
for (j = i + 1; j < k; j++) {
if (strcmp(string[i], string[j]) == 0) {
savePoint = i;
strcpy(saveString, string[i]);
saveFlag = 1;
break;
}
}
} else {
if (strcmp(string[i], saveString) == 0) {
isSame = 1;
} else {
saveFlag = 0;
for (j = i + 1; j < k; j++) {
if (strcmp(string[i], string[j]) == 0) {
savePoint = i;
strcpy(saveString, string[i]);
saveFlag = 1;
break;
}
}
}
}
/* Randomize choice for don't cares. */
for (j = 0; j < n; j++) {
if (string[i][indices[j]] == '2')
string[i][indices[j]] =
(char) ((Cudd_Random() & 0x20) ? '1' : '0');
}
while (isSame) {
isSame = 0;
for (j = savePoint; j < i; j++) {
if (strcmp(string[i], string[j]) == 0) {
isSame = 1;
break;
}
}
if (isSame) {
strcpy(string[i], saveString);
/* Randomize choice for don't cares. */
for (j = 0; j < n; j++) {
if (string[i][indices[j]] == '2')
string[i][indices[j]] =
(char) ((Cudd_Random() & 0x20) ? '1' : '0');
}
}
}
old[i] = Cudd_ReadOne(dd);
cuddRef(old[i]);
for (j = 0; j < n; j++) {
if (string[i][indices[j]] == '0') {
neW = Cudd_bddAnd(dd,old[i],Cudd_Not(vars[j]));
} else {
neW = Cudd_bddAnd(dd,old[i],vars[j]);
}
if (neW == NULL) {
ABC_FREE(saveString);
for (l = 0; l < k; l++)
ABC_FREE(string[l]);
ABC_FREE(string);
ABC_FREE(indices);
for (l = 0; l <= i; l++)
Cudd_RecursiveDeref(dd,old[l]);
ABC_FREE(old);
return(NULL);
}
cuddRef(neW);
Cudd_RecursiveDeref(dd,old[i]);
old[i] = neW;
}
/* Test. */
if (!Cudd_bddLeq(dd,old[i],f)) {
ABC_FREE(saveString);
for (l = 0; l < k; l++)
ABC_FREE(string[l]);
ABC_FREE(string);
ABC_FREE(indices);
for (l = 0; l <= i; l++)
Cudd_RecursiveDeref(dd,old[l]);
ABC_FREE(old);
return(NULL);
}
}
ABC_FREE(saveString);
for (i = 0; i < k; i++) {
cuddDeref(old[i]);
ABC_FREE(string[i]);
}
ABC_FREE(string);
ABC_FREE(indices);
return(old);
} /* end of Cudd_bddPickArbitraryMinterms */
/**Function********************************************************************
Synopsis [Extracts a subset from a BDD.]
Description [Extracts a subset from a BDD in the following procedure.
1. Compute the weight for each mask variable by counting the number of
minterms for both positive and negative cofactors of the BDD with
respect to each mask variable. (weight = #positive - #negative)
2. Find a representative cube of the BDD by using the weight. From the
top variable of the BDD, for each variable, if the weight is greater
than 0.0, choose THEN branch, othereise ELSE branch, until meeting
the constant 1.
3. Quantify out the variables not in maskVars from the representative
cube and if a variable in maskVars is don't care, replace the
variable with a constant(1 or 0) depending on the weight.
4. Make a subset of the BDD by multiplying with the modified cube.]
SideEffects [None]
SeeAlso []
******************************************************************************/
DdNode *
Cudd_SubsetWithMaskVars(
DdManager * dd /* manager */,
DdNode * f /* function from which to pick a cube */,
DdNode ** vars /* array of variables */,
int nvars /* size of vars
*/,
DdNode ** maskVars /* array of variables */,
int mvars /* size of maskVars
*/)
{
double *weight;
char *string;
int i, size;
int *indices, *mask;
int result;
DdNode *zero, *cube, *newCube, *subset;
DdNode *cof;
DdNode *support;
support = Cudd_Support(dd,f);
cuddRef(support);
Cudd_RecursiveDeref(dd,support);
zero = Cudd_Not(dd->one);
size = dd->size;
weight = ABC_ALLOC(double,size);
if (weight == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
return(NULL);
}
for (i = 0; i < size; i++) {
weight[i] = 0.0;
}
for (i = 0; i < mvars; i++) {
cof = Cudd_Cofactor(dd, f, maskVars[i]);
cuddRef(cof);
weight[i] = Cudd_CountMinterm(dd, cof, nvars);
Cudd_RecursiveDeref(dd,cof);
cof = Cudd_Cofactor(dd, f, Cudd_Not(maskVars[i]));
cuddRef(cof);
weight[i] -= Cudd_CountMinterm(dd, cof, nvars);
Cudd_RecursiveDeref(dd,cof);
}
string = ABC_ALLOC(char, size + 1);
if (string == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
ABC_FREE(weight);
return(NULL);
}
mask = ABC_ALLOC(int, size);
if (mask == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
ABC_FREE(weight);
ABC_FREE(string);
return(NULL);
}
for (i = 0; i < size; i++) {
string[i] = '2';
mask[i] = 0;
}
string[size] = '\0';
indices = ABC_ALLOC(int,nvars);
if (indices == NULL) {
dd->errorCode = CUDD_MEMORY_OUT;
ABC_FREE(weight);
ABC_FREE(string);
ABC_FREE(mask);
return(NULL);
}
for (i = 0; i < nvars; i++) {
indices[i] = vars[i]->index;
}
result = ddPickRepresentativeCube(dd,f,weight,string);
if (result == 0) {
ABC_FREE(weight);
ABC_FREE(string);
ABC_FREE(mask);
ABC_FREE(indices);
return(NULL);
}
cube = Cudd_ReadOne(dd);
cuddRef(cube);
zero = Cudd_Not(Cudd_ReadOne(dd));
for (i = 0; i < nvars; i++) {
if (string[indices[i]] == '0') {
newCube = Cudd_bddIte(dd,cube,Cudd_Not(vars[i]),zero);
} else if (string[indices[i]] == '1') {
newCube = Cudd_bddIte(dd,cube,vars[i],zero);
} else
continue;
if (newCube == NULL) {
ABC_FREE(weight);
ABC_FREE(string);
ABC_FREE(mask);
ABC_FREE(indices);
Cudd_RecursiveDeref(dd,cube);
return(NULL);
}
cuddRef(newCube);
Cudd_RecursiveDeref(dd,cube);
cube = newCube;
}
Cudd_RecursiveDeref(dd,cube);
for (i = 0; i < mvars; i++) {
mask[maskVars[i]->index] = 1;
}
for (i = 0; i < nvars; i++) {
if (mask[indices[i]]) {
if (string[indices[i]] == '2') {
if (weight[indices[i]] >= 0.0)
string[indices[i]] = '1';
else
string[indices[i]] = '0';
}
} else {
string[indices[i]] = '2';
}
}
cube = Cudd_ReadOne(dd);
cuddRef(cube);
zero = Cudd_Not(Cudd_ReadOne(dd));
/* Build result BDD. */
for (i = 0; i < nvars; i++) {
if (string[indices[i]] == '0') {
newCube = Cudd_bddIte(dd,cube,Cudd_Not(vars[i]),zero);
} else if (string[indices[i]] == '1') {
newCube = Cudd_bddIte(dd,cube,vars[i],zero);
} else
continue;
if (newCube == NULL) {
ABC_FREE(weight);
ABC_FREE(string);
ABC_FREE(mask);
ABC_FREE(indices);
Cudd_RecursiveDeref(dd,cube);
return(NULL);
}
cuddRef(newCube);
Cudd_RecursiveDeref(dd,cube);
cube = newCube;
}
subset = Cudd_bddAnd(dd,f,cube);
cuddRef(subset);
Cudd_RecursiveDeref(dd,cube);
/* Test. */
if (Cudd_bddLeq(dd,subset,f)) {
cuddDeref(subset);
} else {
Cudd_RecursiveDeref(dd,subset);
subset = NULL;
}
ABC_FREE(weight);
ABC_FREE(string);
ABC_FREE(mask);
ABC_FREE(indices);
return(subset);
} /* end of Cudd_SubsetWithMaskVars */
/**Function********************************************************************
Synopsis [Finds the first cube of a decision diagram.]
