diff options
Diffstat (limited to 'src/base/io/ioWriteAiger.c')
-rw-r--r-- | src/base/io/ioWriteAiger.c | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/src/base/io/ioWriteAiger.c b/src/base/io/ioWriteAiger.c new file mode 100644 index 00000000..758e5335 --- /dev/null +++ b/src/base/io/ioWriteAiger.c @@ -0,0 +1,375 @@ +/**CFile**************************************************************** + + FileName [ioWriteAiger.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Command processing package.] + + Synopsis [Procedures to write binary AIGER format developed by + Armin Biere, Johannes Kepler University (http://fmv.jku.at/)] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - December 16, 2006.] + + Revision [$Id: ioWriteAiger.c,v 1.00 2006/12/16 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "io.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +/* + The following is taken from the AIGER format description, + which can be found at http://fmv.jku.at/aiger +*/ + + +/* + The AIGER And-Inverter Graph (AIG) Format Version 20061129 + ---------------------------------------------------------- + Armin Biere, Johannes Kepler University, 2006 + + This report describes the AIG file format as used by the AIGER library. + The purpose of this report is not only to motivate and document the + format, but also to allow independent implementations of writers and + readers by giving precise and unambiguous definitions. + + ... + +Introduction + + The name AIGER contains as one part the acronym AIG of And-Inverter + Graphs and also if pronounced in German sounds like the name of the + 'Eiger', a mountain in the Swiss alps. This choice should emphasize the + origin of this format. It was first openly discussed at the Alpine + Verification Meeting 2006 in Ascona as a way to provide a simple, compact + file format for a model checking competition affiliated to CAV 2007. + + ... + +Binary Format Definition + + The binary format is semantically a subset of the ASCII format with a + slightly different syntax. The binary format may need to reencode + literals, but translating a file in binary format into ASCII format and + then back in to binary format will result in the same file. + + The main differences of the binary format to the ASCII format are as + follows. After the header the list of input literals and all the + current state literals of a latch can be omitted. Furthermore the + definitions of the AND gates are binary encoded. However, the symbol + table and the comment section are as in the ASCII format. + + The header of an AIGER file in binary format has 'aig' as format + identifier, but otherwise is identical to the ASCII header. The standard + file extension for the binary format is therefore '.aig'. + + A header for the binary format is still in ASCII encoding: + + aig M I L O A + + Constants, variables and literals are handled in the same way as in the + ASCII format. The first simplifying restriction is on the variable + indices of inputs and latches. The variable indices of inputs come first, + followed by the pseudo-primary inputs of the latches and then the variable + indices of all LHS of AND gates: + + input variable indices 1, 2, ... , I + latch variable indices I+1, I+2, ... , (I+L) + AND variable indices I+L+1, I+L+2, ... , (I+L+A) == M + + The corresponding unsigned literals are + + input literals 2, 4, ... , 2*I + latch literals 2*I+2, 2*I+4, ... , 2*(I+L) + AND literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A) == 2*M + + All literals have to be defined, and therefore 'M = I + L + A'. With this + restriction it becomes possible that the inputs and the current state + literals of the latches do not have to be listed explicitly. Therefore, + after the header only the list of 'L' next state literals follows, one per + latch on a single line, and then the 'O' outputs, again one per line. + + In the binary format we assume that the AND gates are ordered and respect + the child parent relation. AND gates with smaller literals on