/**CFile**************************************************************** FileName [ioWriteAiger.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Command processing package.] Synopsis [Procedures to write binary AIGER format developed by Armin Biere, Johannes Kepler University (http://fmv.jku.at/)] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - December 16, 2006.] Revision [$Id: ioWriteAiger.c,v 1.00 2006/12/16 00:00:00 alanmi Exp $] ***********************************************************************/ #include "ioAbc.h" //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// /* The following is taken from the AIGER format description, which can be found at http://fmv.jku.at/aiger */ /* The AIGER And-Inverter Graph (AIG) Format Version 20061129 ---------------------------------------------------------- Armin Biere, Johannes Kepler University, 2006 This report describes the AIG file format as used by the AIGER library. The purpose of this report is not only to motivate and document the format, but also to allow independent implementations of writers and readers by giving precise and unambiguous definitions. ... Introduction The name AIGER contains as one part the acronym AIG of And-Inverter Graphs and also if pronounced in German sounds like the name of the 'Eiger', a mountain in the Swiss alps. This choice should emphasize the origin of this format. It was first openly discussed at the Alpine Verification Meeting 2006 in Ascona as a way to provide a simple, compact file format for a model checking competition affiliated to CAV 2007. ... Binary Format Definition The binary format is semantically a subset of the ASCII format with a slightly different syntax. The binary format may need to reencode literals, but translating a file in binary format into ASCII format and then back in to binary format will result in the same file. The main differences of the binary format to the ASCII format are as follows. After the header the list of input literals and all the current state literals of a latch can be omitted. Furthermore the definitions of the AND gates are binary encoded. However, the symbol table and the comment section are as in the ASCII format. The header of an AIGER file in binary format has 'aig' as format identifier, but otherwise is identical to the ASCII header. The standard file extension for the binary format is therefore '.aig'. A header for the binary format is still in ASCII encoding: aig M I L O A Constants, variables and literals are handled in the same way as in the ASCII format. The first simplifying restriction is on the variable indices of inputs and latches. The variable indices of inputs come first, followed by the pseudo-primary inputs of the latches and then the variable indices of all LHS of AND gates: input variable indices 1, 2, ... , I latch variable indices I+1, I+2, ... , (I+L) AND variable indices I+L+1, I+L+2, ... , (I+L+A) == M The corresponding unsigned literals are input literals 2, 4, ... , 2*I latch literals 2*I+2, 2*I+4, ... , 2*(I+L) AND literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A) == 2*M All literals have to be defined, and therefore 'M = I + L + A'. With this restriction it becomes possible that the inputs and the current state literals of the latches do not have to be listed explicitly. Therefore, after the header only the list of 'L' next state literals follows, one per latch on a single line, and then the 'O' outputs, again one per line. In the binary format we assume that the AND gates are ordered and respect the child parent relation. AND gates with smaller literals on the LHS come first. Therefore we can assume that the literals on the right-hand side of a definition of an AND gate are smaller than the LHS literal. Furthermore we can sort the literals on the RHS, such that the larger literal comes first. A definition thus consists of three literals lhs rhs0 rhs1 with 'lhs' even and 'lhs > rhs0 >= rhs1'. Also the variable indices are pairwise different to avoid combinational self loops. Since the LHS indices of the definitions are all consecutive (as even integers), the binary format does not have to keep 'lhs'. In addition, we can use the order restriction and only write the differences 'delta0' and 'delta1' instead of 'rhs0' and 'rhs1', with delta0 = lhs - rhs0, delta1 = rhs0 - rhs1 The differences will all be strictly positive, and in practice often very small. We can take advantage of this fact by the simple little-endian encoding of unsigned integers of the next section. After the binary delta encoding of the RHSs of all AND gates, the optional symbol table and optional comment section start in the same format as in the ASCII case. ... */ static unsigned Io_ObjMakeLit( int Var, int fCompl ) { return (Var << 1) | fCompl; } static unsigned Io_ObjAigerNum( Abc_Obj_t * pObj ) { return (unsigned)pObj->pCopy; } static void Io_ObjSetAigerNum( Abc_Obj_t * pObj, unsigned Num ) { pObj->pCopy = (void *)Num; } //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Adds one unsigned AIG edge to the output buffer.] Description [This procedure is a slightly modified version of Armin Biere's procedure "void encode (FILE * file, unsigned x)" ] SideEffects [Returns the current writing position.] SeeAlso [] ***********************************************************************/ int Io_WriteAigerEncode( char * pBuffer, int Pos, unsigned x ) { unsigned char ch; while (x & ~0x7f) { ch = (x & 0x7f) | 0x80; // putc (ch, file); pBuffer[Pos++] = ch; x >>= 7; } ch = x; // putc (ch, file); pBuffer[Pos++] = ch; return Pos; } /**Function************************************************************* Synopsis [Create the array of literals to be written.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Io_WriteAigerLiterals( Abc_Ntk_t * pNtk ) { Vec_Int_t * vLits; Abc_Obj_t * pObj, * pDriver; int i; vLits = Vec_IntAlloc( Abc_NtkCoNum(pNtk) ); Abc_NtkForEachLatchInput( pNtk, pObj, i ) { pDriver = Abc_ObjFanin0(pObj); Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); } Abc_NtkForEachPo( pNtk, pObj, i ) { pDriver = Abc_ObjFanin0(pObj); Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); } return vLits; } /**Function************************************************************* Synopsis [Creates the binary encoded array of literals.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Str_t * Io_WriteEncodeLiterals( Vec_Int_t * vLits ) { Vec_Str_t * vBinary; int Pos = 0, Lit, LitPrev, Diff, i; vBinary = Vec_StrAlloc( 2 * Vec_IntSize(vLits) ); LitPrev = Vec_IntEntry( vLits, 0 ); Pos = Io_WriteAigerEncode( Vec_StrArray(vBinary), Pos, LitPrev ); Vec_IntForEachEntryStart( vLits, Lit, i, 1 ) { Diff = Lit - LitPrev; Diff = (Lit < LitPrev)? -Diff : Diff; Diff = (Diff << 1) | (int)(Lit < LitPrev); Pos = Io_WriteAigerEncode( Vec_StrArray(vBinary), Pos, Diff ); LitPrev = Lit; if ( Pos + 10 > vBinary->nCap ) Vec_StrGrow( vBinary, vBinary->nCap+1 ); } vBinary->nSize = Pos; /* // verify { extern Vec_Int_t * Io_WriteDecodeLiterals( char ** ppPos, int nEntries ); char * pPos = Vec_StrArray( vBinary ); Vec_Int_t * vTemp = Io_WriteDecodeLiterals( &pPos, Vec_IntSize(vLits) ); for ( i = 0; i < Vec_IntSize(vLits); i++ ) { int Entry1 = Vec_IntEntry(vLits,i); int Entry2 = Vec_IntEntry(vTemp,i); assert( Entry1 == Entry2 ); } } */ return vBinary; } /**Function************************************************************* Synopsis [Writes the AIG in the binary AIGER format.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteAiger( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols, int fCompact ) { ProgressBar * pProgress; FILE * pFile; Abc_Obj_t * pObj, * pDriver; int i, nNodes, Pos, nBufferSize; unsigned char * pBuffer; unsigned uLit0, uLit1, uLit; assert( Abc_NtkIsStrash(pNtk) ); // start the output stream pFile = fopen( pFileName, "wb" ); if ( pFile == NULL ) { fprintf( stdout, "Io_WriteAiger(): Cannot open the output file \"%s\".\n", pFileName ); return; } Abc_NtkForEachLatch( pNtk, pObj, i ) if ( !Abc_LatchIsInit0(pObj) ) { fprintf( stdout, "Io_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" ); return; } // set the node numbers to be used in the output file nNodes = 0; Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ ); Abc_NtkForEachCi( pNtk, pObj, i ) Io_ObjSetAigerNum( pObj, nNodes++ ); Abc_AigForEachAnd( pNtk, pObj, i ) Io_ObjSetAigerNum( pObj, nNodes++ ); // write the header "M I L O A" where M = I + L + A fprintf( pFile, "aig%s %u %u %u %u %u\n", fCompact? "2" : "", Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk), Abc_NtkPiNum(pNtk), Abc_NtkLatchNum(pNtk), Abc_NtkPoNum(pNtk), Abc_NtkNodeNum(pNtk) ); // if the driver node is a constant, we need to complement the literal below // because, in the AIGER format, literal 0/1 is represented as number 0/1 // while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0 if ( !fCompact ) { // write latch drivers Abc_NtkForEachLatchInput( pNtk, pObj, i ) { pDriver = Abc_ObjFanin0(pObj); fprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); } // write PO drivers Abc_NtkForEachPo( pNtk, pObj, i ) { pDriver = Abc_ObjFanin0(pObj); fprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); } } else { Vec_Int_t * vLits = Io_WriteAigerLiterals( pNtk ); Vec_Str_t * vBinary = Io_WriteEncodeLiterals( vLits ); fwrite( Vec_StrArray(vBinary), 1, Vec_StrSize(vBinary), pFile ); Vec_StrFree( vBinary ); Vec_IntFree( vLits ); } // write the nodes into the buffer Pos = 0; nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge pBuffer = ALLOC( unsigned char, nBufferSize ); pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) ); Abc_AigForEachAnd( pNtk, pObj, i ) { Extra_ProgressBarUpdate( pProgress, i, NULL ); uLit = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 ); uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) ); uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) ); assert( uLit0 < uLit1 ); Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit - uLit1) ); Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit1 - uLit0) ); if ( Pos > nBufferSize - 10 ) { printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" ); fclose( pFile ); return; } } assert( Pos < nBufferSize ); Extra_ProgressBarStop( pProgress ); // write the buffer fwrite( pBuffer, 1, Pos, pFile ); free( pBuffer ); // write the symbol table if ( fWriteSymbols ) { // write PIs Abc_NtkForEachPi( pNtk, pObj, i ) fprintf( pFile, "i%d %s\n", i, Abc_ObjName(pObj) ); // write latches Abc_NtkForEachLatch( pNtk, pObj, i ) fprintf( pFile, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) ); // write POs Abc_NtkForEachPo( pNtk, pObj, i ) fprintf( pFile, "o%d %s\n", i, Abc_ObjName(pObj) ); } // write the comment fprintf( pFile, "c\n" ); if ( pNtk->pName && strlen(pNtk->pName) > 0 ) fprintf( pFile, ".model %s\n", pNtk->pName ); fprintf( pFile, "This file was produced by ABC on %s\n", Extra_TimeStamp() ); fprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" ); fclose( pFile ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////