Description [Defines an iterator on the onset of a decision diagram
and finds its first cube. Returns a generator that contains the
information necessary to continue the enumeration if successful; NULL
otherwise.A cube is represented as an array of literals, which are integers in {0, 1, 2}; 0 represents a complemented literal, 1 represents an uncomplemented literal, and 2 stands for don't care. The enumeration produces a disjoint cover of the function associated with the diagram. The size of the array equals the number of variables in the manager at the time Cudd_FirstCube is called.
For each cube, a value is also returned. This value is always 1 for a BDD, while it may be different from 1 for an ADD. For BDDs, the offset is the set of cubes whose value is the logical zero. For ADDs, the offset is the set of cubes whose value is the background value. The cubes of the offset are not enumerated.] SideEffects [The first cube and its value are returned as side effects.] SeeAlso [Cudd_ForeachCube Cudd_NextCube Cudd_GenFree Cudd_IsGenEmpty Cudd_FirstNode] ******************************************************************************/ DdGen * Cudd_FirstCube( DdManager * dd, DdNode * f, int ** cube, CUDD_VALUE_TYPE * value) { DdGen *gen; DdNode *top, *treg, *next, *nreg, *prev, *preg; int i; int nvars; /* Sanity Check. */ if (dd == NULL || f == NULL) return(NULL); /* Allocate generator an initialize it. */ gen = ABC_ALLOC(DdGen,1); if (gen == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(NULL); } gen->manager = dd; gen->type = CUDD_GEN_CUBES; gen->status = CUDD_GEN_EMPTY; gen->gen.cubes.cube = NULL; gen->gen.cubes.value = DD_ZERO_VAL; gen->stack.sp = 0; gen->stack.stack = NULL; gen->node = NULL; nvars = dd->size; gen->gen.cubes.cube = ABC_ALLOC(int,nvars); if (gen->gen.cubes.cube == NULL) { dd->errorCode = CUDD_MEMORY_OUT; ABC_FREE(gen); return(NULL); } for (i = 0; i < nvars; i++) gen->gen.cubes.cube[i] = 2; /* The maximum stack depth is one plus the number of variables. ** because a path may have nodes at all levels, including the ** constant level. */ gen->stack.stack = ABC_ALLOC(DdNodePtr, nvars+1); if (gen->stack.stack == NULL) { dd->errorCode = CUDD_MEMORY_OUT; ABC_FREE(gen->gen.cubes.cube); ABC_FREE(gen); return(NULL); } for (i = 0; i <= nvars; i++) gen->stack.stack[i] = NULL; /* Find the first cube of the onset. */ gen->stack.stack[gen->stack.sp] = f; gen->stack.sp++; while (1) { top = gen->stack.stack[gen->stack.sp-1]; treg = Cudd_Regular(top); if (!cuddIsConstant(treg)) { /* Take the else branch first. */ gen->gen.cubes.cube[treg->index] = 0; next = cuddE(treg); if (top != treg) next = Cudd_Not(next); gen->stack.stack[gen->stack.sp] = next; gen->stack.sp++; } else if (top == Cudd_Not(DD_ONE(dd)) || top == dd->background) { /* Backtrack */ while (1) { if (gen->stack.sp == 1) { /* The current node has no predecessor. */ gen->status = CUDD_GEN_EMPTY; gen->stack.sp--; goto done; } prev = gen->stack.stack[gen->stack.sp-2]; preg = Cudd_Regular(prev); nreg = cuddT(preg); if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} if (next != top) { /* follow the then branch next */ gen->gen.cubes.cube[preg->index] = 1; gen->stack.stack[gen->stack.sp-1] = next; break; } /* Pop the stack and try again. */ gen->gen.cubes.cube[preg->index] = 2; gen->stack.sp--; top = gen->stack.stack[gen->stack.sp-1]; treg = Cudd_Regular(top); } } else { gen->status = CUDD_GEN_NONEMPTY; gen->gen.cubes.value = cuddV(top); goto done; } } done: *cube = gen->gen.cubes.cube; *value = gen->gen.cubes.value; return(gen); } /* end of Cudd_FirstCube */ /**Function******************************************************************** Synopsis [Generates the next cube of a decision diagram onset.] Description [Generates the next cube of a decision diagram onset, using generator gen. Returns 0 if the enumeration is completed; 1 otherwise.] SideEffects [The cube and its value are returned as side effects. The generator is modified.] SeeAlso [Cudd_ForeachCube Cudd_FirstCube Cudd_GenFree Cudd_IsGenEmpty Cudd_NextNode] ******************************************************************************/ int Cudd_NextCube( DdGen * gen, int ** cube, CUDD_VALUE_TYPE * value) { DdNode *top, *treg, *next, *nreg, *prev, *preg; DdManager *dd = gen->manager; /* Backtrack from previously reached terminal node. */ while (1) { if (gen->stack.sp == 1) { /* The current node has no predecessor. */ gen->status = CUDD_GEN_EMPTY; gen->stack.sp--; goto done; } top = gen->stack.stack[gen->stack.sp-1]; treg = Cudd_Regular(top); prev = gen->stack.stack[gen->stack.sp-2]; preg = Cudd_Regular(prev); nreg = cuddT(preg); if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} if (next != top) { /* follow the then branch next */ gen->gen.cubes.cube[preg->index] = 1; gen->stack.stack[gen->stack.sp-1] = next; break; } /* Pop the stack and try again. */ gen->gen.cubes.cube[preg->index] = 2; gen->stack.sp--; } while (1) { top = gen->stack.stack[gen->stack.sp-1]; treg = Cudd_Regular(top); if (!cuddIsConstant(treg)) { /* Take the else branch first. */ gen->gen.cubes.cube[treg->index] = 0; next = cuddE(treg); if (top != treg) next = Cudd_Not(next); gen->stack.stack[gen->stack.sp] = next; gen->stack.sp++; } else if (top == Cudd_Not(DD_ONE(dd)) || top == dd->background) { /* Backtrack */ while (1) { if (gen->stack.sp == 1) { /* The current node has no predecessor. */ gen->status = CUDD_GEN_EMPTY; gen->stack.sp--; goto done; } prev = gen->stack.stack[gen->stack.sp-2]; preg = Cudd_Regular(prev); nreg = cuddT(preg); if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} if (next != top) { /* follow the then branch next */ gen->gen.cubes.cube[preg->index] = 1; gen->stack.stack[gen->stack.sp-1] = next; break; } /* Pop the stack and try again. */ gen->gen.cubes.cube[preg->index] = 2; gen->stack.sp--; top = gen->stack.stack[gen->stack.sp-1]; treg = Cudd_Regular(top); } } else { gen->status = CUDD_GEN_NONEMPTY; gen->gen.cubes.value = cuddV(top); goto done; } } done: if (gen->status == CUDD_GEN_EMPTY) return(0); *cube = gen->gen.cubes.cube; *value = gen->gen.cubes.value; return(1); } /* end of Cudd_NextCube */ /**Function******************************************************************** Synopsis [Finds the first prime of a Boolean function.] Description [Defines an iterator on a pair of BDDs describing a (possibly incompletely specified) Boolean functions and finds the first cube of a cover of the function. Returns a generator that contains the information necessary to continue the enumeration if successful; NULL otherwise.
