/**CFile**************************************************************** FileName [sswClass.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Inductive prover with constraints.] Synopsis [Representation of candidate equivalence classes.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - September 1, 2008.] Revision [$Id: sswClass.c,v 1.00 2008/09/01 00:00:00 alanmi Exp $] ***********************************************************************/ #include "sswInt.h" /* The candidate equivalence classes are stored as a vector of pointers to the array of pointers to the nodes in each class. The first node of the class is its representative node. The representative has the smallest topological order among the class nodes. The nodes inside each class are ordered according to their topological order. The classes are ordered according to the topo order of their representatives. */ // internal representation of candidate equivalence classes struct Ssw_Cla_t_ { // class information Aig_Man_t * pAig; // original AIG manager Aig_Obj_t *** pId2Class; // non-const classes by ID of repr node int * pClassSizes; // sizes of each equivalence class // statistics int nClasses; // the total number of non-const classes int nCands1; // the total number of const candidates int nLits; // the number of literals in all classes // memory Aig_Obj_t ** pMemClasses; // memory allocated for equivalence classes Aig_Obj_t ** pMemClassesFree; // memory allocated for equivalence classes to be used // temporary data Vec_Ptr_t * vClassOld; // old equivalence class after splitting Vec_Ptr_t * vClassNew; // new equivalence class(es) after splitting Vec_Ptr_t * vRefined; // the nodes refined since the last iteration // procedures used for class refinement void * pManData; unsigned (*pFuncNodeHash) (void *,Aig_Obj_t *); // returns hash key of the node int (*pFuncNodeIsConst) (void *,Aig_Obj_t *); // returns 1 if the node is a constant int (*pFuncNodesAreEqual) (void *,Aig_Obj_t *, Aig_Obj_t *); // returns 1 if nodes are equal up to a complement }; //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// static inline Aig_Obj_t * Ssw_ObjNext( Aig_Obj_t ** ppNexts, Aig_Obj_t * pObj ) { return ppNexts[pObj->Id]; } static inline void Ssw_ObjSetNext( Aig_Obj_t ** ppNexts, Aig_Obj_t * pObj, Aig_Obj_t * pNext ) { ppNexts[pObj->Id] = pNext; } // iterator through the equivalence classes #define Ssw_ManForEachClass( p, ppClass, i ) \ for ( i = 0; i < Aig_ManObjNumMax(p->pAig); i++ ) \ if ( ((ppClass) = p->pId2Class[i]) == NULL ) {} else // iterator through the nodes in one class #define Ssw_ClassForEachNode( p, pRepr, pNode, i ) \ for ( i = 0; i < p->pClassSizes[pRepr->Id]; i++ ) \ if ( ((pNode) = p->pId2Class[pRepr->Id][i]) == NULL ) {} else //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Creates one equivalence class.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline void Ssw_ObjAddClass( Ssw_Cla_t * p, Aig_Obj_t * pRepr, Aig_Obj_t ** pClass, int nSize ) { assert( p->pId2Class[pRepr->Id] == NULL ); p->pId2Class[pRepr->Id] = pClass; assert( p->pClassSizes[pRepr->Id] == 0 ); assert( nSize > 1 ); p->pClassSizes[pRepr->Id] = nSize; p->nClasses++; p->nLits += nSize - 1; } /**Function************************************************************* Synopsis [Removes one equivalence class.