/**CFile**************************************************************** FileName [giaEmbed.c] SystemName [ABC: Logic synthesis and verification system.] PackageName [Scalable AIG package.] Synopsis [Logic network derived from AIG.] Author [Alan Mishchenko] Affiliation [UC Berkeley] Date [Ver. 1.0. Started - June 20, 2005.] Revision [$Id: giaEmbed.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] ***********************************************************************/ #include #include "gia.h" /* The code is based on the paper by D. Harel and Y. Koren, "Graph drawing by high-dimensional embedding", J. Graph Algs & Apps, Vol 8(2), pp. 195-217 (2004). http://www.emis.de/journals/JGAA/accepted/2004/HarelKoren2004.8.2.pdf Iterative refinement is described in the paper: F. A. Aloul, I. L. Markov, and K. A. Sakallah. "FORCE: A Fast and Easy-To-Implement Variable-Ordering Heuristic", Proc. GLSVLSI’03. http://www.eecs.umich.edu/~imarkov/pubs/conf/glsvlsi03-force.pdf */ //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// #define GIA_PLACE_SIZE 0x7fff // objects will be placed in box [0, GIA_PLACE_SIZE] x [0, GIA_PLACE_SIZE] typedef float Emb_Dat_t; typedef struct Emb_Obj_t_ Emb_Obj_t; struct Emb_Obj_t_ { unsigned fCi : 1; // terminal node CI unsigned fCo : 1; // terminal node CO unsigned fMark0 : 1; // first user-controlled mark unsigned fMark1 : 1; // second user-controlled mark unsigned nFanins : 28; // the number of fanins unsigned nFanouts; // the number of fanouts int hHandle; // the handle of the node union { unsigned TravId; // user-specified value unsigned iFanin; }; union { unsigned Value; // user-specified value unsigned iFanout; }; int Fanios[0]; // the array of fanins/fanouts }; typedef struct Emb_Man_t_ Emb_Man_t; struct Emb_Man_t_ { Gia_Man_t * pGia; // the original AIG manager Vec_Int_t * vCis; // the vector of CIs (PIs + LOs) Vec_Int_t * vCos; // the vector of COs (POs + LIs) int nObjs; // the number of objects int nRegs; // the number of registers int nTravIds; // traversal ID of the network int * pObjData; // the array containing data for objects int nObjData; // the size of array to store the logic network int fVerbose; // verbose output flag Emb_Dat_t * pVecs; // array of vectors of size nObjs * nDims int nReached; // the number of nodes reachable from the pivot int nDistMax; // the maximum distance from the node float ** pMatr; // covariance matrix nDims * nDims float ** pEigen; // the first several eigen values of the matrix float * pSols; // solutions to the problem nObjs * nSols; unsigned short*pPlacement; // (x,y) coordinates for each cell }; static inline int Emb_ManRegNum( Emb_Man_t * p ) { return p->nRegs; } static inline int Emb_ManCiNum( Emb_Man_t * p ) { return Vec_IntSize(p->vCis); } static inline int Emb_ManCoNum( Emb_Man_t * p ) { return Vec_IntSize(p->vCos); } static inline int Emb_ManPiNum( Emb_Man_t * p ) { return Vec_IntSize(p->vCis) - p->nRegs; } static inline int Emb_ManPoNum( Emb_Man_t * p ) { return Vec_IntSize(p->vCos) - p->nRegs; } static inline int Emb_ManObjNum( Emb_Man_t * p ) { return p->nObjs; } static inline int Emb_ManNodeNum( Emb_Man_t * p ) { return p->nObjs - Vec_IntSize(p->vCis) - Vec_IntSize(p->vCos); } static inline Emb_Obj_t * Emb_ManObj( Emb_Man_t * p, unsigned hHandle ) { return (Emb_Obj_t *)(p->pObjData + hHandle); } static inline Emb_Obj_t * Emb_ManCi( Emb_Man_t * p, int i ) { return Emb_ManObj( p, Vec_IntEntry(p->vCis,i) ); } static inline Emb_Obj_t * Emb_ManCo( Emb_Man_t * p, int i ) { return Emb_ManObj( p, Vec_IntEntry(p->vCos,i) ); } static inline int Emb_ObjIsTerm( Emb_Obj_t * pObj ) { return pObj->fCi || pObj->fCo; } static inline int Emb_ObjIsCi( Emb_Obj_t * pObj ) { return pObj->fCi; } static inline int Emb_ObjIsCo( Emb_Obj_t * pObj ) { return pObj->fCo; } //static inline int Emb_ObjIsPi( Emb_Obj_t * pObj ) { return pObj->fCi && pObj->nFanins == 0; } //static inline int Emb_ObjIsPo( Emb_Obj_t * pObj ) { return pObj->fCo && pObj->nFanouts == 0; } static inline int Emb_ObjIsNode( Emb_Obj_t * pObj ) { return!Emb_ObjIsTerm(pObj) && pObj->nFanins > 0; } //static inline int Emb_ObjIsConst0( Emb_Obj_t * pObj ) { return!Emb_ObjIsTerm(pObj) && pObj->nFanins == 0; } static inline int Emb_ObjSize( Emb_Obj_t * pObj ) { return sizeof(Emb_Obj_t) / 4 + pObj->nFanins + pObj->nFanouts; } static inline int Emb_ObjFaninNum( Emb_Obj_t * pObj ) { return pObj->nFanins; } static inline int Emb_ObjFanoutNum( Emb_Obj_t * pObj ) { return pObj->nFanouts; } static inline Emb_Obj_t * Emb_ObjFanin( Emb_Obj_t * pObj, int i ) { return (Emb_Obj_t *)(((int *)pObj) - pObj->Fanios[i]); } static inline Emb_Obj_t * Emb_ObjFanout( Emb_Obj_t * pObj, int i ) { return (Emb_Obj_t *)(((int *)pObj) + pObj->Fanios[pObj->nFanins+i]); } static inline void Emb_ManResetTravId( Emb_Man_t * p ) { extern void Emb_ManCleanTravId( Emb_Man_t * p ); Emb_ManCleanTravId( p ); p->nTravIds = 1; } static inline void Emb_ManIncrementTravId( Emb_Man_t * p ) { p->nTravIds++; } static inline void Emb_ObjSetTravId( Emb_Obj_t * pObj, int TravId ) { pObj->TravId = TravId; } static inline void Emb_ObjSetTravIdCurrent( Emb_Man_t * p, Emb_Obj_t * pObj ) { pObj->TravId = p->nTravIds; } static inline void Emb_ObjSetTravIdPrevious( Emb_Man_t * p, Emb_Obj_t * pObj ) { pObj->TravId = p->nTravIds - 1; } static inline int Emb_ObjIsTravIdCurrent( Emb_Man_t * p, Emb_Obj_t * pObj ) { return ((int)pObj->TravId == p->nTravIds); } static inline int Emb_ObjIsTravIdPrevious( Emb_Man_t * p, Emb_Obj_t * pObj ) { return ((int)pObj->TravId == p->nTravIds - 1); } static inline Emb_Dat_t * Emb_ManVec( Emb_Man_t * p, int v ) { return p->pVecs + v * p->nObjs; } static inline float * Emb_ManSol( Emb_Man_t * p, int v ) { return p->pSols + v * p->nObjs; } #define Emb_ManForEachObj( p, pObj, i ) \ for ( i = 0; (i < p->nObjData) && (pObj = Emb_ManObj(p,i)); i += Emb_ObjSize(pObj) ) #define Emb_ManForEachNode( p, pObj, i ) \ for ( i = 0; (i < p->nObjData) && (pObj = Emb_ManObj(p,i)); i += Emb_ObjSize(pObj) ) if ( Emb_ObjIsTerm(pObj) ) {} else #define Emb_ManForEachObjVec( vVec, p, pObj, i ) \ for ( i = 0; (i < Vec_IntSize(vVec)) && ((pObj) = Emb_ManObj(p, Vec_IntEntry(vVec,i))); i++ ) #define Emb_ObjForEachFanin( pObj, pNext, i ) \ for ( i = 0; (i < (int)pObj->nFanins) && (pNext = Emb_ObjFanin(pObj,i)); i++ ) #define Emb_ObjForEachFanout( pObj, pNext, i ) \ for ( i = 0; (i < (int)pObj->nFanouts) && (pNext = Emb_ObjFanout(pObj,i)); i++ ) //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Creates fanin/fanout pair.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ObjAddFanin( Emb_Obj_t * pObj, Emb_Obj_t * pFanin ) { assert( pObj->iFanin < pObj->nFanins ); assert( pFanin->iFanout < pFanin->nFanouts ); pFanin->Fanios[pFanin->nFanins + pFanin->iFanout++] = pObj->Fanios[pObj->iFanin++] = pObj->hHandle - pFanin->hHandle; } /**Function************************************************************* Synopsis [Creates logic network isomorphic to the given AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Emb_Man_t * Emb_ManStartSimple( Gia_Man_t * pGia ) { Emb_Man_t * p; Emb_Obj_t * pObjLog, * pFanLog; Gia_Obj_t * pObj, * pObjRi, * pObjRo; int i, nNodes, hHandle = 0; // prepare the AIG Gia_ManCreateRefs( pGia ); // create logic network p = ABC_CALLOC( Emb_Man_t, 1 ); p->pGia = pGia; p->nRegs = Gia_ManRegNum(pGia); p->vCis = Vec_IntAlloc( Gia_ManCiNum(pGia) ); p->vCos = Vec_IntAlloc( Gia_ManCoNum(pGia) ); p->nObjData = (sizeof(Emb_Obj_t) / 4) * Gia_ManObjNum(pGia) + 2 * (2 * Gia_ManAndNum(pGia) + Gia_ManCoNum(pGia) + Gia_ManRegNum(pGia) + Gia_ManCoNum(pGia)); p->pObjData = ABC_CALLOC( int, p->nObjData ); // create constant node Gia_ManConst0(pGia)->Value = hHandle; pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = Gia_ManCoNum(pGia); //0; pObjLog->nFanouts = Gia_ObjRefs( pGia, Gia_ManConst0(pGia) ); // count objects hHandle += Emb_ObjSize( pObjLog ); nNodes = 1; p->nObjs++; // create the PIs Gia_ManForEachCi( pGia, pObj, i ) { // create PI object pObj->Value = hHandle; Vec_IntPush( p->vCis, hHandle ); pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = Gia_ObjIsRo( pGia, pObj ); pObjLog->nFanouts = Gia_ObjRefs( pGia, pObj ); pObjLog->fCi = 1; // count objects hHandle += Emb_ObjSize( pObjLog ); p->nObjs++; } // create internal nodes Gia_ManForEachAnd( pGia, pObj, i ) { assert( Gia_ObjRefs( pGia, pObj ) > 0 ); // create node object pObj->Value = hHandle; pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = 2; pObjLog->nFanouts = Gia_ObjRefs( pGia, pObj ); // add fanins pFanLog = Emb_ManObj( p, Gia_ObjValue(Gia_ObjFanin0(pObj)) ); Emb_ObjAddFanin( pObjLog, pFanLog ); pFanLog = Emb_ManObj( p, Gia_ObjValue(Gia_ObjFanin1(pObj)) ); Emb_ObjAddFanin( pObjLog, pFanLog ); // count objects hHandle += Emb_ObjSize( pObjLog ); nNodes++; p->nObjs++; } // create the POs Gia_ManForEachCo( pGia, pObj, i ) { // create PO object pObj->Value = hHandle; Vec_IntPush( p->vCos, hHandle ); pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = 1; pObjLog->nFanouts = 1 + Gia_ObjIsRi( pGia, pObj ); pObjLog->fCo = 1; // add fanins pFanLog = Emb_ManObj( p, Gia_ObjValue(Gia_ObjFanin0(pObj)) ); Emb_ObjAddFanin( pObjLog, pFanLog ); // count objects hHandle += Emb_ObjSize( pObjLog ); p->nObjs++; } // connect registers Gia_ManForEachRiRo( pGia, pObjRi, pObjRo, i ) Emb_ObjAddFanin( Emb_ManObj(p,Gia_ObjValue(pObjRo)), Emb_ManObj(p,Gia_ObjValue(pObjRi)) ); assert( nNodes == Emb_ManNodeNum(p) ); assert( hHandle == p->nObjData ); assert( p->nObjs == Gia_ManObjNum(pGia) ); if ( hHandle != p->nObjData ) printf( "Emb_ManStartSimple(): Fatal error in internal representation.\n" ); // make sure the fanin/fanout counters are correct Gia_ManForEachObj( pGia, pObj, i ) { if ( !~Gia_ObjValue(pObj) ) continue; pObjLog = Emb_ManObj( p, Gia_ObjValue(pObj) ); assert( pObjLog->nFanins == pObjLog->iFanin || Gia_ObjIsConst0(pObj) ); assert( pObjLog->nFanouts == pObjLog->iFanout || Gia_ObjIsCo(pObj) ); pObjLog->iFanin = pObjLog->iFanout = 0; } ABC_FREE( pGia->pRefs ); return p; } /**Function************************************************************* Synopsis [Collect the fanin IDs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManCollectSuper_rec( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vSuper, Vec_Int_t * vVisit ) { if ( pObj->fMark1 ) return; pObj->fMark1 = 1; Vec_IntPush( vVisit, Gia_ObjId(p, pObj) ); if ( pObj->fMark0 ) { Vec_IntPush( vSuper, Gia_ObjId(p, pObj) ); return; } assert( Gia_ObjIsAnd(pObj) ); Emb_ManCollectSuper_rec( p, Gia_ObjFanin0(pObj), vSuper, vVisit ); Emb_ManCollectSuper_rec( p, Gia_ObjFanin1(pObj), vSuper, vVisit ); } /**Function************************************************************* Synopsis [Collect the fanin IDs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManCollectSuper( Gia_Man_t * p, Gia_Obj_t * pObj, Vec_Int_t * vSuper, Vec_Int_t * vVisit ) { int Entry, i; Vec_IntClear( vSuper ); Vec_IntClear( vVisit ); assert( pObj->fMark0 == 1 ); pObj->fMark0 = 0; Emb_ManCollectSuper_rec( p, pObj, vSuper, vVisit ); pObj->fMark0 = 1; Vec_IntForEachEntry( vVisit, Entry, i ) Gia_ManObj(p, Entry)->fMark1 = 0; } /**Function************************************************************* Synopsis [Assigns references while removing the MUX/XOR ones.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManCreateRefsSpecial( Gia_Man_t * p ) { Gia_Obj_t * pObj, * pFan0, * pFan1; Gia_Obj_t * pObjC, * pObjD0, * pObjD1; int i; assert( p->pRefs == NULL ); Gia_ManCleanMark0( p ); Gia_ManCreateRefs( p ); Gia_ManForEachAnd( p, pObj, i ) { assert( pObj->fMark0 == 0 ); pFan0 = Gia_ObjFanin0(pObj); pFan1 = Gia_ObjFanin1(pObj); // skip nodes whose fanins are PIs or are already marked if ( Gia_ObjIsCi(pFan0) || pFan0->fMark0 || Gia_ObjIsCi(pFan1) || pFan1->fMark0 ) continue; // skip nodes that are not MUX type if ( !Gia_ObjIsMuxType(pObj) ) continue; // the node is MUX type, mark it and its fanins pObj->fMark0 = 1; pFan0->fMark0 = 1; pFan1->fMark0 = 1; // deref the control pObjC = Gia_ObjRecognizeMux( pObj, &pObjD1, &pObjD0 ); Gia_ObjRefDec( p, Gia_Regular(pObjC) ); if ( Gia_Regular(pObjD0) == Gia_Regular(pObjD1) ) Gia_ObjRefDec( p, Gia_Regular(pObjD0) ); } Gia_ManForEachAnd( p, pObj, i ) assert( Gia_ObjRefs(p, pObj) > 0 ); Gia_ManCleanMark0( p ); } /**Function************************************************************* Synopsis [Assigns references while removing the MUX/XOR ones.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManTransformRefs( Gia_Man_t * p, int * pnObjs, int * pnFanios ) { Vec_Int_t * vSuper, * vVisit; Gia_Obj_t * pObj, * pFanin; int i, k, Counter; assert( p->pRefs != NULL ); // mark nodes to be used in the logic network Gia_ManCleanMark0( p ); Gia_ManConst0(p)->fMark0 = 1; // mark the inputs Gia_ManForEachCi( p, pObj, i ) pObj->fMark0 = 1; // mark those nodes that have ref count more than 1 Gia_ManForEachAnd( p, pObj, i ) pObj->fMark0 = (Gia_ObjRefs(p, pObj) > 1); // mark the output drivers Gia_ManForEachCoDriver( p, pObj, i ) pObj->fMark0 = 1; // count the number of nodes Counter = 0; Gia_ManForEachObj( p, pObj, i ) Counter += pObj->fMark0; *pnObjs = Counter + Gia_ManCoNum(p); // reset the references ABC_FREE( p->pRefs ); p->pRefs = ABC_CALLOC( int, Gia_ManObjNum(p) ); // reference from internal nodes Counter = 0; vSuper = Vec_IntAlloc( 100 ); vVisit = Vec_IntAlloc( 100 ); Gia_ManCleanMark1( p ); Gia_ManForEachAnd( p, pObj, i ) { if ( pObj->fMark0 == 0 ) continue; Emb_ManCollectSuper( p, pObj, vSuper, vVisit ); Gia_ManForEachObjVec( vSuper, p, pFanin, k ) { assert( pFanin->fMark0 ); Gia_ObjRefInc( p, pFanin ); } Counter += Vec_IntSize( vSuper ); } Gia_ManCheckMark1( p ); Vec_IntFree( vSuper ); Vec_IntFree( vVisit ); // reference from outputs Gia_ManForEachCoDriver( p, pObj, i ) { assert( pObj->fMark0 ); Gia_ObjRefInc( p, pObj ); } *pnFanios = Counter + Gia_ManCoNum(p); } /**Function************************************************************* Synopsis [Cleans the value.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManCleanTravId( Emb_Man_t * p ) { Emb_Obj_t * pObj; int i; Emb_ManForEachObj( p, pObj, i ) pObj->TravId = 0; } /**Function************************************************************* Synopsis [Cleans the value.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManSetValue( Emb_Man_t * p ) { Emb_Obj_t * pObj; int i, Counter = 0; Emb_ManForEachObj( p, pObj, i ) { pObj->Value = Counter++; // if ( pObj->fCi && pObj->nFanins == 0 ) // printf( "CI: Handle = %8d. Value = %6d. Fanins = %d.\n", pObj->hHandle, pObj->Value, pObj->nFanins ); } } /**Function************************************************************* Synopsis [Creates logic network isomorphic to the given AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Emb_Man_t * Emb_ManStart( Gia_Man_t * pGia ) { Emb_Man_t * p; Emb_Obj_t * pObjLog, * pFanLog; Gia_Obj_t * pObj, * pObjRi, * pObjRo, * pFanin; Vec_Int_t * vSuper, * vVisit; int nObjs, nFanios, nNodes = 0; int i, k, hHandle = 0; // prepare the AIG // Gia_ManCreateRefs( pGia ); Emb_ManCreateRefsSpecial( pGia ); Emb_ManTransformRefs( pGia, &nObjs, &nFanios ); Gia_ManFillValue( pGia ); // create logic network p = ABC_CALLOC( Emb_Man_t, 1 ); p->pGia = pGia; p->nRegs = Gia_ManRegNum(pGia); p->vCis = Vec_IntAlloc( Gia_ManCiNum(pGia) ); p->vCos = Vec_IntAlloc( Gia_ManCoNum(pGia) ); p->nObjData = (sizeof(Emb_Obj_t) / 4) * nObjs + 2 * (nFanios + Gia_ManRegNum(pGia) + Gia_ManCoNum(pGia)); p->pObjData = ABC_CALLOC( int, p->nObjData ); // create constant node Gia_ManConst0(pGia)->Value = hHandle; pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = Gia_ManCoNum(pGia); //0; pObjLog->nFanouts = Gia_ObjRefs( pGia, Gia_ManConst0(pGia) ); // count objects hHandle += Emb_ObjSize( pObjLog ); nNodes++; p->nObjs++; // create the PIs Gia_ManForEachCi( pGia, pObj, i ) { // create PI object pObj->Value = hHandle; Vec_IntPush( p->vCis, hHandle ); pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = Gia_ObjIsRo( pGia, pObj ); pObjLog->nFanouts = Gia_ObjRefs( pGia, pObj ); pObjLog->fCi = 1; // count objects hHandle += Emb_ObjSize( pObjLog ); p->nObjs++; } // create internal nodes vSuper = Vec_IntAlloc( 100 ); vVisit = Vec_IntAlloc( 100 ); Gia_ManForEachAnd( pGia, pObj, i ) { if ( pObj->fMark0 == 0 ) { assert( Gia_ObjRefs( pGia, pObj ) == 0 ); continue; } assert( Gia_ObjRefs( pGia, pObj ) > 0 ); Emb_ManCollectSuper( pGia, pObj, vSuper, vVisit ); // create node object pObj->Value = hHandle; pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = Vec_IntSize( vSuper ); pObjLog->nFanouts = Gia_ObjRefs( pGia, pObj ); // add fanins Gia_ManForEachObjVec( vSuper, pGia, pFanin, k ) { pFanLog = Emb_ManObj( p, Gia_ObjValue(pFanin) ); Emb_ObjAddFanin( pObjLog, pFanLog ); } // count objects hHandle += Emb_ObjSize( pObjLog ); nNodes++; p->nObjs++; } Vec_IntFree( vSuper ); Vec_IntFree( vVisit ); // create the POs Gia_ManForEachCo( pGia, pObj, i ) { // create PO object pObj->Value = hHandle; Vec_IntPush( p->vCos, hHandle ); pObjLog = Emb_ManObj( p, hHandle ); pObjLog->hHandle = hHandle; pObjLog->nFanins = 1; pObjLog->nFanouts = 1 + Gia_ObjIsRi( pGia, pObj ); pObjLog->fCo = 1; // add fanins pFanLog = Emb_ManObj( p, Gia_ObjValue(Gia_ObjFanin0(pObj)) ); Emb_ObjAddFanin( pObjLog, pFanLog ); // count objects hHandle += Emb_ObjSize( pObjLog ); p->nObjs++; } // connect registers Gia_ManForEachRiRo( pGia, pObjRi, pObjRo, i ) Emb_ObjAddFanin( Emb_ManObj(p,Gia_ObjValue(pObjRo)), Emb_ManObj(p,Gia_ObjValue(pObjRi)) ); Gia_ManCleanMark0( pGia ); assert( nNodes == Emb_ManNodeNum(p) ); assert( nObjs == p->nObjs ); assert( hHandle == p->nObjData ); if ( hHandle != p->nObjData ) printf( "Emb_ManStart(): Fatal error in internal representation.\n" ); // make sure the fanin/fanout counters are correct Gia_ManForEachObj( pGia, pObj, i ) { if ( !~Gia_ObjValue(pObj) ) continue; pObjLog = Emb_ManObj( p, Gia_ObjValue(pObj) ); assert( pObjLog->nFanins == pObjLog->iFanin || Gia_ObjIsConst0(pObj) ); assert( pObjLog->nFanouts == pObjLog->iFanout || Gia_ObjIsCo(pObj) ); pObjLog->iFanin = pObjLog->iFanout = 0; } ABC_FREE( pGia->pRefs ); return p; } /**Function************************************************************* Synopsis [Creates logic network isomorphic to the given AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManPrintStats( Emb_Man_t * p ) { // if ( p->pName ) // printf( "%8s : ", p->pName ); printf( "i/o =%7d/%7d ", Emb_ManPiNum(p), Emb_ManPoNum(p) ); if ( Emb_ManRegNum(p) ) printf( "ff =%7d ", Emb_ManRegNum(p) ); printf( "node =%8d ", Emb_ManNodeNum(p) ); printf( "obj =%8d ", Emb_ManObjNum(p) ); // printf( "lev =%5d ", Emb_ManLevelNum(p) ); // printf( "cut =%5d ", Emb_ManCrossCut(p) ); printf( "mem =%5.2f Mb", 4.0*p->nObjData/(1<<20) ); // printf( "obj =%5d ", Emb_ManObjNum(p) ); printf( "\n" ); // Emb_ManSatExperiment( p ); } /**Function************************************************************* Synopsis [Creates logic network isomorphic to the given AIG.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManStop( Emb_Man_t * p ) { Vec_IntFree( p->vCis ); Vec_IntFree( p->vCos ); ABC_FREE( p->pPlacement ); ABC_FREE( p->pVecs ); ABC_FREE( p->pSols ); ABC_FREE( p->pMatr ); ABC_FREE( p->pEigen ); ABC_FREE( p->pObjData ); ABC_FREE( p ); } /**Function************************************************************* Synopsis [Prints the distribution of fanins/fanouts in the network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManPrintFanio( Emb_Man_t * p ) { char Buffer[100]; Emb_Obj_t * pNode; Vec_Int_t * vFanins, * vFanouts; int nFanins, nFanouts, nFaninsMax, nFanoutsMax, nFaninsAll, nFanoutsAll; int i, k, nSizeMax; // determine the largest fanin and fanout nFaninsMax = nFanoutsMax = 0; nFaninsAll = nFanoutsAll = 0; Emb_ManForEachNode( p, pNode, i ) { if ( i == 0 ) continue; // skip const 0 obj nFanins = Emb_ObjFaninNum(pNode); nFanouts = Emb_ObjFanoutNum(pNode); nFaninsAll += nFanins; nFanoutsAll += nFanouts; nFaninsMax = ABC_MAX( nFaninsMax, nFanins ); nFanoutsMax = ABC_MAX( nFanoutsMax, nFanouts ); } // allocate storage for fanin/fanout numbers nSizeMax = ABC_MAX( 10 * (Gia_Base10Log(nFaninsMax) + 1), 10 * (Gia_Base10Log(nFanoutsMax) + 1) ); vFanins = Vec_IntStart( nSizeMax ); vFanouts = Vec_IntStart( nSizeMax ); // count the number of fanins and fanouts Emb_ManForEachNode( p, pNode, i ) { if ( i == 0 ) continue; // skip const 0 obj nFanins = Emb_ObjFaninNum(pNode); nFanouts = Emb_ObjFanoutNum(pNode); if ( nFanins < 10 ) Vec_IntAddToEntry( vFanins, nFanins, 1 ); else if ( nFanins < 100 ) Vec_IntAddToEntry( vFanins, 10 + nFanins/10, 1 ); else if ( nFanins < 1000 ) Vec_IntAddToEntry( vFanins, 20 + nFanins/100, 1 ); else if ( nFanins < 10000 ) Vec_IntAddToEntry( vFanins, 30 + nFanins/1000, 1 ); else if ( nFanins < 100000 ) Vec_IntAddToEntry( vFanins, 40 + nFanins/10000, 1 ); else if ( nFanins < 1000000 ) Vec_IntAddToEntry( vFanins, 50 + nFanins/100000, 1 ); else if ( nFanins < 10000000 ) Vec_IntAddToEntry( vFanins, 60 + nFanins/1000000, 1 ); if ( nFanouts < 10 ) Vec_IntAddToEntry( vFanouts, nFanouts, 1 ); else if ( nFanouts < 100 ) Vec_IntAddToEntry( vFanouts, 10 + nFanouts/10, 1 ); else if ( nFanouts < 1000 ) Vec_IntAddToEntry( vFanouts, 20 + nFanouts/100, 1 ); else if ( nFanouts < 10000 ) Vec_IntAddToEntry( vFanouts, 30 + nFanouts/1000, 1 ); else if ( nFanouts < 100000 ) Vec_IntAddToEntry( vFanouts, 40 + nFanouts/10000, 1 ); else if ( nFanouts < 1000000 ) Vec_IntAddToEntry( vFanouts, 50 + nFanouts/100000, 1 ); else if ( nFanouts < 10000000 ) Vec_IntAddToEntry( vFanouts, 60 + nFanouts/1000000, 1 ); } printf( "The distribution of fanins and fanouts in the network:\n" ); printf( " Number Nodes with fanin Nodes with fanout\n" ); for ( k = 0; k < nSizeMax; k++ ) { if ( vFanins->pArray[k] == 0 && vFanouts->pArray[k] == 0 ) continue; if ( k < 10 ) printf( "%15d : ", k ); else { sprintf( Buffer, "%d - %d", (int)pow(10, k/10) * (k%10), (int)pow(10, k/10) * (k%10+1) - 1 ); printf( "%15s : ", Buffer ); } if ( vFanins->pArray[k] == 0 ) printf( " " ); else printf( "%12d ", vFanins->pArray[k] ); printf( " " ); if ( vFanouts->pArray[k] == 0 ) printf( " " ); else printf( "%12d ", vFanouts->pArray[k] ); printf( "\n" ); } Vec_IntFree( vFanins ); Vec_IntFree( vFanouts ); printf( "Fanins: Max = %d. Ave = %.2f. Fanouts: Max = %d. Ave = %.2f.\n", nFaninsMax, 1.0*nFaninsAll/Emb_ManNodeNum(p), nFanoutsMax, 1.0*nFanoutsAll/Emb_ManNodeNum(p) ); } /**Function************************************************************* Synopsis [Computes the distance from the given object] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Emb_ManComputeDistance_old( Emb_Man_t * p, Emb_Obj_t * pPivot ) { Vec_Int_t * vThis, * vNext, * vTemp; Emb_Obj_t * pThis, * pNext; int i, k, d, nVisited = 0; // assert( Emb_ObjIsTerm(pPivot) ); vThis = Vec_IntAlloc( 1000 ); vNext = Vec_IntAlloc( 1000 ); Emb_ManIncrementTravId( p ); Emb_ObjSetTravIdCurrent( p, pPivot ); Vec_IntPush( vThis, pPivot->hHandle ); for ( d = 0; Vec_IntSize(vThis) > 0; d++ ) { nVisited += Vec_IntSize(vThis); Vec_IntClear( vNext ); Emb_ManForEachObjVec( vThis, p, pThis, i ) { Emb_ObjForEachFanin( pThis, pNext, k ) { if ( Emb_ObjIsTravIdCurrent(p, pNext) ) continue; Emb_ObjSetTravIdCurrent(p, pNext); Vec_IntPush( vNext, pNext->hHandle ); nVisited += !Emb_ObjIsTerm(pNext); } Emb_ObjForEachFanout( pThis, pNext, k ) { if ( Emb_ObjIsTravIdCurrent(p, pNext) ) continue; Emb_ObjSetTravIdCurrent(p, pNext); Vec_IntPush( vNext, pNext->hHandle ); nVisited += !Emb_ObjIsTerm(pNext); } } vTemp = vThis; vThis = vNext; vNext = vTemp; } Vec_IntFree( vThis ); Vec_IntFree( vNext ); // check if there are several strongly connected components // if ( nVisited < Emb_ManNodeNum(p) ) // printf( "Visited less nodes (%d) than present (%d).\n", nVisited, Emb_ManNodeNum(p) ); return d; } /**Function************************************************************* Synopsis [Traverses from the given node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_ManTestDistanceInternal( Emb_Man_t * p ) { int nAttempts = 20; int i, iNode, Dist, clk; Emb_Obj_t * pPivot, * pNext; Gia_ManRandom( 1 ); Emb_ManResetTravId( p ); // compute distances from several randomly selected PIs clk = clock(); printf( "From inputs: " ); for ( i = 0; i < nAttempts; i++ ) { iNode = Gia_ManRandom( 0 ) % Emb_ManCiNum(p); pPivot = Emb_ManCi( p, iNode ); if ( Emb_ObjFanoutNum(pPivot) == 0 ) { i--; continue; } pNext = Emb_ObjFanout( pPivot, 0 ); if ( !Emb_ObjIsNode(pNext) ) { i--; continue; } Dist = Emb_ManComputeDistance_old( p, pPivot ); printf( "%d ", Dist ); } ABC_PRT( "Time", clock() - clk ); // compute distances from several randomly selected POs clk = clock(); printf( "From outputs: " ); for ( i = 0; i < nAttempts; i++ ) { iNode = Gia_ManRandom( 0 ) % Emb_ManCoNum(p); pPivot = Emb_ManCo( p, iNode ); pNext = Emb_ObjFanin( pPivot, 0 ); if ( !Emb_ObjIsNode(pNext) ) { i--; continue; } Dist = Emb_ManComputeDistance_old( p, pPivot ); printf( "%d ", Dist ); } ABC_PRT( "Time", clock() - clk ); // compute distances from several randomly selected nodes clk = clock(); printf( "From nodes: " ); for ( i = 0; i < nAttempts; i++ ) { iNode = Gia_ManRandom( 0 ) % Gia_ManObjNum(p->pGia); if ( !~Gia_ManObj(p->pGia, iNode)->Value ) { i--; continue; } pPivot = Emb_ManObj( p, Gia_ManObj(p->pGia, iNode)->Value ); if ( !Emb_ObjIsNode(pPivot) ) { i--; continue; } Dist = Emb_ManComputeDistance_old( p, pPivot ); printf( "%d ", Dist ); } ABC_PRT( "Time", clock() - clk ); } /**Function************************************************************* Synopsis [Returns sorted array of node handles with largest fanout.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_ManTestDistance( Gia_Man_t * pGia ) { Emb_Man_t * p; int clk = clock(); p = Emb_ManStart( pGia ); // Emb_ManPrintFanio( p ); Emb_ManPrintStats( p ); ABC_PRT( "Time", clock() - clk ); Gia_ManTestDistanceInternal( p ); Emb_ManStop( p ); } /**Function************************************************************* Synopsis [Perform BFS from the set of nodes.] Description [Returns one of the most distant objects.] SideEffects [] SeeAlso [] ***********************************************************************/ Emb_Obj_t * Emb_ManPerformBfs( Emb_Man_t * p, Vec_Int_t * vThis, Vec_Int_t * vNext, Emb_Dat_t * pDist ) { Vec_Int_t * vTemp; Emb_Obj_t * pThis, * pNext, * pResult; int i, k; assert( Vec_IntSize(vThis) > 0 ); for ( p->nDistMax = 0; Vec_IntSize(vThis) > 0; p->nDistMax++ ) { p->nReached += Vec_IntSize(vThis); Vec_IntClear( vNext ); Emb_ManForEachObjVec( vThis, p, pThis, i ) { if ( pDist ) pDist[pThis->Value] = p->nDistMax; Emb_ObjForEachFanin( pThis, pNext, k ) { if ( Emb_ObjIsTravIdCurrent(p, pNext) ) continue; Emb_ObjSetTravIdCurrent(p, pNext); Vec_IntPush( vNext, pNext->hHandle ); } Emb_ObjForEachFanout( pThis, pNext, k ) { if ( Emb_ObjIsTravIdCurrent(p, pNext) ) continue; Emb_ObjSetTravIdCurrent(p, pNext); Vec_IntPush( vNext, pNext->hHandle ); } } vTemp = vThis; vThis = vNext; vNext = vTemp; } assert( Vec_IntSize(vNext) > 0 ); pResult = Emb_ManObj( p, Vec_IntEntry(vNext, 0) ); assert( pDist == NULL || pDist[pResult->Value] == p->nDistMax - 1 ); return pResult; } /**Function************************************************************* Synopsis [Computes the distances from the given set of objects.] Description [Returns one of the most distant objects.] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Emb_ManConnectedComponents( Emb_Man_t * p ) { Gia_Obj_t * pObj; Vec_Int_t * vThis, * vNext, * vResult; Emb_Obj_t * pThis; int i; vResult = Vec_IntAlloc( 1000 ); vThis = Vec_IntAlloc( 1000 ); vNext = Vec_IntAlloc( 1000 ); p->nReached = 0; Emb_ManIncrementTravId( p ); Gia_ManForEachCo( p->pGia, pObj, i ) { pThis = Emb_ManObj( p, Gia_ObjValue(pObj) ); if ( Emb_ObjIsTravIdCurrent(p, pThis) ) continue; Emb_ObjSetTravIdCurrent( p, pThis ); Vec_IntPush( vResult, pThis->hHandle ); // perform BFS from this node Vec_IntClear( vThis ); Vec_IntPush( vThis, pThis->hHandle ); Emb_ManPerformBfs( p, vThis, vNext, NULL ); } Vec_IntFree( vThis ); Vec_IntFree( vNext ); return vResult; } /**Function************************************************************* Synopsis [Computes the distances from the given set of objects.] Description [Returns one of the most distant objects.] SideEffects [] SeeAlso [] ***********************************************************************/ Emb_Obj_t * Emb_ManFindDistances( Emb_Man_t * p, Vec_Int_t * vStart, Emb_Dat_t * pDist ) { Vec_Int_t * vThis, * vNext; Emb_Obj_t * pThis, * pResult; int i; p->nReached = p->nDistMax = 0; vThis = Vec_IntAlloc( 1000 ); vNext = Vec_IntAlloc( 1000 ); Emb_ManIncrementTravId( p ); Emb_ManForEachObjVec( vStart, p, pThis, i ) { Emb_ObjSetTravIdCurrent( p, pThis ); Vec_IntPush( vThis, pThis->hHandle ); } pResult = Emb_ManPerformBfs( p, vThis, vNext, pDist ); Vec_IntFree( vThis ); Vec_IntFree( vNext ); return pResult; } /**Function************************************************************* Synopsis [Traverses from the given node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Emb_Obj_t * Emb_ManRandomVertex( Emb_Man_t * p ) { Emb_Obj_t * pPivot; do { int iNode = (911 * Gia_ManRandom(0)) % Gia_ManObjNum(p->pGia); if ( ~Gia_ManObj(p->pGia, iNode)->Value ) pPivot = Emb_ManObj( p, Gia_ManObj(p->pGia, iNode)->Value ); else pPivot = NULL; } while ( pPivot == NULL || !Emb_ObjIsNode(pPivot) ); return pPivot; } /**Function************************************************************* Synopsis [Computes the distances from the given set of objects.] Description [Returns one of the most distant objects.] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_DumpGraphIntoFile( Emb_Man_t * p ) { FILE * pFile; Emb_Obj_t * pThis, * pNext; int i, k; pFile = fopen( "1.g", "w" ); Emb_ManForEachObj( p, pThis, i ) { if ( !Emb_ObjIsTravIdCurrent(p, pThis) ) continue; Emb_ObjForEachFanout( pThis, pNext, k ) { assert( Emb_ObjIsTravIdCurrent(p, pNext) ); fprintf( pFile, "%d %d\n", pThis->Value, pNext->Value ); } } fclose( pFile ); } /**Function************************************************************* Synopsis [Computes dimentions of the graph.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManComputeDimensions( Emb_Man_t * p, int nDims ) { Emb_Obj_t * pRandom, * pPivot; Vec_Int_t * vStart, * vComps; int d, nReached; int i;//, Counter; // connect unconnected components vComps = Emb_ManConnectedComponents( p ); // printf( "Components = %d. Considered %d objects (out of %d).\n", Vec_IntSize(vComps), p->nReached, Emb_ManObjNum(p) ); if ( Vec_IntSize(vComps) > 1 ) { Emb_Obj_t * pFanin, * pObj = Emb_ManObj( p, 0 ); Emb_ManForEachObjVec( vComps, p, pFanin, i ) { assert( Emb_ObjIsCo(pFanin) ); pFanin->Fanios[pFanin->nFanins + pFanin->nFanouts-1] = pObj->Fanios[i] = pObj->hHandle - pFanin->hHandle; } } Vec_IntFree( vComps ); // allocate memory for vectors assert( p->pVecs == NULL ); p->pVecs = ABC_CALLOC( Emb_Dat_t, p->nObjs * nDims ); // for ( i = 0; i < p->nObjs * nDims; i++ ) // p->pVecs[i] = ABC_INFINITY; vStart = Vec_IntAlloc( nDims ); // get the pivot vertex pRandom = Emb_ManRandomVertex( p ); Vec_IntPush( vStart, pRandom->hHandle ); // get the most distant vertex from the pivot pPivot = Emb_ManFindDistances( p, vStart, NULL ); // Emb_DumpGraphIntoFile( p ); nReached = p->nReached; if ( nReached < Emb_ManObjNum(p) ) { // printf( "Considering a connected component with %d objects (out of %d).\n", p->nReached, Emb_ManObjNum(p) ); } // start dimensions with this vertex Vec_IntClear( vStart ); for ( d = 0; d < nDims; d++ ) { // printf( "%3d : Adding vertex %7d with distance %3d.\n", d+1, pPivot->Value, p->nDistMax ); Vec_IntPush( vStart, pPivot->hHandle ); if ( d+1 == nReached ) break; pPivot = Emb_ManFindDistances( p, vStart, Emb_ManVec(p, d) ); assert( nReached == p->nReached ); } Vec_IntFree( vStart ); // make sure the number of reached objects is correct // Counter = 0; // for ( i = 0; i < p->nObjs; i++ ) // if ( p->pVecs[i] < ABC_INFINITY ) // Counter++; // assert( Counter == nReached ); } /**Function************************************************************* Synopsis [Allocated square matrix of floats.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ float ** Emb_ManMatrAlloc( int nDims ) { int i; float ** pMatr = (float **)ABC_ALLOC( char, sizeof(float *) * nDims + sizeof(float) * nDims * nDims ); pMatr[0] = (float *)(pMatr + nDims); for ( i = 1; i < nDims; i++ ) pMatr[i] = pMatr[i-1] + nDims; return pMatr; } /**Function************************************************************* Synopsis [Computes covariance matrix.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManComputeCovariance( Emb_Man_t * p, int nDims ) { Emb_Dat_t * pOne, * pTwo; double Ave; float * pRow; int d, i, k, v; // average vectors for ( d = 0; d < nDims; d++ ) { // compute average Ave = 0.0; pOne = Emb_ManVec( p, d ); for ( v = 0; v < p->nObjs; v++ ) if ( pOne[v] < ABC_INFINITY ) Ave += pOne[v]; Ave /= p->nReached; // update the vector for ( v = 0; v < p->nObjs; v++ ) if ( pOne[v] < ABC_INFINITY ) pOne[v] -= Ave; else pOne[v] = 0.0; } // compute the matrix assert( p->pMatr == NULL ); assert( p->pEigen == NULL ); p->pMatr = Emb_ManMatrAlloc( nDims ); p->pEigen = Emb_ManMatrAlloc( nDims ); for ( i = 0; i < nDims; i++ ) { pOne = Emb_ManVec( p, i ); pRow = p->pMatr[i]; for ( k = 0; k < nDims; k++ ) { pTwo = Emb_ManVec( p, k ); pRow[k] = 0.0; for ( v = 0; v < p->nObjs; v++ ) pRow[k] += pOne[v]*pTwo[v]; } } } /**Function************************************************************* Synopsis [Returns random vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManVecRandom( float * pVec, int nDims ) { int i; for ( i = 0; i < nDims; i++ ) pVec[i] = Gia_ManRandom( 0 ); } /**Function************************************************************* Synopsis [Returns normalized vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManVecNormal( float * pVec, int nDims ) { int i; double Norm = 0.0; for ( i = 0; i < nDims; i++ ) Norm += pVec[i] * pVec[i]; Norm = pow( Norm, 0.5 ); for ( i = 0; i < nDims; i++ ) pVec[i] /= Norm; } /**Function************************************************************* Synopsis [Multiplies vector by vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ float Emb_ManVecMultiplyOne( float * pVec0, float * pVec1, int nDims ) { float Res = 0.0; int i; for ( i = 0; i < nDims; i++ ) Res += pVec0[i] * pVec1[i]; return Res; } /**Function************************************************************* Synopsis [Copies the vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManVecCopyOne( float * pVecDest, float * pVecSour, int nDims ) { int i; for ( i = 0; i < nDims; i++ ) pVecDest[i] = pVecSour[i]; } /**Function************************************************************* Synopsis [Multiplies matrix by vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManVecMultiply( float ** pMatr, float * pVec, int nDims, float * pRes ) { int k; for ( k = 0; k < nDims; k++ ) pRes[k] = Emb_ManVecMultiplyOne( pMatr[k], pVec, nDims ); } /**Function************************************************************* Synopsis [Multiplies vector by matrix.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManVecOrthogonolizeOne( float * pEigen, float * pVecI, int nDims, float * pVecRes ) { int k; for ( k = 0; k < nDims; k++ ) pVecRes[k] = pVecI[k] - pEigen[k] * Emb_ManVecMultiplyOne( pVecI, pEigen, nDims ); } /**Function************************************************************* Synopsis [Computes the first nSols eigen-vectors.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManComputeEigenvectors( Emb_Man_t * p, int nDims, int nSols ) { float * pVecUiHat, * pVecUi; int i, j, k; assert( nSols < nDims ); pVecUiHat = p->pEigen[nSols]; for ( i = 0; i < nSols; i++ ) { pVecUi = p->pEigen[i]; Emb_ManVecRandom( pVecUiHat, nDims ); Emb_ManVecNormal( pVecUiHat, nDims ); k = 0; do { k++; Emb_ManVecCopyOne( pVecUi, pVecUiHat, nDims ); for ( j = 0; j < i; j++ ) { Emb_ManVecOrthogonolizeOne( p->pEigen[j], pVecUi, nDims, pVecUiHat ); Emb_ManVecCopyOne( pVecUi, pVecUiHat, nDims ); } Emb_ManVecMultiply( p->pMatr, pVecUi, nDims, pVecUiHat ); Emb_ManVecNormal( pVecUiHat, nDims ); } while ( Emb_ManVecMultiplyOne( pVecUiHat, pVecUi, nDims ) < 0.999 && k < 100 ); Emb_ManVecCopyOne( pVecUi, pVecUiHat, nDims ); // printf( "Converged after %d iterations.\n", k ); } } /**Function************************************************************* Synopsis [Derives solutions from original vectors and eigenvectors.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManComputeSolutions( Emb_Man_t * p, int nDims, int nSols ) { Emb_Dat_t * pX; float * pY; int i, j, k; assert( p->pSols == NULL ); p->pSols = ABC_CALLOC( float, p->nObjs * nSols ); for ( i = 0; i < nDims; i++ ) { pX = Emb_ManVec( p, i ); for ( j = 0; j < nSols; j++ ) { pY = Emb_ManSol( p, j ); for ( k = 0; k < p->nObjs; k++ ) pY[k] += pX[k] * p->pEigen[j][i]; } } } /**Function************************************************************* Synopsis [Projects into square of size [0;GIA_PLACE_SIZE] x [0;GIA_PLACE_SIZE].] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManDerivePlacement( Emb_Man_t * p, int nSols ) { float * pY0, * pY1, Max0, Max1, Min0, Min1, Str0, Str1; int * pPerm0, * pPerm1; int k; if ( nSols != 2 ) return; // compute intervals Min0 = ABC_INFINITY; Max0 = -ABC_INFINITY; pY0 = Emb_ManSol( p, 0 ); for ( k = 0; k < p->nObjs; k++ ) { Min0 = ABC_MIN( Min0, pY0[k] ); Max0 = ABC_MAX( Max0, pY0[k] ); } Str0 = 1.0*GIA_PLACE_SIZE/(Max0 - Min0); // update the coordinates for ( k = 0; k < p->nObjs; k++ ) pY0[k] = (pY0[k] != 0.0) ? ((pY0[k] - Min0) * Str0) : 0.0; // compute intervals Min1 = ABC_INFINITY; Max1 = -ABC_INFINITY; pY1 = Emb_ManSol( p, 1 ); for ( k = 0; k < p->nObjs; k++ ) { Min1 = ABC_MIN( Min1, pY1[k] ); Max1 = ABC_MAX( Max1, pY1[k] ); } Str1 = 1.0*GIA_PLACE_SIZE/(Max1 - Min1); // update the coordinates for ( k = 0; k < p->nObjs; k++ ) pY1[k] = (pY1[k] != 0.0) ? ((pY1[k] - Min1) * Str1) : 0.0; // derive the order of these numbers pPerm0 = Gia_SortFloats( pY0, NULL, p->nObjs ); pPerm1 = Gia_SortFloats( pY1, NULL, p->nObjs ); // average solutions and project them into square [0;GIA_PLACE_SIZE] x [0;GIA_PLACE_SIZE] p->pPlacement = ABC_ALLOC( unsigned short, 2 * p->nObjs ); for ( k = 0; k < p->nObjs; k++ ) { p->pPlacement[2*pPerm0[k]+0] = (unsigned short)(int)(1.0 * k * GIA_PLACE_SIZE / p->nObjs); p->pPlacement[2*pPerm1[k]+1] = (unsigned short)(int)(1.0 * k * GIA_PLACE_SIZE / p->nObjs); } ABC_FREE( pPerm0 ); ABC_FREE( pPerm1 ); } /**Function************************************************************* Synopsis [Computes wire-length.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ double Emb_ManComputeHPWL( Emb_Man_t * p ) { double Result = 0.0; Emb_Obj_t * pThis, * pNext; int i, k, iMinX, iMaxX, iMinY, iMaxY; if ( p->pPlacement == NULL ) return 0.0; Emb_ManForEachObj( p, pThis, i ) { iMinX = iMaxX = p->pPlacement[2*pThis->Value+0]; iMinY = iMaxY = p->pPlacement[2*pThis->Value+1]; Emb_ObjForEachFanout( pThis, pNext, k ) { iMinX = ABC_MIN( iMinX, p->pPlacement[2*pNext->Value+0] ); iMaxX = ABC_MAX( iMaxX, p->pPlacement[2*pNext->Value+0] ); iMinY = ABC_MIN( iMinY, p->pPlacement[2*pNext->Value+1] ); iMaxY = ABC_MAX( iMaxY, p->pPlacement[2*pNext->Value+1] ); } Result += (iMaxX - iMinX) + (iMaxY - iMinY); } return Result; } /**Function************************************************************* Synopsis [Performs iterative refinement of the given placement.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManPlacementRefine( Emb_Man_t * p, int nIters, int fVerbose ) { Emb_Obj_t * pThis, * pNext; double CostThis, CostPrev; float * pEdgeX, * pEdgeY; float * pVertX, * pVertY; float VertX, VertY; int * pPermX, * pPermY; int i, k, Iter, iMinX, iMaxX, iMinY, iMaxY; int clk = clock(); if ( p->pPlacement == NULL ) return; pEdgeX = ABC_ALLOC( float, p->nObjs ); pEdgeY = ABC_ALLOC( float, p->nObjs ); pVertX = ABC_ALLOC( float, p->nObjs ); pVertY = ABC_ALLOC( float, p->nObjs ); // refine placement CostPrev = 0.0; for ( Iter = 0; Iter < nIters; Iter++ ) { // compute centers of hyperedges CostThis = 0.0; Emb_ManForEachObj( p, pThis, i ) { iMinX = iMaxX = p->pPlacement[2*pThis->Value+0]; iMinY = iMaxY = p->pPlacement[2*pThis->Value+1]; Emb_ObjForEachFanout( pThis, pNext, k ) { iMinX = ABC_MIN( iMinX, p->pPlacement[2*pNext->Value+0] ); iMaxX = ABC_MAX( iMaxX, p->pPlacement[2*pNext->Value+0] ); iMinY = ABC_MIN( iMinY, p->pPlacement[2*pNext->Value+1] ); iMaxY = ABC_MAX( iMaxY, p->pPlacement[2*pNext->Value+1] ); } pEdgeX[pThis->Value] = 0.5 * (iMaxX + iMinX); pEdgeY[pThis->Value] = 0.5 * (iMaxY + iMinY); CostThis += (iMaxX - iMinX) + (iMaxY - iMinY); } // compute new centers of objects Emb_ManForEachObj( p, pThis, i ) { VertX = pEdgeX[pThis->Value]; VertY = pEdgeY[pThis->Value]; Emb_ObjForEachFanin( pThis, pNext, k ) { VertX += pEdgeX[pNext->Value]; VertY += pEdgeY[pNext->Value]; } pVertX[pThis->Value] = VertX / (Emb_ObjFaninNum(pThis) + 1); pVertY[pThis->Value] = VertY / (Emb_ObjFaninNum(pThis) + 1); } // sort these numbers pPermX = Gia_SortFloats( pVertX, NULL, p->nObjs ); pPermY = Gia_SortFloats( pVertY, NULL, p->nObjs ); for ( k = 0; k < p->nObjs; k++ ) { p->pPlacement[2*pPermX[k]+0] = (unsigned short)(int)(1.0 * k * GIA_PLACE_SIZE / p->nObjs); p->pPlacement[2*pPermY[k]+1] = (unsigned short)(int)(1.0 * k * GIA_PLACE_SIZE / p->nObjs); } ABC_FREE( pPermX ); ABC_FREE( pPermY ); // evaluate cost if ( fVerbose ) { printf( "%2d : HPWL = %e ", Iter+1, CostThis ); ABC_PRT( "Time", clock() - clk ); } } ABC_FREE( pEdgeX ); ABC_FREE( pEdgeY ); ABC_FREE( pVertX ); ABC_FREE( pVertY ); } /**Function************************************************************* Synopsis [Derives solutions from original vectors and eigenvectors.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManPrintSolutions( Emb_Man_t * p, int nSols ) { float * pSol; int i, k; for ( i = 0; i < nSols; i++ ) { pSol = Emb_ManSol( p, i ); for ( k = 0; k < p->nObjs; k++ ) printf( "%4d ", (int)(100 * pSol[k]) ); printf( "\n" ); } } /**Function************************************************************* Synopsis [Prepares image for dumping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Emb_ManDumpGnuplotPrepare( Emb_Man_t * p ) { // int nRows = 496; // int nCols = 710; int nRows = 500; int nCols = 700; Vec_Int_t * vLines; Emb_Obj_t * pThis; char * pBuffer, ** ppRows; int i, k, placeX, placeY; int fStart; // alloc memory pBuffer = ABC_CALLOC( char, nRows * (nCols+1) ); ppRows = ABC_ALLOC( char *, nRows ); for ( i = 0; i < nRows; i++ ) ppRows[i] = pBuffer + i*(nCols+1); // put data into them Emb_ManForEachObj( p, pThis, i ) { placeX = p->pPlacement[2*pThis->Value+0] * nCols / (1<<16); placeY = p->pPlacement[2*pThis->Value+1] * nRows / (1<<16); assert( placeX < nCols && placeY < nRows ); ppRows[placeY][placeX] = 1; } // select lines vLines = Vec_IntAlloc( 1000 ); for ( i = 0; i < nRows; i++ ) { fStart = 0; for ( k = 0; k <= nCols; k++ ) { if ( ppRows[i][k] && !fStart ) { Vec_IntPush( vLines, k ); Vec_IntPush( vLines, i ); fStart = 1; } if ( !ppRows[i][k] && fStart ) { Vec_IntPush( vLines, k-1 ); Vec_IntPush( vLines, i ); fStart = 0; } } assert( fStart == 0 ); } ABC_FREE( pBuffer ); ABC_FREE( ppRows ); return vLines; } /**Function************************************************************* Synopsis [Derives solutions from original vectors and eigenvectors.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Emb_ManDumpGnuplot( Emb_Man_t * p, char * pName, int fDumpLarge, int fShowImage ) { extern void Gia_ManGnuplotShow( char * pPlotFileName ); // char * pDirectory = "place\\"; char * pDirectory = ""; extern char * Ioa_TimeStamp(); FILE * pFile; char Buffer[1000]; Emb_Obj_t * pThis, * pNext; int i, k; if ( p->pPlacement == NULL ) { printf( "Emb_ManDumpGnuplot(): Placement is not available.\n" ); return; } sprintf( Buffer, "%s%s", pDirectory, Gia_FileNameGenericAppend(pName, ".plt") ); pFile = fopen( Buffer, "w" ); fprintf( pFile, "# This Gnuplot file was produced by ABC on %s\n", Ioa_TimeStamp() ); fprintf( pFile, "\n" ); fprintf( pFile, "set nokey\n" ); fprintf( pFile, "\n" ); if ( !fShowImage ) { // fprintf( pFile, "set terminal postscript\n" ); fprintf( pFile, "set terminal gif font \'arial\' 10 size 800,600 xffffff x000000 x000000 x000000\n" ); fprintf( pFile, "set output \'%s\'\n", Gia_FileNameGenericAppend(pName, ".gif") ); fprintf( pFile, "\n" ); } fprintf( pFile, "set title \"%s : PI = %d PO = %d FF = %d Node = %d Obj = %d HPWL = %.2e\\n", pName, Emb_ManPiNum(p), Emb_ManPoNum(p), Emb_ManRegNum(p), Emb_ManNodeNum(p), Emb_ManObjNum(p), Emb_ManComputeHPWL(p) ); fprintf( pFile, "(image generated by ABC and Gnuplot on %s)\"", Ioa_TimeStamp() ); fprintf( pFile, "font \"Times, 12\"\n" ); fprintf( pFile, "\n" ); fprintf( pFile, "plot [:] '-' w l\n" ); fprintf( pFile, "\n" ); if ( fDumpLarge ) { int begX, begY, endX, endY; Vec_Int_t * vLines = Emb_ManDumpGnuplotPrepare( p ); Vec_IntForEachEntry( vLines, begX, i ) { begY = Vec_IntEntry( vLines, i+1 ); endX = Vec_IntEntry( vLines, i+2 ); endY = Vec_IntEntry( vLines, i+3 ); i += 3; fprintf( pFile, "%5d %5d\n", begX, begY ); fprintf( pFile, "%5d %5d\n", endX, endY ); fprintf( pFile, "\n" ); } Vec_IntFree( vLines ); } else { Emb_ManForEachObj( p, pThis, i ) { if ( !Emb_ObjIsTravIdCurrent(p, pThis) ) continue; Emb_ObjForEachFanout( pThis, pNext, k ) { assert( Emb_ObjIsTravIdCurrent(p, pNext) ); fprintf( pFile, "%5d %5d\n", p->pPlacement[2*pThis->Value+0], p->pPlacement[2*pThis->Value+1] ); fprintf( pFile, "%5d %5d\n", p->pPlacement[2*pNext->Value+0], p->pPlacement[2*pNext->Value+1] ); fprintf( pFile, "\n" ); } } } fprintf( pFile, "EOF\n" ); fprintf( pFile, "\n" ); if ( fShowImage ) { fprintf( pFile, "pause -1 \"Close window\"\n" ); // Hit return to continue fprintf( pFile, "reset\n" ); fprintf( pFile, "\n" ); } else { fprintf( pFile, "# pause -1 \"Close window\"\n" ); // Hit return to continue fprintf( pFile, "# reset\n" ); fprintf( pFile, "\n" ); } fclose( pFile ); if ( fShowImage ) Gia_ManGnuplotShow( Buffer ); } /**Function************************************************************* Synopsis [Computes dimentions of the graph.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_ManSolveProblem( Gia_Man_t * pGia, Emb_Par_t * pPars ) { Emb_Man_t * p; int i, clk, clkSetup; // Gia_ManTestDistance( pGia ); // transform AIG into internal data-structure clk = clock(); if ( pPars->fCluster ) { p = Emb_ManStart( pGia ); if ( pPars->fVerbose ) { printf( "Clustered: " ); Emb_ManPrintStats( p ); } } else p = Emb_ManStartSimple( pGia ); p->fVerbose = pPars->fVerbose; // Emb_ManPrintFanio( p ); // prepare data-structure Gia_ManRandom( 1 ); // reset random numbers for deterministic behavior Emb_ManResetTravId( p ); Emb_ManSetValue( p ); clkSetup = clock() - clk; clk = clock(); Emb_ManComputeDimensions( p, pPars->nDims ); if ( pPars->fVerbose ) ABC_PRT( "Setup ", clkSetup ); if ( pPars->fVerbose ) ABC_PRT( "Dimensions", clock() - clk ); clk = clock(); Emb_ManComputeCovariance( p, pPars->nDims ); if ( pPars->fVerbose ) ABC_PRT( "Matrix ", clock() - clk ); clk = clock(); Emb_ManComputeEigenvectors( p, pPars->nDims, pPars->nSols ); Emb_ManComputeSolutions( p, pPars->nDims, pPars->nSols ); Emb_ManDerivePlacement( p, pPars->nSols ); if ( pPars->fVerbose ) ABC_PRT( "Eigenvecs ", clock() - clk ); if ( pPars->fRefine ) { clk = clock(); Emb_ManPlacementRefine( p, pPars->nIters, pPars->fVerbose ); if ( pPars->fVerbose ) ABC_PRT( "Refinement", clock() - clk ); } if ( (pPars->fDump || pPars->fDumpLarge) && pPars->nSols == 2 ) { clk = clock(); Emb_ManDumpGnuplot( p, pGia->pName, pPars->fDumpLarge, pPars->fShowImage ); if ( pPars->fVerbose ) ABC_PRT( "Image dump", clock() - clk ); } // transfer placement if ( Gia_ManObjNum(pGia) == p->nObjs ) { // assuming normalized ordering of the AIG pGia->pPlacement = ABC_CALLOC( Gia_Plc_t, p->nObjs ); for ( i = 0; i < p->nObjs; i++ ) { pGia->pPlacement[i].xCoord = p->pPlacement[2*i+0]; pGia->pPlacement[i].yCoord = p->pPlacement[2*i+1]; } } Emb_ManStop( p ); } //////////////////////////////////////////////////////////////////////// /// END OF FILE /// ////////////////////////////////////////////////////////////////////////