The two argument BDDs are the lower and upper bounds of an interval. It is a mistake to call this function with a lower bound that is not less than or equal to the upper bound.
A cube is represented as an array of literals, which are integers in {0, 1, 2}; 0 represents a complemented literal, 1 represents an uncomplemented literal, and 2 stands for don't care. The enumeration produces a prime and irredundant cover of the function associated with the two BDDs. The size of the array equals the number of variables in the manager at the time Cudd_FirstCube is called.
This iterator can only be used on BDDs.] SideEffects [The first cube is returned as side effect.] SeeAlso [Cudd_ForeachPrime Cudd_NextPrime Cudd_GenFree Cudd_IsGenEmpty Cudd_FirstCube Cudd_FirstNode] ******************************************************************************/ DdGen * Cudd_FirstPrime( DdManager *dd, DdNode *l, DdNode *u, int **cube) { DdGen *gen; DdNode *implicant, *prime, *tmp; int length, result; /* Sanity Check. */ if (dd == NULL || l == NULL || u == NULL) return(NULL); /* Allocate generator an initialize it. */ gen = ABC_ALLOC(DdGen,1); if (gen == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(NULL); } gen->manager = dd; gen->type = CUDD_GEN_PRIMES; gen->status = CUDD_GEN_EMPTY; gen->gen.primes.cube = NULL; gen->gen.primes.ub = u; gen->stack.sp = 0; gen->stack.stack = NULL; gen->node = l; cuddRef(l); gen->gen.primes.cube = ABC_ALLOC(int,dd->size); if (gen->gen.primes.cube == NULL) { dd->errorCode = CUDD_MEMORY_OUT; ABC_FREE(gen); return(NULL); } if (gen->node == Cudd_ReadLogicZero(dd)) { gen->status = CUDD_GEN_EMPTY; } else { implicant = Cudd_LargestCube(dd,gen->node,&length); if (implicant == NULL) { Cudd_RecursiveDeref(dd,gen->node); ABC_FREE(gen->gen.primes.cube); ABC_FREE(gen); return(NULL); } cuddRef(implicant); prime = Cudd_bddMakePrime(dd,implicant,gen->gen.primes.ub); if (prime == NULL) { Cudd_RecursiveDeref(dd,gen->node); Cudd_RecursiveDeref(dd,implicant); ABC_FREE(gen->gen.primes.cube); ABC_FREE(gen); return(NULL); } cuddRef(prime); Cudd_RecursiveDeref(dd,implicant); tmp = Cudd_bddAnd(dd,gen->node,Cudd_Not(prime)); if (tmp == NULL) { Cudd_RecursiveDeref(dd,gen->node); Cudd_RecursiveDeref(dd,prime); ABC_FREE(gen->gen.primes.cube); ABC_FREE(gen); return(NULL); } cuddRef(tmp); Cudd_RecursiveDeref(dd,gen->node); gen->node = tmp; result = Cudd_BddToCubeArray(dd,prime,gen->gen.primes.cube); if (result == 0) { Cudd_RecursiveDeref(dd,gen->node); Cudd_RecursiveDeref(dd,prime); ABC_FREE(gen->gen.primes.cube); ABC_FREE(gen); return(NULL); } Cudd_RecursiveDeref(dd,prime); gen->status = CUDD_GEN_NONEMPTY; } *cube = gen->gen.primes.cube; return(gen); } /* end of Cudd_FirstPrime */ /**Function******************************************************************** Synopsis [Generates the next prime of a Boolean function.] Description [Generates the next cube of a Boolean function, using generator gen. Returns 0 if the enumeration is completed; 1 otherwise.] SideEffects [The cube and is returned as side effects. The generator is modified.] SeeAlso [Cudd_ForeachPrime Cudd_FirstPrime Cudd_GenFree Cudd_IsGenEmpty Cudd_NextCube Cudd_NextNode] ******************************************************************************/ int Cudd_NextPrime( DdGen *gen, int **cube) { DdNode *implicant, *prime, *tmp; DdManager *dd = gen->manager; int length, result; if (gen->node == Cudd_ReadLogicZero(dd)) { gen->status = CUDD_GEN_EMPTY; } else { implicant = Cudd_LargestCube(dd,gen->node,&length); if (implicant == NULL) { gen->status = CUDD_GEN_EMPTY; return(0); } cuddRef(implicant); prime = Cudd_bddMakePrime(dd,implicant,gen->gen.primes.ub); if (prime == NULL) { Cudd_RecursiveDeref(dd,implicant); gen->status = CUDD_GEN_EMPTY; return(0); } cuddRef(prime); Cudd_RecursiveDeref(dd,implicant); tmp = Cudd_bddAnd(dd,gen->node,Cudd_Not(prime)); if (tmp == NULL) { Cudd_RecursiveDeref(dd,prime); gen->status = CUDD_GEN_EMPTY; return(0); } cuddRef(tmp); Cudd_RecursiveDeref(dd,gen->node); gen->node = tmp; result = Cudd_BddToCubeArray(dd,prime,gen->gen.primes.cube); if (result == 0) { Cudd_RecursiveDeref(dd,prime); gen->status = CUDD_GEN_EMPTY; return(0); } Cudd_RecursiveDeref(dd,prime); gen->status = CUDD_GEN_NONEMPTY; } if (gen->status == CUDD_GEN_EMPTY) return(0); *cube = gen->gen.primes.cube; return(1); } /* end of Cudd_NextPrime */ /**Function******************************************************************** Synopsis [Computes the cube of an array of BDD variables.] Description [Computes the cube of an array of BDD variables. If non-null, the phase argument indicates which literal of each variable should appear in the cube. If phase\[i\] is nonzero, then the positive literal is used. If phase is NULL, the cube is positive unate. Returns a pointer to the result if successful; NULL otherwise.] SideEffects [None] SeeAlso [Cudd_addComputeCube Cudd_IndicesToCube Cudd_CubeArrayToBdd] ******************************************************************************/ DdNode * Cudd_bddComputeCube( DdManager * dd, DdNode ** vars, int * phase, int n) { DdNode *cube; DdNode *fn; int i; cube = DD_ONE(dd); cuddRef(cube); for (i = n - 1; i >= 0; i--) { if (phase == NULL || phase[i] != 0) { fn = Cudd_bddAnd(dd,vars[i],cube); } else { fn = Cudd_bddAnd(dd,Cudd_Not(vars[i]),cube); } if (fn == NULL) { Cudd_RecursiveDeref(dd,cube); return(NULL); } cuddRef(fn); Cudd_RecursiveDeref(dd,cube); cube = fn; } cuddDeref(cube); return(cube); } /* end of Cudd_bddComputeCube */ /**Function******************************************************************** Synopsis [Computes the cube of an array of ADD variables.] Description [Computes the cube of an array of ADD variables. If non-null, the phase argument indicates which literal of each variable should appear in the cube. If phase\[i\] is nonzero, then the positive literal is used. If phase is NULL, the cube is positive unate. Returns a pointer to the result if successful; NULL otherwise.] SideEffects [none] SeeAlso [Cudd_bddComputeCube] ******************************************************************************/ DdNode * Cudd_addComputeCube( DdManager * dd, DdNode ** vars, int * phase, int n) { DdNode *cube, *zero; DdNode *fn; int i; cube = DD_ONE(dd); cuddRef(cube); zero = DD_ZERO(dd); for (i = n - 1; i >= 0; i--) { if (phase == NULL || phase[i] != 0) { fn = Cudd_addIte(dd,vars[i],cube,zero); } else { fn = Cudd_addIte(dd,vars[i],zero,cube); } if (fn == NULL) { Cudd_RecursiveDeref(dd,cube); return(NULL); } cuddRef(fn); Cudd_RecursiveDeref(dd,cube); cube = fn; } cuddDeref(cube); return(cube); } /* end of Cudd_addComputeCube */ /**Function******************************************************************** Synopsis [Builds the BDD of a cube from a positional array.] Description [Builds a cube from a positional array. The array must have one integer entry for each BDD variable. If the i-th entry is 1, the variable of index i appears in true form in the cube; If the i-th entry is 0, the variable of index i appears complemented in the cube; otherwise the variable does not appear in the cube. Returns a pointer to the BDD for the cube if successful; NULL otherwise.] SideEffects [None] SeeAlso [Cudd_bddComputeCube Cudd_IndicesToCube Cudd_BddToCubeArray] ******************************************************************************/ DdNode * Cudd_CubeArrayToBdd( DdManager *dd, int *array) { DdNode *cube, *var, *tmp; int i; int size = Cudd_ReadSize(dd); cube = DD_ONE(dd); cuddRef(cube); for (i = size - 1; i >= 0; i--) { if ((array[i] & ~1) == 0) { var = Cudd_bddIthVar(dd,i); tmp = Cudd_bddAnd(dd,cube,Cudd_NotCond(var,array[i]==0)); if (tmp == NULL) { Cudd_RecursiveDeref(dd,cube); return(NULL); } cuddRef(tmp); Cudd_RecursiveDeref(dd,cube); cube = tmp; } } cuddDeref(cube); return(cube); } /* end of Cudd_CubeArrayToBdd */ /**Function******************************************************************** Synopsis [Builds a positional array from the BDD of a cube.] Description [Builds a positional array from the BDD of a cube. Array must have one entry for each BDD variable. The positional array has 1 in i-th position if the variable of index i appears in true form in the cube; it has 0 in i-th position if the variable of index i appears in complemented form in the cube; finally, it has 2 in i-th position if the variable of index i does not appear in the cube. Returns 1 if successful (the BDD is indeed a cube); 0 otherwise.] SideEffects [The result is in the array passed by reference.] SeeAlso [Cudd_CubeArrayToBdd] ******************************************************************************/ int Cudd_BddToCubeArray( DdManager *dd, DdNode *cube, int *array) { DdNode *scan, *t, *e; int i; int size = Cudd_ReadSize(dd); DdNode *zero = Cudd_Not(DD_ONE(dd)); for (i = size-1; i >= 0; i--) { array[i] = 2; } scan = cube; while (!Cudd_IsConstant(scan)) { int index = Cudd_Regular(scan)->index; cuddGetBranches(scan,&t,&e); if (t == zero) { array[index] = 0; scan = e; } else if (e == zero) { array[index] = 1; scan = t; } else { return(0); /* cube is not a cube */ } } if (scan == zero) { return(0); } else { return(1); } } /* end of Cudd_BddToCubeArray */ /**Function******************************************************************** Synopsis [Finds the first node of a decision diagram.] Description [Defines an iterator on the nodes of a decision diagram and finds its first node. Returns a generator that contains the information necessary to continue the enumeration if successful; NULL otherwise. The nodes are enumerated in a reverse topological order, so that a node is always preceded in the enumeration by its descendants.] SideEffects [The first node is returned as a side effect.] SeeAlso [Cudd_ForeachNode Cudd_NextNode Cudd_GenFree Cudd_IsGenEmpty Cudd_FirstCube] ******************************************************************************/ DdGen * Cudd_FirstNode( DdManager * dd, DdNode * f, DdNode ** node) { DdGen *gen; int size; /* Sanity Check. */ if (dd == NULL || f == NULL) return(NULL); /* Allocate generator an initialize it. */ gen = ABC_ALLOC(DdGen,1); if (gen == NULL) { dd->errorCode = CUDD_MEMORY_OUT; return(NULL); } gen->manager = dd; gen->type = CUDD_GEN_NODES; gen->status = CUDD_GEN_EMPTY; gen->stack.sp = 0; gen->node = NULL; /* Collect all the nodes on the generator stack for later perusal. */ gen->stack.stack = cuddNodeArray(Cudd_Regular(f), &size); if (gen->stack.stack == NULL) { ABC_FREE(gen); dd->errorCode = CUDD_MEMORY_OUT; return(NULL); } gen->gen.nodes.size = size; /* Find the first node. */ if (gen->stack.sp < gen->gen.nodes.size) { gen->status = CUDD_GEN_NONEMPTY; gen->node = gen->stack.stack[gen->stack.sp]; *node = gen->node; } return(gen); } /* end of Cudd_FirstNode */ /**Function******************************************************************** Synopsis [Finds the next node of a decision diagram.] Description [Finds the node of a decision diagram, using generator gen. Returns 0 if the enumeration is completed; 1 otherwise.] SideEffects [The next node is returned as a side effect.] SeeAlso [Cudd_ForeachNode Cudd_FirstNode Cudd_GenFree