/**CFile**************************************************************** FileName [abcMap.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Network and node package.] Synopsis [Interface with the SC mapping package.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: abcMap.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include "src/base/abc/abc.h" #include "src/base/main/main.h" #include "src/map/mio/mio.h" #include "src/map/mapper/mapper.h" ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static Map_Man_t * Abc_NtkToMap( Abc_Ntk_t * pNtk, double DelayTarget, int fRecovery, float * pSwitching, int fVerbose ); static Abc_Ntk_t * Abc_NtkFromMap( Map_Man_t * pMan, Abc_Ntk_t * pNtk ); static Abc_Obj_t * Abc_NodeFromMap_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase ); static Abc_Obj_t * Abc_NodeFromMapPhase_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase ); static Abc_Obj_t * Abc_NodeFromMapSuper_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, Map_Super_t * pSuper, Abc_Obj_t * pNodePis[], int nNodePis ); static Abc_Ntk_t * Abc_NtkFromMapSuperChoice( Map_Man_t * pMan, Abc_Ntk_t * pNtk ); static void Abc_NodeSuperChoice( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode ); static void Abc_NodeFromMapCutPhase( Abc_Ntk_t * pNtkNew, Map_Cut_t * pCut, int fPhase ); static Abc_Obj_t * Abc_NodeFromMapSuperChoice_rec( Abc_Ntk_t * pNtkNew, Map_Super_t * pSuper, Abc_Obj_t * pNodePis[], int nNodePis ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Interface with the mapping package.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkMap( Abc_Ntk_t * pNtk, double DelayTarget, int fRecovery, int fSwitching, int fVerbose ) { int fShowSwitching = 1; Abc_Ntk_t * pNtkNew; Map_Man_t * pMan; Vec_Int_t * vSwitching = NULL; float * pSwitching = NULL; clock_t clk, clkTotal = clock(); assert( Abc_NtkIsStrash(pNtk) ); // check that the library is available if ( Abc_FrameReadLibGen() == NULL ) { printf( "The current library is not available.\n" ); return 0; } // derive the supergate library if ( Abc_FrameReadLibSuper() == NULL && Abc_FrameReadLibGen() ) { // printf( "A simple supergate library is derived from gate library \"%s\".\n", // Mio_LibraryReadName((Mio_Library_t *)Abc_FrameReadLibGen()) ); Map_SuperLibDeriveFromGenlib( (Mio_Library_t *)Abc_FrameReadLibGen() ); } // print a warning about choice nodes if ( Abc_NtkGetChoiceNum( pNtk ) ) printf( "Performing mapping with choices.\n" ); // compute switching activity fShowSwitching |= fSwitching; if ( fShowSwitching ) { extern Vec_Int_t * Sim_NtkComputeSwitching( Abc_Ntk_t * pNtk, int nPatterns ); vSwitching = Sim_NtkComputeSwitching( pNtk, 4096 ); pSwitching = (float *)vSwitching->pArray; } // perform the mapping pMan = Abc_NtkToMap( pNtk, DelayTarget, fRecovery, pSwitching, fVerbose ); if ( pSwitching ) Vec_IntFree( vSwitching ); if ( pMan == NULL ) return NULL; clk = clock(); Map_ManSetSwitching( pMan, fSwitching ); if ( !Map_Mapping( pMan ) ) { Map_ManFree( pMan ); return NULL; } // Map_ManPrintStatsToFile( pNtk->pSpec, Map_ManReadAreaFinal(pMan), Map_ManReadRequiredGlo(pMan), clock()-clk ); // reconstruct the network after mapping pNtkNew = Abc_NtkFromMap( pMan, pNtk ); Map_ManFree( pMan ); if ( pNtkNew == NULL ) return NULL; if ( pNtk->pExdc ) pNtkNew->pExdc = Abc_NtkDup( pNtk->pExdc ); if ( fVerbose ) { ABC_PRT( "Total runtime", clock() - clkTotal ); } // make sure that everything is okay if ( !Abc_NtkCheck( pNtkNew ) ) { printf( "Abc_NtkMap: The network check has failed.\n" ); Abc_NtkDelete( pNtkNew ); return NULL; } return pNtkNew; } /**Function************************************************************* Synopsis [Load the network into manager.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Map_Man_t * Abc_NtkToMap( Abc_Ntk_t * pNtk, double DelayTarget, int fRecovery, float * pSwitching, int fVerbose ) { Map_Man_t * pMan; ProgressBar * pProgress; Map_Node_t * pNodeMap; Vec_Ptr_t * vNodes; Abc_Obj_t * pNode, * pFanin, * pPrev; int i; assert( Abc_NtkIsStrash(pNtk) ); // start the mapping manager and set its parameters pMan = Map_ManCreate( Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk), Abc_NtkPoNum(pNtk) + Abc_NtkLatchNum(pNtk), fVerbose ); if ( pMan == NULL ) return NULL; Map_ManSetAreaRecovery( pMan, fRecovery ); Map_ManSetOutputNames( pMan, Abc_NtkCollectCioNames(pNtk, 1) ); Map_ManSetDelayTarget( pMan, (float)DelayTarget ); Map_ManSetInputArrivals( pMan, (Map_Time_t *)Abc_NtkGetCiArrivalTimes(pNtk) ); Map_ManSetOutputRequireds( pMan, (Map_Time_t *)Abc_NtkGetCoRequiredTimes(pNtk) ); // create PIs and remember them in the old nodes Abc_NtkCleanCopy( pNtk ); Abc_AigConst1(pNtk)->pCopy = (Abc_Obj_t *)Map_ManReadConst1(pMan); Abc_NtkForEachCi( pNtk, pNode, i ) { pNodeMap = Map_ManReadInputs(pMan)[i]; pNode->pCopy = (Abc_Obj_t *)pNodeMap; if ( pSwitching ) Map_NodeSetSwitching( pNodeMap, pSwitching[pNode->Id] ); } // load the AIG into the mapper vNodes = Abc_AigDfs( pNtk, 0, 0 ); pProgress = Extra_ProgressBarStart( stdout, vNodes->nSize ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i ) { Extra_ProgressBarUpdate( pProgress, i, NULL ); // add the node to the mapper pNodeMap = Map_NodeAnd( pMan, Map_NotCond( Abc_ObjFanin0(pNode)->pCopy, (int)Abc_ObjFaninC0(pNode) ), Map_NotCond( Abc_ObjFanin1(pNode)->pCopy, (int)Abc_ObjFaninC1(pNode) ) ); assert( pNode->pCopy == NULL ); // remember the node pNode->pCopy = (Abc_Obj_t *)pNodeMap; if ( pSwitching ) Map_NodeSetSwitching( pNodeMap, pSwitching[pNode->Id] ); // set up the choice node if ( Abc_AigNodeIsChoice( pNode ) ) for ( pPrev = pNode, pFanin = (Abc_Obj_t *)pNode->pData; pFanin; pPrev = pFanin, pFanin = (Abc_Obj_t *)pFanin->pData ) { Map_NodeSetNextE( (Map_Node_t *)pPrev->pCopy, (Map_Node_t *)pFanin->pCopy ); Map_NodeSetRepr( (Map_Node_t *)pFanin->pCopy, (Map_Node_t *)pNode->pCopy ); } } Extra_ProgressBarStop( pProgress ); Vec_PtrFree( vNodes ); // set the primary outputs in the required phase Abc_NtkForEachCo( pNtk, pNode, i ) Map_ManReadOutputs(pMan)[i] = Map_NotCond( (Map_Node_t *)Abc_ObjFanin0(pNode)->pCopy, (int)Abc_ObjFaninC0(pNode) ); return pMan; } /**Function************************************************************* Synopsis [Creates the mapped network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkFromMap( Map_Man_t * pMan, Abc_Ntk_t * pNtk ) { ProgressBar * pProgress; Abc_Ntk_t * pNtkNew; Map_Node_t * pNodeMap; Abc_Obj_t * pNode, * pNodeNew; int i, nDupGates; // create the new network pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_MAP ); // make the mapper point to the new network Map_ManCleanData( pMan ); Abc_NtkForEachCi( pNtk, pNode, i ) Map_NodeSetData( Map_ManReadInputs(pMan)[i], 1, (char *)pNode->pCopy ); // assign the mapping of the required phase to the POs pProgress = Extra_ProgressBarStart( stdout, Abc_NtkCoNum(pNtk) ); Abc_NtkForEachCo( pNtk, pNode, i ) { Extra_ProgressBarUpdate( pProgress, i, NULL ); pNodeMap = Map_ManReadOutputs(pMan)[i]; pNodeNew = Abc_NodeFromMap_rec( pNtkNew, Map_Regular(pNodeMap), !Map_IsComplement(pNodeMap) ); assert( !Abc_ObjIsComplement(pNodeNew) ); Abc_ObjAddFanin( pNode->pCopy, pNodeNew ); } Extra_ProgressBarStop( pProgress ); // decouple the PO driver nodes to reduce the number of levels nDupGates = Abc_NtkLogicMakeSimpleCos( pNtkNew, 1 ); // if ( nDupGates && Map_ManReadVerbose(pMan) ) // printf( "Duplicated %d gates to decouple the CO drivers.\n", nDupGates ); return pNtkNew; } /**Function************************************************************* Synopsis [Constructs the nodes corrresponding to one node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NodeFromMap_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase ) { Abc_Obj_t * pNodeNew, * pNodeInv; // check the case of constant node if ( Map_NodeIsConst(pNodeMap) ) { pNodeNew = fPhase? Abc_NtkCreateNodeConst1(pNtkNew) : Abc_NtkCreateNodeConst0(pNtkNew); if ( pNodeNew->pData == NULL ) printf( "Error creating mapped network: Library does not have a constant %d gate.\n", fPhase ); return pNodeNew; } // check if the phase is already implemented pNodeNew = (Abc_Obj_t *)Map_NodeReadData( pNodeMap, fPhase ); if ( pNodeNew ) return pNodeNew; // implement the node if the best cut is assigned if ( Map_NodeReadCutBest(pNodeMap, fPhase) != NULL ) return Abc_NodeFromMapPhase_rec( pNtkNew, pNodeMap, fPhase ); // if the cut is not assigned, implement the node assert( Map_NodeReadCutBest(pNodeMap, !fPhase) != NULL || Map_NodeIsConst(pNodeMap) ); pNodeNew = Abc_NodeFromMapPhase_rec( pNtkNew, pNodeMap, !fPhase ); // add the inverter pNodeInv = Abc_NtkCreateNode( pNtkNew ); Abc_ObjAddFanin( pNodeInv, pNodeNew ); pNodeInv->pData = Mio_LibraryReadInv(Map_ManReadGenLib(Map_NodeReadMan(pNodeMap))); // set the inverter Map_NodeSetData( pNodeMap, fPhase, (char *)pNodeInv ); return pNodeInv; } /**Function************************************************************* Synopsis [Constructs the nodes corrresponding to one node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NodeFromMapPhase_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, int fPhase ) { Abc_Obj_t * pNodePIs[10]; Abc_Obj_t * pNodeNew; Map_Node_t ** ppLeaves; Map_Cut_t * pCutBest; Map_Super_t * pSuperBest; unsigned uPhaseBest; int i, fInvPin, nLeaves; // make sure the node can be implemented in this phase assert( Map_NodeReadCutBest(pNodeMap, fPhase) != NULL || Map_NodeIsConst(pNodeMap) ); // check if the phase is already implemented pNodeNew = (Abc_Obj_t *)Map_NodeReadData( pNodeMap, fPhase ); if ( pNodeNew ) return pNodeNew; // get the information about the best cut pCutBest = Map_NodeReadCutBest( pNodeMap, fPhase ); pSuperBest = Map_CutReadSuperBest( pCutBest, fPhase ); uPhaseBest = Map_CutReadPhaseBest( pCutBest, fPhase ); nLeaves = Map_CutReadLeavesNum( pCutBest ); ppLeaves = Map_CutReadLeaves( pCutBest ); // collect the PI nodes for ( i = 0; i < nLeaves; i++ ) { fInvPin = ((uPhaseBest & (1 << i)) > 0); pNodePIs[i] = Abc_NodeFromMap_rec( pNtkNew, ppLeaves[i], !fInvPin ); assert( pNodePIs[i] != NULL ); } // implement the supergate pNodeNew = Abc_NodeFromMapSuper_rec( pNtkNew, pNodeMap, pSuperBest, pNodePIs, nLeaves ); Map_NodeSetData( pNodeMap, fPhase, (char *)pNodeNew ); return pNodeNew; } /**Function************************************************************* Synopsis [Constructs the nodes corrresponding to one supergate.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NodeFromMapSuper_rec( Abc_Ntk_t * pNtkNew, Map_Node_t * pNodeMap, Map_Super_t * pSuper, Abc_Obj_t * pNodePis[], int nNodePis ) { Mio_Gate_t * pRoot; Map_Super_t ** ppFanins; Abc_Obj_t * pNodeNew, * pNodeFanin; int nFanins, Number, i; // get the parameters of the supergate pRoot = Map_SuperReadRoot(pSuper); if ( pRoot == NULL ) { Number = Map_SuperReadNum(pSuper); if ( Number < nNodePis ) { return pNodePis[Number]; } else { // assert( 0 ); /* It might happen that a super gate with 5 inputs is constructed that * actually depends only on the first four variables; i.e the fifth is a * don't care -- in that case we connect constant node for the fifth * (since the cut only has 4 variables). An interesting question is what * if the first variable (and not the fifth one is the redundant one; * can that happen?) */ return Abc_NtkCreateNodeConst0(pNtkNew); } } // get information about the fanins of the supergate nFanins = Map_SuperReadFaninNum( pSuper ); ppFanins = Map_SuperReadFanins( pSuper ); // create a new node with these fanins pNodeNew = Abc_NtkCreateNode( pNtkNew ); for ( i = 0; i < nFanins; i++ ) { pNodeFanin = Abc_NodeFromMapSuper_rec( pNtkNew, pNodeMap, ppFanins[i], pNodePis, nNodePis ); Abc_ObjAddFanin( pNodeNew, pNodeFanin ); } pNodeNew->pData = pRoot; return pNodeNew; } /**Function************************************************************* Synopsis [Interface with the mapping package.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkSuperChoice( Abc_Ntk_t * pNtk ) { Abc_Ntk_t * pNtkNew; Map_Man_t * pMan; assert( Abc_NtkIsStrash(pNtk) ); // check that the library is available if ( Abc_FrameReadLibGen() == NULL ) { printf( "The current library is not available.\n" ); return 0; } // derive the supergate library if ( Abc_FrameReadLibSuper() == NULL && Abc_FrameReadLibGen() ) { // printf( "A simple supergate library is derived from gate library \"%s\".\n", // Mio_LibraryReadName((Mio_Library_t *)Abc_FrameReadLibGen()) ); Map_SuperLibDeriveFromGenlib( (Mio_Library_t *)Abc_FrameReadLibGen() ); } // print a warning about choice nodes if ( Abc_NtkGetChoiceNum( pNtk ) ) printf( "Performing mapping with choices.\n" ); // perform the mapping pMan = Abc_NtkToMap( pNtk, -1, 1, NULL, 0 ); if ( pMan == NULL ) return NULL; if ( !Map_Mapping( pMan ) ) { Map_ManFree( pMan ); return NULL; } // reconstruct the network after mapping pNtkNew = Abc_NtkFromMapSuperChoice( pMan, pNtk ); if ( pNtkNew == NULL ) return NULL; Map_ManFree( pMan ); // make sure that everything is okay if ( !Abc_NtkCheck( pNtkNew ) ) { printf( "Abc_NtkMap: The network check has failed.\n" ); Abc_NtkDelete( pNtkNew ); return NULL; } return pNtkNew; } /**Function************************************************************* Synopsis [Creates the mapped network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkFromMapSuperChoice( Map_Man_t * pMan, Abc_Ntk_t * pNtk ) { extern Abc_Ntk_t * Abc_NtkMulti( Abc_Ntk_t * pNtk, int nThresh, int nFaninMax, int fCnf, int fMulti, int fSimple, int fFactor ); ProgressBar * pProgress; Abc_Ntk_t * pNtkNew, * pNtkNew2; Abc_Obj_t * pNode; int i; // save the pointer to the mapped nodes Abc_NtkForEachCi( pNtk, pNode, i ) pNode->pNext = pNode->pCopy; Abc_NtkForEachPo( pNtk, pNode, i ) pNode->pNext = pNode->pCopy; Abc_NtkForEachNode( pNtk, pNode, i ) pNode->pNext = pNode->pCopy; // duplicate the network pNtkNew2 = Abc_NtkDup( pNtk ); pNtkNew = Abc_NtkMulti( pNtkNew2, 0, 20, 0, 0, 1, 0 ); if ( !Abc_NtkBddToSop( pNtkNew, 0 ) ) { printf( "Abc_NtkFromMapSuperChoice(): Converting to SOPs has failed.\n" ); return NULL; } // set the old network to point to the new network Abc_NtkForEachCi( pNtk, pNode, i ) pNode->pCopy = pNode->pCopy->pCopy; Abc_NtkForEachPo( pNtk, pNode, i ) pNode->pCopy = pNode->pCopy->pCopy; Abc_NtkForEachNode( pNtk, pNode, i ) pNode->pCopy = pNode->pCopy->pCopy; Abc_NtkDelete( pNtkNew2 ); // set the pointers from the mapper to the new nodes Abc_NtkForEachCi( pNtk, pNode, i ) { Map_NodeSetData( Map_ManReadInputs(pMan)[i], 0, (char *)Abc_NtkCreateNodeInv(pNtkNew,pNode->pCopy) ); Map_NodeSetData( Map_ManReadInputs(pMan)[i], 1, (char *)pNode->pCopy ); } Abc_NtkForEachNode( pNtk, pNode, i ) { // if ( Abc_NodeIsConst(pNode) ) // continue; Map_NodeSetData( (Map_Node_t *)pNode->pNext, 0, (char *)Abc_NtkCreateNodeInv(pNtkNew,pNode->pCopy) ); Map_NodeSetData( (Map_Node_t *)pNode->pNext, 1, (char *)pNode->pCopy ); } // assign the mapping of the required phase to the POs pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNode( pNtk, pNode, i ) { Extra_ProgressBarUpdate( pProgress, i, NULL ); // if ( Abc_NodeIsConst(pNode) ) // continue; Abc_NodeSuperChoice( pNtkNew, pNode ); } Extra_ProgressBarStop( pProgress ); return pNtkNew; } /**Function************************************************************* Synopsis [Creates the mapped network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NodeSuperChoice( Abc_Ntk_t * pNtkNew, Abc_Obj_t * pNode ) { Map_Node_t * pMapNode = (Map_Node_t *)pNode->pNext; Map_Cut_t * pCuts, * pTemp; pCuts = Map_NodeReadCuts(pMapNode); for ( pTemp = Map_CutReadNext(pCuts); pTemp; pTemp = Map_CutReadNext(pTemp) ) { Abc_NodeFromMapCutPhase( pNtkNew, pTemp, 0 ); Abc_NodeFromMapCutPhase( pNtkNew, pTemp, 1 ); } } /**Function************************************************************* Synopsis [Constructs the nodes corrresponding to one node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NodeFromMapCutPhase( Abc_Ntk_t * pNtkNew, Map_Cut_t * pCut, int fPhase ) { Abc_Obj_t * pNodePIs[10]; Map_Node_t ** ppLeaves; Map_Super_t * pSuperBest; unsigned uPhaseBest; int i, fInvPin, nLeaves; pSuperBest = Map_CutReadSuperBest( pCut, fPhase ); if ( pSuperBest == NULL ) return; // get the information about the best cut uPhaseBest = Map_CutReadPhaseBest( pCut, fPhase ); nLeaves = Map_CutReadLeavesNum( pCut ); ppLeaves = Map_CutReadLeaves( pCut ); // collect the PI nodes for ( i = 0; i < nLeaves; i++ ) { fInvPin = ((uPhaseBest & (1 << i)) > 0); pNodePIs[i] = (Abc_Obj_t *)Map_NodeReadData( ppLeaves[i], !fInvPin ); assert( pNodePIs[i] != NULL ); } // implement the supergate Abc_NodeFromMapSuperChoice_rec( pNtkNew, pSuperBest, pNodePIs, nLeaves ); } /**Function************************************************************* Synopsis [Constructs the nodes corrresponding to one supergate.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Obj_t * Abc_NodeFromMapSuperChoice_rec( Abc_Ntk_t * pNtkNew, Map_Super_t * pSuper, Abc_Obj_t * pNodePis[], int nNodePis ) { Mio_Gate_t * pRoot; Map_Super_t ** ppFanins; Abc_Obj_t * pNodeNew, * pNodeFanin; int nFanins, Number, i; // get the parameters of the supergate pRoot = Map_SuperReadRoot(pSuper); if ( pRoot == NULL ) { Number = Map_SuperReadNum(pSuper); if ( Number < nNodePis ) { return pNodePis[Number]; } else { // assert( 0 ); /* It might happen that a super gate with 5 inputs is constructed that * actually depends only on the first four variables; i.e the fifth is a * don't care -- in that case we connect constant node for the fifth * (since the cut only has 4 variables). An interesting question is what * if the first variable (and not the fifth one is the redundant one; * can that happen?) */ return Abc_NtkCreateNodeConst0(pNtkNew); } } // get information about the fanins of the supergate nFanins = Map_SuperReadFaninNum( pSuper ); ppFanins = Map_SuperReadFanins( pSuper ); // create a new node with these fanins pNodeNew = Abc_NtkCreateNode( pNtkNew ); for ( i = 0; i < nFanins; i++ ) { pNodeFanin = Abc_NodeFromMapSuperChoice_rec( pNtkNew, ppFanins[i], pNodePis, nNodePis ); Abc_ObjAddFanin( pNodeNew, pNodeFanin ); } pNodeNew->pData = Abc_SopRegister( (Mem_Flex_t *)pNtkNew->pManFunc, Mio_GateReadSop(pRoot) ); return pNodeNew; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// //////////////////////////////////////////////////////////////////////// ABC_NAMESPACE_IMPL_END