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static inline Aig_Obj_t ** Ssw_ObjRemoveClass( Ssw_Cla_t * p, Aig_Obj_t * pRepr ) { Aig_Obj_t ** pClass = p->pId2Class[pRepr->Id]; int nSize; assert( pClass != NULL ); p->pId2Class[pRepr->Id] = NULL; nSize = p->pClassSizes[pRepr->Id]; assert( nSize > 1 ); p->nClasses--; p->nLits -= nSize - 1; p->pClassSizes[pRepr->Id] = 0; return pClass; } /**Function************************************************************* Synopsis [Starts representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesStart( Aig_Man_t * pAig ) { Ssw_Cla_t * p; p = ALLOC( Ssw_Cla_t, 1 ); memset( p, 0, sizeof(Ssw_Cla_t) ); p->pAig = pAig; p->pId2Class = CALLOC( Aig_Obj_t **, Aig_ManObjNumMax(pAig) ); p->pClassSizes = CALLOC( int, Aig_ManObjNumMax(pAig) ); p->vClassOld = Vec_PtrAlloc( 100 ); p->vClassNew = Vec_PtrAlloc( 100 ); p->vRefined = Vec_PtrAlloc( 1000 ); assert( pAig->pReprs == NULL ); Aig_ManReprStart( pAig, Aig_ManObjNumMax(pAig) ); return p; } /**Function************************************************************* Synopsis [Starts representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesSetData( Ssw_Cla_t * p, void * pManData, unsigned (*pFuncNodeHash)(void *,Aig_Obj_t *), // returns hash key of the node int (*pFuncNodeIsConst)(void *,Aig_Obj_t *), // returns 1 if the node is a constant int (*pFuncNodesAreEqual)(void *,Aig_Obj_t *, Aig_Obj_t *) ) // returns 1 if nodes are equal up to a complement { p->pManData = pManData; p->pFuncNodeHash = pFuncNodeHash; p->pFuncNodeIsConst = pFuncNodeIsConst; p->pFuncNodesAreEqual = pFuncNodesAreEqual; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesStop( Ssw_Cla_t * p ) { if ( p->vClassNew ) Vec_PtrFree( p->vClassNew ); if ( p->vClassOld ) Vec_PtrFree( p->vClassOld ); Vec_PtrFree( p->vRefined ); FREE( p->pId2Class ); FREE( p->pClassSizes ); FREE( p->pMemClasses ); free( p ); } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Ssw_ClassesGetRefined( Ssw_Cla_t * p ) { return p->vRefined; } /**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesClearRefined( Ssw_Cla_t * p ) { Vec_PtrClear( p->vRefined ); } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesCand1Num( Ssw_Cla_t * p ) { return p->nCands1; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesClassNum( Ssw_Cla_t * p ) { return p->nClasses; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesLitNum( Ssw_Cla_t * p ) { return p->nLits; } /**Function************************************************************* Synopsis [Stop representation of equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Obj_t ** Ssw_ClassesReadClass( Ssw_Cla_t * p, Aig_Obj_t * pRepr, int * pnSize ) { assert( p->pId2Class[pRepr->Id] != NULL ); assert( p->pClassSizes[pRepr->Id] > 1 ); *pnSize = p->pClassSizes[pRepr->Id]; return p->pId2Class[pRepr->Id]; } /**Function************************************************************* Synopsis [Checks candidate equivalence classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesCheck( Ssw_Cla_t * p ) { Aig_Obj_t * pObj, * pPrev, ** ppClass; int i, k, nLits, nClasses, nCands1; nClasses = nLits = 0; Ssw_ManForEachClass( p, ppClass, k ) { pPrev = NULL; Ssw_ClassForEachNode( p, ppClass[0], pObj, i ) { if ( i == 0 ) assert( Aig_ObjRepr(p->pAig, pObj) == NULL ); else { assert( Aig_ObjRepr(p->pAig, pObj) == ppClass[0] ); assert( pPrev->Id < pObj->Id ); nLits++; } pPrev = pObj; } nClasses++; } nCands1 = 0; Aig_ManForEachObj( p->pAig, pObj, i ) nCands1 += Ssw_ObjIsConst1Cand( p->pAig, pObj ); assert( p->nLits == nLits ); assert( p->nCands1 == nCands1 ); assert( p->nClasses == nClasses ); } /**Function************************************************************* Synopsis [Prints simulation classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesPrintOne( Ssw_Cla_t * p, Aig_Obj_t * pRepr ) { Aig_Obj_t * pObj; int i; printf( "{ " ); Ssw_ClassForEachNode( p, pRepr, pObj, i ) printf( "%d(%d,%d) ", pObj->Id, pObj->Level, Aig_SupportSize(p->pAig,pObj) ); printf( "}\n" ); } /**Function************************************************************* Synopsis [Prints simulation classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesPrint( Ssw_Cla_t * p, int fVeryVerbose ) { Aig_Obj_t ** ppClass; Aig_Obj_t * pObj; int i; printf( "Equivalence classes: Const1 = %5d. Class = %5d. Lit = %5d.\n", p->nCands1, p->nClasses, p->nCands1+p->nLits ); if ( !fVeryVerbose ) return; printf( "Constants { " ); Aig_ManForEachObj( p->pAig, pObj, i ) if ( Ssw_ObjIsConst1Cand( p->pAig, pObj ) ) printf( "%d(%d,%d) ", pObj->Id, pObj->Level, Aig_SupportSize(p->pAig,pObj) ); printf( "}\n" ); Ssw_ManForEachClass( p, ppClass, i ) { printf( "%3d (%3d) : ", i, p->pClassSizes[i] ); Ssw_ClassesPrintOne( p, ppClass[0] ); } printf( "\n" ); } /**Function************************************************************* Synopsis [Prints simulation classes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ssw_ClassesRemoveNode( Ssw_Cla_t * p, Aig_Obj_t * pObj ) { Aig_Obj_t * pRepr, * pTemp; assert( p->pId2Class[pObj->Id] == NULL ); pRepr = Aig_ObjRepr( p->pAig, pObj ); assert( pRepr != NULL ); Vec_PtrPush( p->vRefined, pObj ); if ( Ssw_ObjIsConst1Cand( p->pAig, pObj ) ) { Aig_ObjSetRepr( p->pAig, pObj, NULL ); p->nCands1--; return; } Vec_PtrPush( p->vRefined, pRepr ); Aig_ObjSetRepr( p->pAig, pObj, NULL ); assert( p->pId2Class[pRepr->Id][0] == pRepr ); assert( p->pClassSizes[pRepr->Id] >= 2 ); if ( p->pClassSizes[pRepr->Id] == 2 ) { p->pId2Class[pObj->Id] = NULL; p->nClasses--; p->pClassSizes[pRepr->Id] = 0; p->nLits--; } else { int i, k = 0; // remove the entry from the class Ssw_ClassForEachNode( p, pRepr, pTemp, i ) if ( pTemp != pObj ) p->pId2Class[pRepr->Id][k++] = pTemp; assert( k + 1 == p->pClassSizes[pRepr->Id] ); // reduce the class p->pClassSizes[pRepr->Id]--; p->nLits--; } } /**Function************************************************************* Synopsis [Creates initial simulation classes.] Description [Assumes that simulation info is assigned.] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPrepare( Aig_Man_t * pAig, int fLatchCorr, int nMaxLevs, int fVerbose ) { Ssw_Cla_t * p; Ssw_Sml_t * pSml; Aig_Obj_t ** ppTable, ** ppNexts, ** ppClassNew; Aig_Obj_t * pObj, * pTemp, * pRepr; int i, k, nTableSize, nNodes, iEntry, nEntries, nEntries2; int clk; // start the classes p = Ssw_ClassesStart( pAig ); // perform sequential simulation clk = clock(); pSml = Ssw_SmlSimulateSeq( pAig, 0, 32, 4 ); if ( fVerbose ) { PRT( "Simulation of 32 frames with 4 words", clock() - clk ); } // set comparison procedures clk = clock(); Ssw_ClassesSetData( p, pSml, Ssw_SmlNodeHash, Ssw_SmlNodeIsConst, Ssw_SmlNodesAreEqual ); // allocate the hash table hashing simulation info into nodes nTableSize = Aig_PrimeCudd( Aig_ManObjNumMax(p->pAig)/4 ); ppTable = CALLOC( Aig_Obj_t *, nTableSize ); ppNexts = CALLOC( Aig_Obj_t *, Aig_ManObjNumMax(p->pAig) ); // add all the nodes to the hash table nEntries = 0; Aig_ManForEachObj( p->pAig, pObj, i ) { if ( fLatchCorr ) { if ( !Saig_ObjIsLo(p->pAig, pObj) ) continue; } else { if ( !Aig_ObjIsNode(pObj) && !Aig_ObjIsPi(pObj) ) continue; // skip the node with more that the given number of levels if ( nMaxLevs && (int)pObj->Level > nMaxLevs ) continue; } // check if the node belongs to the class of constant 1 if ( p->pFuncNodeIsConst( p->pManData, pObj ) ) { Ssw_ObjSetConst1Cand( p->pAig, pObj ); p->nCands1++; continue; } // hash the node by its simulation info iEntry = p->pFuncNodeHash( p->pManData, pObj ) % nTableSize; // add the node to the class if ( ppTable[iEntry] == NULL ) ppTable[iEntry] = pObj; else { // set the representative of this node pRepr = ppTable[iEntry]; Aig_ObjSetRepr( p->pAig, pObj, pRepr ); // add node to the table if ( Ssw_ObjNext( ppNexts, pRepr ) == NULL ) { // this will be the second entry p->pClassSizes[pRepr->Id]++; nEntries++; } // add the entry to the list Ssw_ObjSetNext( ppNexts, pObj, Ssw_ObjNext( ppNexts, pRepr ) ); Ssw_ObjSetNext( ppNexts, pRepr, pObj ); p->pClassSizes[pRepr->Id]++; nEntries++; } } // allocate room for classes p->pMemClasses = ALLOC( Aig_Obj_t *, nEntries + p->nCands1 ); p->pMemClassesFree = p->pMemClasses + nEntries; // copy the entries into storage in the topological order nEntries2 = 0; Aig_ManForEachObj( p->pAig, pObj, i ) { if ( !Aig_ObjIsNode(pObj) && !Aig_ObjIsPi(pObj) ) continue; nNodes = p->pClassSizes[pObj->Id]; // skip the nodes that are not representatives of non-trivial classes if ( nNodes == 0 ) continue; assert( nNodes > 1 ); // add the nodes to the class in the topological order ppClassNew = p->pMemClasses + nEntries2; ppClassNew[0] = pObj; for ( pTemp = Ssw_ObjNext(ppNexts, pObj), k = 1; pTemp; pTemp = Ssw_ObjNext(ppNexts, pTemp), k++ ) { ppClassNew[nNodes-k] = pTemp; } // add the class of nodes p->pClassSizes[pObj->Id] = 0; Ssw_ObjAddClass( p, pObj, ppClassNew, nNodes ); // increment the number of entries nEntries2 += nNodes; } assert( nEntries == nEntries2 ); free( ppTable ); free( ppNexts ); // now it is time to refine the classes Ssw_ClassesRefine( p, 1 ); Ssw_ClassesCheck( p ); Ssw_SmlStop( pSml ); // Ssw_ClassesPrint( p, 0 ); if ( fVerbose ) { PRT( "Collecting candidate equival classes", clock() - clk ); } return p; } /**Function************************************************************* Synopsis [Returns 1 if the node appears to be constant 1 candidate.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_NodeIsConstCex( void * p, Aig_Obj_t * pObj ) { return pObj->fPhase == pObj->fMarkB; } /**Function************************************************************* Synopsis [Returns 1 if the nodes appear equal.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_NodesAreEqualCex( void * p, Aig_Obj_t * pObj0, Aig_Obj_t * pObj1 ) { return (pObj0->fPhase == pObj1->fPhase) == (pObj0->fMarkB == pObj1->fMarkB); } /**Function************************************************************* Synopsis [Creates initial simulation classes.] Description [Assumes that simulation info is assigned.] SideEffects [] SeeAlso [] ***********************************************************************/ Ssw_Cla_t * Ssw_ClassesPrepareSimple( Aig_Man_t * pAig, int fLatchCorr, int nMaxLevs ) { Ssw_Cla_t * p; Aig_Obj_t * pObj; int i; // start the classes p = Ssw_ClassesStart( pAig ); // go through the nodes p->nCands1 = 0; Aig_ManForEachObj( pAig, pObj, i ) { if ( fLatchCorr ) { if ( !Saig_ObjIsLo(pAig, pObj) ) continue; } else { if ( !Aig_ObjIsNode(pObj) && !Saig_ObjIsLo(pAig, pObj) ) continue; // skip the node with more that the given number of levels if ( nMaxLevs && (int)pObj->Level > nMaxLevs ) continue; } Ssw_ObjSetConst1Cand( pAig, pObj ); p->nCands1++; } // allocate room for classes p->pMemClassesFree = p->pMemClasses = ALLOC( Aig_Obj_t *, p->nCands1 ); // Ssw_ClassesPrint( p, 0 ); return p; } /**Function************************************************************* Synopsis [Iteratively refines the classes after simulation.] Description [Returns the number of refinements performed.] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefineOneClass( Ssw_Cla_t * p, Aig_Obj_t * pReprOld, int fRecursive ) { Aig_Obj_t ** pClassOld, ** pClassNew; Aig_Obj_t * pObj, * pReprNew; int i; // split the class Vec_PtrClear( p->vClassOld ); Vec_PtrClear( p->vClassNew ); Ssw_ClassForEachNode( p, pReprOld, pObj, i ) if ( p->pFuncNodesAreEqual(p->pManData, pReprOld, pObj) ) Vec_PtrPush( p->vClassOld, pObj ); else Vec_PtrPush( p->vClassNew, pObj ); // check if splitting happened if ( Vec_PtrSize(p->vClassNew) == 0 ) return 0; // remember that this class is refined Ssw_ClassForEachNode( p, pReprOld, pObj, i ) Vec_PtrPush( p->vRefined, pObj ); // get the new representative pReprNew = Vec_PtrEntry( p->vClassNew, 0 ); assert( Vec_PtrSize(p->vClassOld) > 0 ); assert( Vec_PtrSize(p->vClassNew) > 0 ); // create old class pClassOld = Ssw_ObjRemoveClass( p, pReprOld ); Vec_PtrForEachEntry( p->vClassOld, pObj, i ) { pClassOld[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprOld : NULL ); } // create new class pClassNew = pClassOld + i; Vec_PtrForEachEntry( p->vClassNew, pObj, i ) { pClassNew[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprNew : NULL ); } // put classes back if ( Vec_PtrSize(p->vClassOld) > 1 ) Ssw_ObjAddClass( p, pReprOld, pClassOld, Vec_PtrSize(p->vClassOld) ); if ( Vec_PtrSize(p->vClassNew) > 1 ) Ssw_ObjAddClass( p, pReprNew, pClassNew, Vec_PtrSize(p->vClassNew) ); // check if the class should be recursively refined if ( fRecursive && Vec_PtrSize(p->vClassNew) > 1 ) return 1 + Ssw_ClassesRefineOneClass( p, pReprNew, 1 ); return 1; } /**Function************************************************************* Synopsis [Refines the classes after simulation.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefine( Ssw_Cla_t * p, int fRecursive ) { Aig_Obj_t ** ppClass; int i, nRefis = 0; Ssw_ManForEachClass( p, ppClass, i ) nRefis += Ssw_ClassesRefineOneClass( p, ppClass[0], fRecursive ); return nRefis; } /**Function************************************************************* Synopsis [Refine the group of constant 1 nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefineConst1Group( Ssw_Cla_t * p, Vec_Ptr_t * vRoots, int fRecursive ) { Aig_Obj_t * pObj, * pReprNew, ** ppClassNew; int i; if ( Vec_PtrSize(vRoots) == 0 ) return 0; // collect the nodes to be refined Vec_PtrClear( p->vClassNew ); Vec_PtrForEachEntry( vRoots, pObj, i ) if ( !p->pFuncNodeIsConst( p->pManData, pObj ) ) Vec_PtrPush( p->vClassNew, pObj ); // check if there is a new class if ( Vec_PtrSize(p->vClassNew) == 0 ) return 0; p->nCands1 -= Vec_PtrSize(p->vClassNew); pReprNew = Vec_PtrEntry( p->vClassNew, 0 ); Aig_ObjSetRepr( p->pAig, pReprNew, NULL ); if ( Vec_PtrSize(p->vClassNew) == 1 ) return 1; // create a new class composed of these nodes ppClassNew = p->pMemClassesFree; p->pMemClassesFree += Vec_PtrSize(p->vClassNew); Vec_PtrForEachEntry( p->vClassNew, pObj, i ) { ppClassNew[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprNew : NULL ); } Ssw_ObjAddClass( p, pReprNew, ppClassNew, Vec_PtrSize(p->vClassNew) ); // refine them recursively if ( fRecursive ) return 1 + Ssw_ClassesRefineOneClass( p, pReprNew, 1 ); return 1; } /**Function************************************************************* Synopsis [Refine the group of constant 1 nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_ClassesRefineConst1( Ssw_Cla_t * p, int fRecursive ) { Aig_Obj_t * pObj, * pReprNew, ** ppClassNew; int i; // collect the nodes to be refined Vec_PtrClear( p->vClassNew ); for ( i = 0; i < Vec_PtrSize(p->pAig->vObjs); i++ ) if ( p->pAig->pReprs[i] == Aig_ManConst1(p->pAig) ) { pObj = Aig_ManObj( p->pAig, i ); if ( !p->pFuncNodeIsConst( p->pManData, pObj ) ) { Vec_PtrPush( p->vClassNew, pObj ); Vec_PtrPush( p->vRefined, pObj ); } } // check if there is a new class if ( Vec_PtrSize(p->vClassNew) == 0 ) return 0; p->nCands1 -= Vec_PtrSize(p->vClassNew); pReprNew = Vec_PtrEntry( p->vClassNew, 0 ); Aig_ObjSetRepr( p->pAig, pReprNew, NULL ); if ( Vec_PtrSize(p->vClassNew) == 1 ) return 1; // create a new class composed of these nodes ppClassNew = p->pMemClassesFree; p->pMemClassesFree += Vec_PtrSize(p->vClassNew); Vec_PtrForEachEntry( p->vClassNew, pObj, i ) { ppClassNew[i] = pObj; Aig_ObjSetRepr( p->pAig, pObj, i? pReprNew : NULL ); } Ssw_ObjAddClass( p, pReprNew, ppClassNew, Vec_PtrSize(p->vClassNew) ); // refine them recursively if ( fRecursive ) return 1 + Ssw_ClassesRefineOneClass( p, pReprNew, 1 ); return 1; } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////