Cudd_IsGenEmpty Cudd_NextCube] ******************************************************************************/ int Cudd_NextNode( DdGen * gen, DdNode ** node) { /* Find the next node. */ gen->stack.sp++; if (gen->stack.sp < gen->gen.nodes.size) { gen->node = gen->stack.stack[gen->stack.sp]; *node = gen->node; return(1); } else { gen->status = CUDD_GEN_EMPTY; return(0); } } /* end of Cudd_NextNode */ /**Function******************************************************************** Synopsis [Frees a CUDD generator.] Description [Frees a CUDD generator. Always returns 0, so that it can be used in mis-like foreach constructs.] SideEffects [None] SeeAlso [Cudd_ForeachCube Cudd_ForeachNode Cudd_FirstCube Cudd_NextCube Cudd_FirstNode Cudd_NextNode Cudd_IsGenEmpty] ******************************************************************************/ int Cudd_GenFree( DdGen * gen) { if (gen == NULL) return(0); switch (gen->type) { case CUDD_GEN_CUBES: case CUDD_GEN_ZDD_PATHS: ABC_FREE(gen->gen.cubes.cube); ABC_FREE(gen->stack.stack); break; case CUDD_GEN_PRIMES: ABC_FREE(gen->gen.primes.cube); Cudd_RecursiveDeref(gen->manager,gen->node); break; case CUDD_GEN_NODES: ABC_FREE(gen->stack.stack); break; default: return(0); } ABC_FREE(gen); return(0); } /* end of Cudd_GenFree */ /**Function******************************************************************** Synopsis [Queries the status of a generator.] Description [Queries the status of a generator. Returns 1 if the generator is empty or NULL; 0 otherswise.] SideEffects [None] SeeAlso [Cudd_ForeachCube Cudd_ForeachNode Cudd_FirstCube Cudd_NextCube Cudd_FirstNode Cudd_NextNode Cudd_GenFree] ******************************************************************************/ int Cudd_IsGenEmpty( DdGen * gen) { if (gen == NULL) return(1); return(gen->status == CUDD_GEN_EMPTY); } /* end of Cudd_IsGenEmpty */ /**Function******************************************************************** Synopsis [Builds a cube of BDD variables from an array of indices.] Description [Builds a cube of BDD variables from an array of indices. Returns a pointer to the result if successful; NULL otherwise.] SideEffects [None] SeeAlso [Cudd_bddComputeCube Cudd_CubeArrayToBdd] ******************************************************************************/ DdNode * Cudd_IndicesToCube( DdManager * dd, int * array, int n) { DdNode *cube, *tmp; int i; cube = DD_ONE(dd); cuddRef(cube); for (i = n - 1; i >= 0; i--) { tmp = Cudd_bddAnd(dd,Cudd_bddIthVar(dd,array[i]),cube); if (tmp == NULL) { Cudd_RecursiveDeref(dd,cube); return(NULL); } cuddRef(tmp); Cudd_RecursiveDeref(dd,cube); cube = tmp; } cuddDeref(cube); return(cube); } /* end of Cudd_IndicesToCube */ /**Function******************************************************************** Synopsis [Prints the package version number.] Description [] SideEffects [None] SeeAlso [] ******************************************************************************/ void Cudd_PrintVersion( FILE * fp) { (void) fprintf(fp, "%s\n", CUDD_VERSION); } /* end of Cudd_PrintVersion */ /**Function******************************************************************** Synopsis [Computes the average distance between adjacent nodes.] Description [Computes the average distance between adjacent nodes in the manager. Adjacent nodes are node pairs such that the second node is the then child, else child, or next node in the collision list.] SideEffects [None] SeeAlso [] ******************************************************************************/ double Cudd_AverageDistance( DdManager * dd) { double tetotal, nexttotal; double tesubtotal, nextsubtotal; double temeasured, nextmeasured; int i, j; int slots, nvars; long diff; DdNode *scan; DdNodePtr *nodelist; DdNode *sentinel = &(dd->sentinel); nvars = dd->size; if (nvars == 0) return(0.0); /* Initialize totals. */ tetotal = 0.0; nexttotal = 0.0; temeasured = 0.0; nextmeasured = 0.0; /* Scan the variable subtables. */ for (i = 0; i < nvars; i++) { nodelist = dd->subtables[i].nodelist; tesubtotal = 0.0; nextsubtotal = 0.0; slots = dd->subtables[i].slots; for (j = 0; j < slots; j++) { scan = nodelist[j]; while (scan != sentinel) { diff = (long) scan - (long) cuddT(scan); tesubtotal += (double) ddAbs(diff); diff = (long) scan - (long) Cudd_Regular(cuddE(scan)); tesubtotal += (double) ddAbs(diff); temeasured += 2.0; if (scan->next != sentinel) { diff = (long) scan - (long) scan->next; nextsubtotal += (double) ddAbs(diff); nextmeasured += 1.0; } scan = scan->next; } } tetotal += tesubtotal; nexttotal += nextsubtotal; } /* Scan the constant table. */ nodelist = dd->constants.nodelist; nextsubtotal = 0.0; slots = dd->constants.slots; for (j = 0; j < slots; j++) { scan = nodelist[j]; while (scan != NULL) { if (scan->next != NULL) { diff = (long) scan - (long) scan->next; nextsubtotal += (double) ddAbs(diff); nextmeasured += 1.0; } scan = scan->next; } } nexttotal += nextsubtotal; return((tetotal + nexttotal) / (temeasured + nextmeasured)); } /* end of Cudd_AverageDistance */ /**Function******************************************************************** Synopsis [Portable random number generator.] Description [Portable number generator based on ran2 from "Numerical Recipes in C." It is a long period (> 2 * 10^18) random number generator of L'Ecuyer with Bays-Durham shuffle. Returns a long integer uniformly distributed between 0 and 2147483561 (inclusive of the endpoint values). The random generator can be explicitly initialized by calling Cudd_Srandom. If no explicit initialization is performed, then the seed 1 is assumed.] SideEffects [None] SeeAlso [Cudd_Srandom] ******************************************************************************/ long Cudd_Random(void) { int i; /* index in the shuffle table */ long int w; /* work variable */ /* cuddRand == 0 if the geneartor has not been initialized yet. */ if (cuddRand == 0) Cudd_Srandom(1); /* Compute