the LHS + come first. Therefore we can assume that the literals on the right-hand + side of a definition of an AND gate are smaller than the LHS literal. + Furthermore we can sort the literals on the RHS, such that the larger + literal comes first. A definition thus consists of three literals + + lhs rhs0 rhs1 + + with 'lhs' even and 'lhs > rhs0 >= rhs1'. Also the variable indices are + pairwise different to avoid combinational self loops. Since the LHS + indices of the definitions are all consecutive (as even integers), + the binary format does not have to keep 'lhs'. In addition, we can use + the order restriction and only write the differences 'delta0' and 'delta1' + instead of 'rhs0' and 'rhs1', with + + delta0 = lhs - rhs0, delta1 = rhs0 - rhs1 + + The differences will all be strictly positive, and in practice often very + small. We can take advantage of this fact by the simple little-endian + encoding of unsigned integers of the next section. After the binary delta + encoding of the RHSs of all AND gates, the optional symbol table and + optional comment section start in the same format as in the ASCII case. + + ... + +*/ + +static unsigned Io_ObjMakeLit( int Var, int fCompl ) { return (Var << 1) | fCompl; } +static unsigned Io_ObjAigerNum( Abc_Obj_t * pObj ) { return (unsigned)pObj->pCopy; } +static void Io_ObjSetAigerNum( Abc_Obj_t * pObj, unsigned Num ) { pObj->pCopy = (void *)Num; } + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Adds one unsigned AIG edge to the output buffer.] + + Description [This procedure is a slightly modified version of Armin Biere's + procedure "void encode (FILE * file, unsigned x)" ] + + SideEffects [Returns the current writing position.] + + SeeAlso [] + +***********************************************************************/ +int Io_WriteAigerEncode( char * pBuffer, int Pos, unsigned x ) +{ + unsigned char ch; + while (x & ~0x7f) + { + ch = (x & 0x7f) | 0x80; +// putc (ch, file); + pBuffer[Pos++] = ch; + x >>= 7; + } + ch = x; +// putc (ch, file); + pBuffer[Pos++] = ch; + return Pos; +} + +/**Function************************************************************* + + Synopsis [Create the array of literals to be written.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Int_t * Io_WriteAigerLiterals( Abc_Ntk_t * pNtk ) +{ + Vec_Int_t * vLits; + Abc_Obj_t * pObj, * pDriver; + int i; + vLits = Vec_IntAlloc( Abc_NtkCoNum(pNtk) ); + Abc_NtkForEachLatchInput( pNtk, pObj, i ) + { + pDriver = Abc_ObjFanin0(pObj); + Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); + } + Abc_NtkForEachPo( pNtk, pObj, i ) + { + pDriver = Abc_ObjFanin0(pObj); + Vec_IntPush( vLits, Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); + } + return vLits; +} + +/**Function************************************************************* + + Synopsis [Creates the binary encoded array of literals.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Str_t * Io_WriteEncodeLiterals( Vec_Int_t * vLits ) +{ + Vec_Str_t * vBinary; + int Pos = 0, Lit, LitPrev, Diff, i; + vBinary = Vec_StrAlloc( 2 * Vec_IntSize(vLits) ); + LitPrev = Vec_IntEntry( vLits, 0 ); + Pos = Io_WriteAigerEncode( Vec_StrArray(vBinary), Pos, LitPrev ); + Vec_IntForEachEntryStart( vLits, Lit, i, 1 ) + { + Diff = Lit - LitPrev; + Diff = (Lit < LitPrev)? -Diff : Diff; + Diff = (Diff << 1) | (int)(Lit < LitPrev); + Pos = Io_WriteAigerEncode( Vec_StrArray(vBinary), Pos, Diff ); + LitPrev = Lit; + if ( Pos + 10 > vBinary->nCap ) + Vec_StrGrow( vBinary, vBinary->nCap+1 ); + } + vBinary->nSize = Pos; +/* + // verify + { + extern Vec_Int_t * Io_WriteDecodeLiterals( char ** ppPos, int nEntries ); + char * pPos = Vec_StrArray( vBinary ); + Vec_Int_t * vTemp = Io_WriteDecodeLiterals( &pPos, Vec_IntSize(vLits) ); + for ( i = 0; i < Vec_IntSize(vLits); i++ ) + { + int Entry1 = Vec_IntEntry(vLits,i); + int Entry2 = Vec_IntEntry(vTemp,i); + assert( Entry1 == Entry2 ); + } + } +*/ + return vBinary; +} + +/**Function************************************************************* + + Synopsis [Writes the AIG in the binary AIGER format.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Io_WriteAiger( Abc_Ntk_t * pNtk, char * pFileName, int fWriteSymbols, int fCompact ) +{ + ProgressBar * pProgress; + FILE * pFile; + Abc_Obj_t * pObj, * pDriver; + int i, nNodes, Pos, nBufferSize; + unsigned char * pBuffer; + unsigned uLit0, uLit1, uLit; + + assert( Abc_NtkIsStrash(pNtk) ); + // start the output stream + pFile = fopen( pFileName, "wb" ); + if ( pFile == NULL ) + { + fprintf( stdout, "Io_WriteAiger(): Cannot open the output file \"%s\".\n", pFileName ); + return; + } + Abc_NtkForEachLatch( pNtk, pObj, i ) + if ( !Abc_LatchIsInit0(pObj) ) + { + fprintf( stdout, "Io_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" ); + return; + } + + // set the node numbers to be used in the output file + nNodes = 0; + Io_ObjSetAigerNum( Abc_AigConst1(pNtk), nNodes++ ); + Abc_NtkForEachCi( pNtk, pObj, i ) + Io_ObjSetAigerNum( pObj, nNodes++ ); + Abc_AigForEachAnd( pNtk, pObj, i ) + Io_ObjSetAigerNum( pObj, nNodes++ ); + + // write the header "M I L O A" where M = I + L + A + fprintf( pFile, "aig%s %u %u %u %u %u\n", + fCompact? "2" : "", + Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) + Abc_NtkNodeNum(pNtk), + Abc_NtkPiNum(pNtk), + Abc_NtkLatchNum(pNtk), + Abc_NtkPoNum(pNtk), + Abc_NtkNodeNum(pNtk) ); + + // if the driver node is a constant, we need to complement the literal below + // because, in the AIGER format, literal 0/1 is represented as number 0/1 + // while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0 + + if ( !fCompact ) + { + // write latch drivers + Abc_NtkForEachLatchInput( pNtk, pObj, i ) + { + pDriver = Abc_ObjFanin0(pObj); + fprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); + } + // write PO drivers + Abc_NtkForEachPo( pNtk, pObj, i ) + { + pDriver = Abc_ObjFanin0(pObj); + fprintf( pFile, "%u\n", Io_ObjMakeLit( Io_ObjAigerNum(pDriver), Abc_ObjFaninC0(pObj) ^ (Io_ObjAigerNum(pDriver) == 0) ) ); + } + } + else + { + Vec_Int_t * vLits = Io_WriteAigerLiterals( pNtk ); + Vec_Str_t * vBinary = Io_WriteEncodeLiterals( vLits ); + fwrite( Vec_StrArray(vBinary), 1, Vec_StrSize(vBinary), pFile ); + Vec_StrFree( vBinary ); + Vec_IntFree( vLits ); + } + + // write the nodes into the buffer + Pos = 0; + nBufferSize = 6 * Abc_NtkNodeNum(pNtk) + 100; // skeptically assuming 3 chars per one AIG edge + pBuffer = ALLOC( unsigned char, nBufferSize ); + pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) ); + Abc_AigForEachAnd( pNtk, pObj, i ) + { + Extra_ProgressBarUpdate( pProgress, i, NULL ); + uLit = Io_ObjMakeLit( Io_ObjAigerNum(pObj), 0 ); + uLit0 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin0(pObj)), Abc_ObjFaninC0(pObj) ); + uLit1 = Io_ObjMakeLit( Io_ObjAigerNum(Abc_ObjFanin1(pObj)), Abc_ObjFaninC1(pObj) ); + assert( uLit0 < uLit1 ); + Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit - uLit1) ); + Pos = Io_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit1 - uLit0) ); + if ( Pos > nBufferSize - 10 ) + { + printf( "Io_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" ); + fclose( pFile ); + return; + } + } + assert( Pos < nBufferSize ); + Extra_ProgressBarStop( pProgress ); + + // write the buffer + fwrite( pBuffer, 1, Pos, pFile ); + free( pBuffer ); + + // write the symbol table + if ( fWriteSymbols ) + { + // write PIs + Abc_NtkForEachPi( pNtk, pObj, i ) + fprintf( pFile, "i%d %s\n", i, Abc_ObjName(pObj) ); + // write latches + Abc_NtkForEachLatch( pNtk, pObj, i ) + fprintf( pFile, "l%d %s\n", i, Abc_ObjName(Abc_ObjFanout0(pObj)) ); + // write POs + Abc_NtkForEachPo( pNtk, pObj, i ) + fprintf( pFile, "o%d %s\n", i, Abc_ObjName(pObj) ); + } + + // write the comment + fprintf( pFile, "c\n" ); + if ( pNtk->pName && strlen(pNtk->pName) > 0 ) + fprintf( pFile, ".model %s\n", pNtk->pName ); + fprintf( pFile, "This file was produced by ABC on %s\n", Extra_TimeStamp() ); + fprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" ); + fclose( pFile ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + |