diff options
Diffstat (limited to 'src/misc/espresso/opo.c')
-rw-r--r-- | src/misc/espresso/opo.c | 624 |
1 files changed, 0 insertions, 624 deletions
diff --git a/src/misc/espresso/opo.c b/src/misc/espresso/opo.c deleted file mode 100644 index 8daa0771..00000000 --- a/src/misc/espresso/opo.c +++ /dev/null @@ -1,624 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -/* - * Phase assignment technique (T. Sasao): - * - * 1. create a function with 2*m outputs which implements the - * original function and its complement for each output - * - * 2. minimize this function - * - * 3. choose the minimum number of prime implicants from the - * result of step 2 which are needed to realize either a function - * or its complement for each output - * - * Step 3 is performed in a rather crude way -- by simply multiplying - * out a large expression of the form: - * - * I = (ab + cdef)(acd + bgh) ... - * - * which is a product of m expressions where each expression has two - * product terms -- one representing which primes are needed for the - * function, and one representing which primes are needed for the - * complement. The largest product term resulting shows which primes - * to keep to implement one function or the other for each output. - * For problems with many outputs, this may grind to a - * halt. - * - * Untried: form complement of I and use unate_complement ... - * - * I have unsuccessfully tried several modifications to the basic - * algorithm. The first is quite simple: use Sasao's technique, but - * only commit to a single output at a time (rather than all - * outputs). The goal would be that the later minimizations can "take - * into account" the partial assignment at each step. This is - * expensive (m+1 minimizations rather than 2), and the results are - * discouraging. - * - * The second modification is rather complicated. The result from the - * minimization in step 2 is guaranteed to be minimal. Hence, for - * each output, the set of primes with a 1 in that output are both - * necessary and sufficient to implement the function. Espresso - * achieves the minimality using the routine MAKE_SPARSE. The - * modification is to prevent MAKE_SPARSE from running. Hence, there - * are potentially many subsets of the set of primes with a 1 in a - * column which can be used to implement that output. We use - * IRREDUNDANT to enumerate all possible subsets and then proceed as - * before. - */ - -static int opo_no_make_sparse; -static int opo_repeated; -static int opo_exact; -static void minimize(); - -void phase_assignment(PLA, opo_strategy) -pPLA PLA; -int opo_strategy; -{ - opo_no_make_sparse = opo_strategy % 2; - skip_make_sparse = opo_no_make_sparse; - opo_repeated = (opo_strategy / 2) % 2; - opo_exact = (opo_strategy / 4) % 2; - - /* Determine a phase assignment */ - if (PLA->phase != NULL) { - FREE(PLA->phase); - } - - if (opo_repeated) { - PLA->phase = set_save(cube.fullset); - repeated_phase_assignment(PLA); - } else { - PLA->phase = find_phase(PLA, 0, (pcube) NULL); - } - - /* Now minimize with this assignment */ - skip_make_sparse = FALSE; - (void) set_phase(PLA); - minimize(PLA); -} - -/* - * repeated_phase_assignment -- an alternate strategy which commits - * to a single phase assignment a step at a time. Performs m + 1 - * minimizations ! - */ -void repeated_phase_assignment(PLA) -pPLA PLA; -{ - int i; - pcube phase; - - for(i = 0; i < cube.part_size[cube.output]; i++) { - - /* Find best assignment for all undecided outputs */ - phase = find_phase(PLA, i, PLA->phase); - - /* Commit for only a single output ... */ - if (! is_in_set(phase, cube.first_part[cube.output] + i)) { - set_remove(PLA->phase, cube.first_part[cube.output] + i); - } - - if (trace || summary) { - printf("\nOPO loop for output #%d\n", i); - printf("PLA->phase is %s\n", pc1(PLA->phase)); - printf("phase is %s\n", pc1(phase)); - } - set_free(phase); - } -} - - -/* - * find_phase -- find a phase assignment for the PLA for all outputs starting - * with output number first_output. - */ -pcube find_phase(PLA, first_output, phase1) -pPLA PLA; -int first_output; -pcube phase1; -{ - pcube phase; - pPLA PLA1; - - phase = set_save(cube.fullset); - - /* setup the double-phase characteristic function, resize the cube */ - PLA1 = new_PLA(); - PLA1->F = sf_save(PLA->F); - PLA1->R = sf_save(PLA->R); - PLA1->D = sf_save(PLA->D); - if (phase1 != NULL) { - PLA1->phase = set_save(phase1); - (void) set_phase(PLA1); - } - EXEC_S(output_phase_setup(PLA1, first_output), "OPO-SETUP ", PLA1->F); - - /* minimize the double-phase function */ - minimize(PLA1); - - /* set the proper phases according to what gives a minimum solution */ - EXEC_S(PLA1->F = opo(phase, PLA1->F, PLA1->D, PLA1->R, first_output), - "OPO ", PLA1->F); - free_PLA(PLA1); - - /* set the cube structure to reflect the old size */ - setdown_cube(); - cube.part_size[cube.output] -= - (cube.part_size[cube.output] - first_output) / 2; - cube_setup(); - - return phase; -} - -/* - * opo -- multiply the expression out to determine a minimum subset of - * primes. - */ - -/*ARGSUSED*/ -pcover opo(phase, T, D, R, first_output) -pcube phase; -pcover T, D, R; -int first_output; -{ - int offset, output, i, last_output, ind; - pset pdest, select, p, p1, last, last1, not_covered, tmp; - pset_family temp, T1, T2; - - /* must select all primes for outputs [0 .. first_output-1] */ - select = set_full(T->count); - for(output = 0; output < first_output; output++) { - ind = cube.first_part[cube.output] + output; - foreachi_set(T, i, p) { - if (is_in_set(p, ind)) { - set_remove(select, i); - } - } - } - - /* Recursively perform the intersections */ - offset = (cube.part_size[cube.output] - first_output) / 2; - last_output = first_output + offset - 1; - temp = opo_recur(T, D, select, offset, first_output, last_output); - - /* largest set is on top -- select primes which are inferred from it */ - pdest = temp->data; - T1 = new_cover(T->count); - foreachi_set(T, i, p) { - if (! is_in_set(pdest, i)) { - T1 = sf_addset(T1, p); - } - } - - set_free(select); - sf_free(temp); - - /* finding phases is difficult -- see which functions are not covered */ - T2 = complement(cube1list(T1)); - not_covered = new_cube(); - tmp = new_cube(); - foreach_set(T, last, p) { - foreach_set(T2, last1, p1) { - if (cdist0(p, p1)) { - (void) set_or(not_covered, not_covered, set_and(tmp, p, p1)); - } - } - } - free_cover(T); - free_cover(T2); - set_free(tmp); - - /* Now reflect the phase choice in a single cube */ - for(output = first_output; output <= last_output; output++) { - ind = cube.first_part[cube.output] + output; - if (is_in_set(not_covered, ind)) { - if (is_in_set(not_covered, ind + offset)) { - fatal("error in output phase assignment"); - } else { - set_remove(phase, ind); - } - } - } - set_free(not_covered); - return T1; -} - -pset_family opo_recur(T, D, select, offset, first, last) -pcover T, D; -pcube select; -int offset, first, last; -{ - static int level = 0; - int middle; - pset_family sl, sr, temp; - - level++; - if (first == last) { -#if 0 - if (opo_no_make_sparse) { - temp = form_cover_table(T, D, select, first, first + offset); - } else { - temp = opo_leaf(T, select, first, first + offset); - } -#else - temp = opo_leaf(T, select, first, first + offset); -#endif - } else { - middle = (first + last) / 2; - sl = opo_recur(T, D, select, offset, first, middle); - sr = opo_recur(T, D, select, offset, middle+1, last); - temp = unate_intersect(sl, sr, level == 1); - if (trace) { - printf("# OPO[%d]: %4d = %4d x %4d, time = %s\n", level - 1, - temp->count, sl->count, sr->count, print_time(ptime())); - (void) fflush(stdout); - } - free_cover(sl); - free_cover(sr); - } - level--; - return temp; -} - - -pset_family opo_leaf(T, select, out1, out2) -register pcover T; -pset select; -int out1, out2; -{ - register pset_family temp; - register pset p, pdest; - register int i; - - out1 += cube.first_part[cube.output]; - out2 += cube.first_part[cube.output]; - - /* Allocate space for the result */ - temp = sf_new(2, T->count); - - /* Find which primes are needed for the ON-set of this fct */ - pdest = GETSET(temp, temp->count++); - (void) set_copy(pdest, select); - foreachi_set(T, i, p) { - if (is_in_set(p, out1)) { - set_remove(pdest, i); - } - } - - /* Find which primes are needed for the OFF-set of this fct */ - pdest = GETSET(temp, temp->count++); - (void) set_copy(pdest, select); - foreachi_set(T, i, p) { - if (is_in_set(p, out2)) { - set_remove(pdest, i); - } - } - - return temp; -} - -#if 0 -pset_family form_cover_table(F, D, select, f, fbar) -pcover F, D; -pset select; -int f, fbar; /* indices of f and fbar in the output part */ -{ - register int i; - register pcube p; - pset_family f_table, fbar_table; - - /* setup required for fcube_is_covered */ - Rp_size = F->count; - Rp_start = set_new(Rp_size); - foreachi_set(F, i, p) { - PUTSIZE(p, i); - } - foreachi_set(D, i, p) { - RESET(p, REDUND); - } - - f_table = find_covers(F, D, select, f); - fbar_table = find_covers(F, D, select, fbar); - f_table = sf_append(f_table, fbar_table); - - set_free(Rp_start); - return f_table; -} - - -pset_family find_covers(F, D, select, n) -pcover F, D; -register pset select; -int n; -{ - register pset p, last, new; - pcover F1; - pcube *Flist; - pset_family f_table, table; - int i; - - n += cube.first_part[cube.output]; - - /* save cubes in this output, and remove the output variable */ - F1 = new_cover(F->count); - foreach_set(F, last, p) - if (is_in_set(p, n)) { - new = GETSET(F1, F1->count++); - set_or(new, p, cube.var_mask[cube.output]); - PUTSIZE(new, SIZE(p)); - SET(new, REDUND); - } - - /* Find ways (sop form) to fail to cover output indexed by n */ - Flist = cube2list(F1, D); - table = sf_new(10, Rp_size); - foreach_set(F1, last, p) { - set_fill(Rp_start, Rp_size); - set_remove(Rp_start, SIZE(p)); - table = sf_append(table, fcube_is_covered(Flist, p)); - RESET(p, REDUND); - } - set_fill(Rp_start, Rp_size); - foreach_set(table, last, p) { - set_diff(p, Rp_start, p); - } - - /* complement this to get possible ways to cover the function */ - for(i = 0; i < Rp_size; i++) { - if (! is_in_set(select, i)) { - p = set_new(Rp_size); - set_insert(p, i); - table = sf_addset(table, p); - set_free(p); - } - } - f_table = unate_compl(table); - - /* what a pain, but we need bitwise complement of this */ - set_fill(Rp_start, Rp_size); - foreach_set(f_table, last, p) { - set_diff(p, Rp_start, p); - } - - free_cubelist(Flist); - sf_free(F1); - return f_table; -} -#endif - -/* - * Take a PLA (ON-set, OFF-set and DC-set) and create the - * "double-phase characteristic function" which is merely a new - * function which has twice as many outputs and realizes both the - * function and the complement. - * - * The cube structure is assumed to represent the PLA upon entering. - * It will be modified to represent the double-phase function upon - * exit. - * - * Only the outputs numbered starting with "first_output" are - * duplicated in the output part - */ - -output_phase_setup(PLA, first_output) -INOUT pPLA PLA; -int first_output; -{ - pcover F, R, D; - pcube mask, mask1, last; - int first_part, offset; - bool save; - register pcube p, pr, pf; - register int i, last_part; - - if (cube.output == -1) - fatal("output_phase_setup: must have an output"); - - F = PLA->F; - D = PLA->D; - R = PLA->R; - first_part = cube.first_part[cube.output] + first_output; - last_part = cube.last_part[cube.output]; - offset = cube.part_size[cube.output] - first_output; - - /* Change the output size, setup the cube structure */ - setdown_cube(); - cube.part_size[cube.output] += offset; - cube_setup(); - - /* Create a mask to select that part of the cube which isn't changing */ - mask = set_save(cube.fullset); - for(i = first_part; i < cube.size; i++) - set_remove(mask, i); - mask1 = set_save(mask); - for(i = cube.first_part[cube.output]; i < first_part; i++) { - set_remove(mask1, i); - } - - PLA->F = new_cover(F->count + R->count); - PLA->R = new_cover(F->count + R->count); - PLA->D = new_cover(D->count); - - foreach_set(F, last, p) { - pf = GETSET(PLA->F, (PLA->F)->count++); - pr = GETSET(PLA->R, (PLA->R)->count++); - INLINEset_and(pf, mask, p); - INLINEset_and(pr, mask1, p); - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - set_insert(pf, i); - save = FALSE; - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - save = TRUE, set_insert(pr, i+offset); - if (! save) PLA->R->count--; - } - - foreach_set(R, last, p) { - pf = GETSET(PLA->F, (PLA->F)->count++); - pr = GETSET(PLA->R, (PLA->R)->count++); - INLINEset_and(pf, mask1, p); - INLINEset_and(pr, mask, p); - save = FALSE; - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - save = TRUE, set_insert(pf, i+offset); - if (! save) PLA->F->count--; - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - set_insert(pr, i); - } - - foreach_set(D, last, p) { - pf = GETSET(PLA->D, (PLA->D)->count++); - INLINEset_and(pf, mask, p); - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) { - set_insert(pf, i); - set_insert(pf, i+offset); - } - } - - free_cover(F); - free_cover(D); - free_cover(R); - set_free(mask); - set_free(mask1); -} - -/* - * set_phase -- given a "cube" which describes which phases of the output - * are to be implemented, compute the appropriate on-set and off-set - */ -pPLA set_phase(PLA) -INOUT pPLA PLA; -{ - pcover F1, R1; - register pcube last, p, outmask; - register pcube temp=cube.temp[0], phase=PLA->phase, phase1=cube.temp[1]; - - outmask = cube.var_mask[cube.num_vars - 1]; - set_diff(phase1, outmask, phase); - set_or(phase1, set_diff(temp, cube.fullset, outmask), phase1); - F1 = new_cover((PLA->F)->count + (PLA->R)->count); - R1 = new_cover((PLA->F)->count + (PLA->R)->count); - - foreach_set(PLA->F, last, p) { - if (! setp_disjoint(set_and(temp, p, phase), outmask)) - set_copy(GETSET(F1, F1->count++), temp); - if (! setp_disjoint(set_and(temp, p, phase1), outmask)) - set_copy(GETSET(R1, R1->count++), temp); - } - foreach_set(PLA->R, last, p) { - if (! setp_disjoint(set_and(temp, p, phase), outmask)) - set_copy(GETSET(R1, R1->count++), temp); - if (! setp_disjoint(set_and(temp, p, phase1), outmask)) - set_copy(GETSET(F1, F1->count++), temp); - } - free_cover(PLA->F); - free_cover(PLA->R); - PLA->F = F1; - PLA->R = R1; - return PLA; -} - -#define POW2(x) (1 << (x)) - -void opoall(PLA, first_output, last_output, opo_strategy) -pPLA PLA; -int first_output, last_output; -int opo_strategy; -{ - pcover F, D, R, best_F, best_D, best_R; - int i, j, ind, num; - pcube bestphase; - - opo_exact = opo_strategy; - - if (PLA->phase != NULL) { - set_free(PLA->phase); - } - - bestphase = set_save(cube.fullset); - best_F = sf_save(PLA->F); - best_D = sf_save(PLA->D); - best_R = sf_save(PLA->R); - - for(i = 0; i < POW2(last_output - first_output + 1); i++) { - - /* save the initial PLA covers */ - F = sf_save(PLA->F); - D = sf_save(PLA->D); - R = sf_save(PLA->R); - - /* compute the phase cube for this iteration */ - PLA->phase = set_save(cube.fullset); - num = i; - for(j = last_output; j >= first_output; j--) { - if (num % 2 == 0) { - ind = cube.first_part[cube.output] + j; - set_remove(PLA->phase, ind); - } - num /= 2; - } - - /* set the phase and minimize */ - (void) set_phase(PLA); - printf("# phase is %s\n", pc1(PLA->phase)); - summary = TRUE; - minimize(PLA); - - /* see if this is the best so far */ - if (PLA->F->count < best_F->count) { - /* save new best solution */ - set_copy(bestphase, PLA->phase); - sf_free(best_F); - sf_free(best_D); - sf_free(best_R); - best_F = PLA->F; - best_D = PLA->D; - best_R = PLA->R; - } else { - /* throw away the solution */ - free_cover(PLA->F); - free_cover(PLA->D); - free_cover(PLA->R); - } - set_free(PLA->phase); - - /* restore the initial PLA covers */ - PLA->F = F; - PLA->D = D; - PLA->R = R; - } - - /* one more minimization to restore the best answer */ - PLA->phase = bestphase; - sf_free(PLA->F); - sf_free(PLA->D); - sf_free(PLA->R); - PLA->F = best_F; - PLA->D = best_D; - PLA->R = best_R; -} - -static void minimize(PLA) -pPLA PLA; -{ - if (opo_exact) { - EXEC_S(PLA->F = minimize_exact(PLA->F,PLA->D,PLA->R,1), "EXACT", PLA->F); - } else { - EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), "ESPRESSO ",PLA->F); - } -} |