cuddRand = (cuddRand * LEQA1) % MODULUS1 avoiding ** overflows by Schrage's method. */ w = cuddRand / LEQQ1; cuddRand = LEQA1 * (cuddRand - w * LEQQ1) - w * LEQR1; cuddRand += (cuddRand < 0) * MODULUS1; /* Compute cuddRand2 = (cuddRand2 * LEQA2) % MODULUS2 avoiding ** overflows by Schrage's method. */ w = cuddRand2 / LEQQ2; cuddRand2 = LEQA2 * (cuddRand2 - w * LEQQ2) - w * LEQR2; cuddRand2 += (cuddRand2 < 0) * MODULUS2; /* cuddRand is shuffled with the Bays-Durham algorithm. ** shuffleSelect and cuddRand2 are combined to generate the output. */ /* Pick one element from the shuffle table; "i" will be in the range ** from 0 to STAB_SIZE-1. */ i = (int) (shuffleSelect / STAB_DIV); /* Mix the element of the shuffle table with the current iterate of ** the second sub-generator, and replace the chosen element of the ** shuffle table with the current iterate of the first sub-generator. */ shuffleSelect = shuffleTable[i] - cuddRand2; shuffleTable[i] = cuddRand; shuffleSelect += (shuffleSelect < 1) * (MODULUS1 - 1); /* Since shuffleSelect != 0, and we want to be able to return 0, ** here we subtract 1 before returning. */ return(shuffleSelect - 1); } /* end of Cudd_Random */ /**Function******************************************************************** Synopsis [Initializer for the portable random number generator.] Description [Initializer for the portable number generator based on ran2 in "Numerical Recipes in C." The input is the seed for the generator. If it is negative, its absolute value is taken as seed. If it is 0, then 1 is taken as seed. The initialized sets up the two recurrences used to generate a long-period stream, and sets up the shuffle table.] SideEffects [None] SeeAlso [Cudd_Random] ******************************************************************************/ void Cudd_Srandom( long seed) { int i; if (seed < 0) cuddRand = -seed; else if (seed == 0) cuddRand = 1; else cuddRand = seed; cuddRand2 = cuddRand; /* Load the shuffle table (after 11 warm-ups). */ for (i = 0; i < STAB_SIZE + 11; i++) { long int w; w = cuddRand / LEQQ1; cuddRand = LEQA1 * (cuddRand - w * LEQQ1) - w * LEQR1; cuddRand += (cuddRand < 0) * MODULUS1; shuffleTable[i % STAB_SIZE] = cuddRand; } shuffleSelect = shuffleTable[1 % STAB_SIZE]; } /* end of Cudd_Srandom */ /**Function******************************************************************** Synopsis [Computes the density of a BDD or ADD.] Description [Computes the density of a BDD or ADD. The density is the ratio of the number of minterms to the number of nodes. If 0 is passed as number of variables, the number of variables existing in the manager is used. Returns the density if successful; (double) CUDD_OUT_OF_MEM otherwise.] SideEffects [None] SeeAlso [Cudd_CountMinterm Cudd_DagSize] ******************************************************************************/ double Cudd_Density( DdManager * dd /* manager */, DdNode * f /* function whose density is sought */, int nvars /* size of the support of f */) { double minterms; int nodes; double density; if (nvars == 0) nvars = dd->size; minterms = Cudd_CountMinterm(dd,f,nvars); if (minterms == (double) CUDD_OUT_OF_MEM) return(minterms); nodes = Cudd_DagSize(f); density = minterms / (double) nodes; return(density); } /* end of Cudd_Density */ /**Function******************************************************************** Synopsis [Warns that a memory allocation failed.] Description [Warns that a memory allocation failed. This function can be used as replacement of MMout_of_memory to prevent the safe_mem functions of the util package from exiting when malloc returns NULL. One possible use is in case of discretionary allocations; for instance, the allocation of memory to enlarge the computed table.] SideEffects [None] SeeAlso [] ******************************************************************************/ void Cudd_OutOfMem( long size /* size of the allocation that failed */) { (void) fflush(stdout); (void) fprintf(stderr, "\nunable to allocate %ld bytes\n", size); return; } /* end of Cudd_OutOfMem */ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Prints a DD to the standard output. One line per node is printed.] Description [Prints a DD to the standard output. One line per node is printed. Returns 1 if successful; 0 otherwise.] SideEffects [None] SeeAlso [Cudd_PrintDebug] ******************************************************************************/ int cuddP( DdManager * dd, DdNode * f) { int retval; st_table *table = st_init_table(st_ptrcmp,st_ptrhash); if (table == NULL) return(0); retval = dp2(dd,f,table); st_free_table(table); (void) fputc('\n',dd->out); return(retval); } /* end of cuddP */ /**Function******************************************************************** Synopsis [Frees the memory used to store the minterm counts recorded in the visited table.] Description [Frees the memory used to store the minterm counts recorded in the visited table. Returns ST_CONTINUE.] SideEffects [None] ******************************************************************************/ enum st_retval cuddStCountfree( char * key, char * value, char * arg) { double *d; d = (double *)value; ABC_FREE(d); return(ST_CONTINUE); } /* end of cuddStCountfree */ /**Function******************************************************************** Synopsis [Recursively collects all the nodes of a DD in a symbol table.] Description [Traverses the DD f and collects all its nodes in a symbol table. f is assumed to be a regular pointer and cuddCollectNodes guarantees this assumption in the recursive calls. Returns 1 in case of success; 0 otherwise.] SideEffects [None] SeeAlso [] ******************************************************************************/ int cuddCollectNodes( DdNode * f, st_table * visited) { DdNode *T, *E; int retval; #ifdef DD_DEBUG assert(!Cudd_IsComplement(f)); #endif /* If already visited, nothing to do. */ if (st_is_member(visited, (char *) f) == 1) return(1); /* Check for abnormal condition that should never happen. */ if (f == NULL) return(0); /* Mark node as visited. */ if (st_add_direct(visited, (char *) f, NULL) == ST_OUT_OF_MEM) return(0); /* Check terminal case. */ if (cuddIsConstant(f)) return(1); /* Recursive calls. */ T = cuddT(f); retval = cuddCollectNodes(T,visited); if (retval != 1) return(retval); E = Cudd_Regular(cuddE(f)); retval = cuddCollectNodes(E,visited); return(retval); } /* end of cuddCollectNodes */ /**Function******************************************************************** Synopsis [Recursively collects all the nodes of a DD in an array.] Description [Traverses the DD f and collects all its nodes in an array. The caller should free the array returned by cuddNodeArray. Returns a pointer to the array of nodes in case of success; NULL otherwise. The nodes are collected in reverse topological order, so that a node is always preceded in the array by all its descendants.] SideEffects [The number of nodes is returned as a side effect.] SeeAlso [Cudd_FirstNode] ******************************************************************************/ DdNodePtr * cuddNodeArray( DdNode *f, int *n) { DdNodePtr *table; int size, retval; size = ddDagInt(Cudd_Regular(f)); table = ABC_ALLOC(DdNodePtr, size); if (table == NULL) { ddClearFlag(Cudd_Regular(f)); return(NULL); } retval = cuddNodeArrayRecur(f, table, 0); assert(retval == size); *n = size; return(table); } /* cuddNodeArray */ /*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/ /**Function******************************************************************** Synopsis [Performs the recursive step of cuddP.] Description [Performs the recursive step of cuddP. Returns 1 in case of success; 0 otherwise.] SideEffects [None] ******************************************************************************/ static int dp2( DdManager *dd, DdNode * f, st_table * t) { DdNode *g, *n, *N; int T,E; if (f == NULL) { return(0); } g = Cudd_Regular(f); if (cuddIsConstant(g)) { #if SIZEOF_VOID_P == 8 (void) fprintf(dd->out,"ID = %c0x%lx\tvalue = %-9g\n", bang(f), (ptruint) g / (ptruint) sizeof(DdNode),cuddV(g)); #else (void) fprintf(dd->out,"ID = %c0x%x\tvalue = %-9g\n", bang(f), (ptruint) g / (ptruint) sizeof(DdNode),cuddV(g)); #endif return(1); } if (st_is_member(t,(char *) g) == 1) { return(1); } if (st_add_direct(t,(char *) g,NULL) == ST_OUT_OF_MEM) return(0); #ifdef DD_STATS #if SIZEOF_VOID_P == 8 (void) fprintf(dd->out,"ID = %c0x%lx\tindex = %d\tr = %d\t", bang(f), (ptruint) g / (ptruint) sizeof(DdNode), g->index, g->ref); #else (void) fprintf(dd->out,"ID = %c0x%x\tindex = %d\tr = %d\t", bang(f), (ptruint) g / (ptruint) sizeof(DdNode),g->index,g->ref); #endif #else #if SIZEOF_VOID_P == 8 (void) fprintf(dd->out,"ID = %c0x%lx\tindex = %u\t", bang(f), (ptruint) g / (ptruint) sizeof(DdNode),g->index); #else (void) fprintf(dd->out,"ID = %c0x%x\tindex = %hu\t", bang(f), (ptruint) g / (ptruint) sizeof(DdNode),g->index); #endif #endif n = cuddT(g); if (cuddIsConstant(n)) { (void) fprintf(dd->out,"T = %-9g\t",cuddV(n)); T = 1; } else { #if SIZEOF_VOID_P == 8 (void) fprintf(dd->out,"T = 0x%lx\t",(ptruint) n / (ptruint) sizeof(DdNode)); #else (void) fprintf(dd->out,"T = 0x%x\t",(ptruint) n / (ptruint) sizeof(DdNode)); #endif T = 0; } n = cuddE(g); N = Cudd_Regular(n); if (cuddIsConstant(N)) { (void) fprintf(dd->out,"E = %c%-9g\n",bang(n),cuddV(N)); E = 1; } else { #if SIZEOF_VOID_P == 8 (void) fprintf(dd->out,"E = %c0x%lx\n", bang(n), (ptruint) N/(ptruint) sizeof(DdNode)); #else (void) fprintf(dd->out,"E = %c0x%x\n", bang(n), (ptruint) N/(ptruint) sizeof(DdNode)); #endif E = 0; } if (E == 0) { if (dp2(dd,N,t) == 0) return(0); } if (T == 0) { if (dp2(dd,cuddT(g),t) == 0) return(0); } return(1); } /* end of dp2 */ /**Function******************************************************************** Synopsis [Performs the recursive step of Cudd_PrintMinterm.] Description [] SideEffects [None] ******************************************************************************/ static void ddPrintMintermAux( DdManager * dd /* manager */, DdNode * node /* current node */, int * list /* current recursion path */) { DdNode *N,*Nv,*Nnv; int i,v,index; N = Cudd_Regular(node); if (cuddIsConstant(N)) { /* Terminal case: Print one cube based on the current recursion ** path, unless we have reached the background value (ADDs) or ** the logical zero (BDDs). */ if (node != background && node != zero) { for (i = 0; i < dd->size; i++) { v = list[i]; if (v == 0) (void) fprintf(dd->out,"0"); else if (v == 1) (void) fprintf(dd->out,"1"); else (void) fprintf(dd->out,"-"); } (void) fprintf(dd->out," % g\n", cuddV(node)); } } else { Nv = cuddT(N); Nnv = cuddE(N); if (Cudd_IsComplement(node)) { Nv = Cudd_Not(Nv); Nnv = Cudd_Not(Nnv); } index = N->index; list[index] = 0; ddPrintMintermAux(dd,Nnv,list); list[index] = 1; ddPrintMintermAux(dd,Nv,list); list[index] = 2; } return; } /* end of ddPrintMintermAux */ /**Function******************************************************************** Synopsis [Performs the recursive step of Cudd_DagSize.] Description [Performs the recursive step of Cudd_DagSize. Returns the number of nodes in the graph rooted at n.] SideEffects [None] ******************************************************************************/ static int ddDagInt( DdNode * n) { int tval, eval; if (Cudd_IsComplement(n->next)) { return(0); } n->next = Cudd_Not(n->next); if (cuddIsConstant(n)) { return(1); } tval = ddDagInt(cuddT(n)); eval = ddDagInt(Cudd_Regular(cuddE(n))); return(1 + tval + eval); } /* end of ddDagInt */ /**Function******************************************************************** Synopsis [Performs the recursive step of cuddNodeArray.] Description [Performs the recursive step of cuddNodeArray. Returns an the number of nodes in the DD. Clear the least significant bit of the next field that was used as visited flag by cuddNodeArrayRecur when counting the nodes. node is supposed to be regular; the invariant is maintained by this procedure.] SideEffects [None] SeeAlso [] ******************************************************************************/ static int cuddNodeArrayRecur( DdNode *f, DdNodePtr *table, int index) { int tindex, eindex; if (!Cudd_IsComplement(f->next)) { return(index); } /* Clear visited flag. */ f->next = Cudd_Regular(f->next); if (cuddIsConstant(f)) { table[index] = f; return(index + 1); } tindex = cuddNodeArrayRecur(cuddT(f), table, index); eindex = cuddNodeArrayRecur(Cudd_Regular(cuddE(f)), table, tindex); table[eindex] = f; return(eindex + 1); } /* end of cuddNodeArrayRecur */ /**Function******************************************************************** Synopsis [Performs the recursive step of Cudd_CofactorEstimate.] Description [Performs the recursive step of Cudd_CofactorEstimate. Returns an estimate of the number of nodes in the DD of a cofactor of node. Uses the least significant bit of the next field as visited flag. node is supposed to be regular; the invariant is maintained by this procedure.] SideEffects [None] SeeAlso [] ******************************************************************************/ static int cuddEstimateCofactor( DdManager *dd, st_table *table, DdNode * node, int i, int phase, DdNode ** ptr) { int tval, eval, val; DdNode *ptrT, *ptrE; if (Cudd_IsComplement(node->next)) { if (!st_lookup(table,(char *)node,(char **)ptr)) { if (st_add_direct(table,(char *)node,(char *)node) == ST_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); *ptr = node; } return(0); } node->next = Cudd_Not(node->next); if (cuddIsConstant(node)) { *ptr = node; if (st_add_direct(table,(char *)node,(char *)node) == ST_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); return(1); } if ((int) node->index == i) { if (phase == 1) { *ptr = cuddT(node); val = ddDagInt(cuddT(node)); } else { *ptr = cuddE(node); val = ddDagInt(Cudd_Regular(cuddE(node))); } if (node->ref > 1) { if (st_add_direct(table,(char *)node,(char *)*ptr) == ST_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); } return(val); } if (dd->perm[node->index] > dd->perm[i]) { *ptr = node; tval = ddDagInt(cuddT(node)); eval = ddDagInt(Cudd_Regular(cuddE(node))); if (node->ref > 1) { if (st_add_direct(table,(char *)node,(char *)node) == ST_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); } val = 1 + tval + eval; return(val); } tval = cuddEstimateCofactor(dd,table,cuddT(node),i,phase,&ptrT); eval = cuddEstimateCofactor(dd,table,Cudd_Regular(cuddE(node)),i, phase,&ptrE); ptrE = Cudd_NotCond(ptrE,Cudd_IsComplement(cuddE(node))); if (ptrT == ptrE) { /* recombination */ *ptr = ptrT; val = tval; if (node->ref > 1) { if (st_add_direct(table,(char *)node,(char *)*ptr) == ST_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); } } else if ((ptrT != cuddT(node) || ptrE != cuddE(node)) && (*ptr = cuddUniqueLookup(dd,node->index,ptrT,ptrE)) != NULL) { if (Cudd_IsComplement((*ptr)->next)) { val = 0; } else { val = 1 + tval + eval; } if (node->ref > 1) { if (st_add_direct(table,(char *)node,(char *)*ptr) == ST_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); } } else { *ptr = node; val = 1 + tval + eval; } return(val); } /* end of cuddEstimateCofactor */ /**Function******************************************************************** Synopsis [Checks the unique table for the existence of an internal node.] Description [Checks the unique table for the existence of an internal node. Returns a pointer to the node if it is in the table; NULL otherwise.] SideEffects [None] SeeAlso [cuddUniqueInter] ******************************************************************************/ static DdNode * cuddUniqueLookup( DdManager * unique, int index, DdNode * T, DdNode * E) { int posn; unsigned int level; DdNodePtr *nodelist; DdNode *looking; DdSubtable *subtable; if (index >= unique->size) { return(NULL); } level = unique->perm[index]; subtable = &(unique->subtables[level]); #ifdef DD_DEBUG assert(level < (unsigned) cuddI(unique,T->index)); assert(level < (unsigned) cuddI(unique,Cudd_Regular(E)->index)); #endif posn = ddHash(cuddF2L(T), cuddF2L(E), subtable->shift); nodelist = subtable->nodelist; looking = nodelist[posn]; while (T < cuddT(looking)) { looking = Cudd_Regular(looking->next); } while (T == cuddT(looking) && E < cuddE(looking)) { looking = Cudd_Regular(looking->next); } if (cuddT(looking) == T && cuddE(looking) == E) { return(looking); } return(NULL); } /* end of cuddUniqueLookup */ /**Function******************************************************************** Synopsis [Performs the recursive step of Cudd_CofactorEstimateSimple.] Description [Performs the recursive step of Cudd_CofactorEstimateSimple. Returns an estimate of the number of nodes in the DD of the positive cofactor of node. Uses the least significant bit of the next field as visited flag. node is supposed to be regular; the invariant is maintained by this procedure.] SideEffects [None] SeeAlso [] ******************************************************************************/ static int cuddEstimateCofactorSimple( DdNode * node, int i) { int tval, eval; if (Cudd_IsComplement(node->next)) { return(0); } node->next = Cudd_Not(node->next); if (cuddIsConstant(node)) { return(1); } tval = cuddEstimateCofactorSimple(cuddT(node),i); if ((int) node->index == i) return(tval); eval = cuddEstimateCofactorSimple(Cudd_Regular(cuddE(node)),i); return(1 + tval + eval); } /* end of cuddEstimateCofactorSimple */ /**Function******************************************************************** Synopsis [Performs the recursive step of Cudd_CountMinterm.] Description [Performs the recursive step of Cudd_CountMinterm. It is based on the following identity. Let |f| be the number of minterms of f. Then: