summaryrefslogtreecommitdiffstats
path: root/src/abc8/ioa/ioaWriteAig.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/abc8/ioa/ioaWriteAig.c')
-rw-r--r--src/abc8/ioa/ioaWriteAig.c378
1 files changed, 0 insertions, 378 deletions
diff --git a/src/abc8/ioa/ioaWriteAig.c b/src/abc8/ioa/ioaWriteAig.c
deleted file mode 100644
index 166dca4b..00000000
--- a/src/abc8/ioa/ioaWriteAig.c
+++ /dev/null
@@ -1,378 +0,0 @@
-/**CFile****************************************************************
-
- FileName [ioaWriteAiger.c]
-
- SystemName [ABC: Logic synthesis and verification system.]
-
- PackageName [Command processing package.]
-
- Synopsis [Procedures to write binary AIGER format developed by
- Armin Biere, Johannes Kepler University (http://fmv.jku.at/)]
-
- Author [Alan Mishchenko]
-
- Affiliation [UC Berkeley]
-
- Date [Ver. 1.0. Started - December 16, 2006.]
-
- Revision [$Id: ioaWriteAiger.c,v 1.00 2006/12/16 00:00:00 alanmi Exp $]
-
-***********************************************************************/
-
-#include "ioa.h"
-
-////////////////////////////////////////////////////////////////////////
-/// DECLARATIONS ///
-////////////////////////////////////////////////////////////////////////
-
-/*
- The following is taken from the AIGER format description,
- which can be found at http://fmv.jku.at/aiger
-*/
-
-
-/*
- The AIGER And-Inverter Graph (AIG) Format Version 20061129
- ----------------------------------------------------------
- Armin Biere, Johannes Kepler University, 2006
-
- This report describes the AIG file format as used by the AIGER library.
- The purpose of this report is not only to motivate and document the
- format, but also to allow independent implementations of writers and
- readers by giving precise and unambiguous definitions.
-
- ...
-
-Introduction
-
- The name AIGER contains as one part the acronym AIG of And-Inverter
- Graphs and also if pronounced in German sounds like the name of the
- 'Eiger', a mountain in the Swiss alps. This choice should emphasize the
- origin of this format. It was first openly discussed at the Alpine
- Verification Meeting 2006 in Ascona as a way to provide a simple, compact
- file format for a model checking competition affiliated to CAV 2007.
-
- ...
-
-Binary Format Definition
-
- The binary format is semantically a subset of the ASCII format with a
- slightly different syntax. The binary format may need to reencode
- literals, but translating a file in binary format into ASCII format and
- then back in to binary format will result in the same file.
-
- The main differences of the binary format to the ASCII format are as
- follows. After the header the list of input literals and all the
- current state literals of a latch can be omitted. Furthermore the
- definitions of the AND gates are binary encoded. However, the symbol
- table and the comment section are as in the ASCII format.
-
- The header of an AIGER file in binary format has 'aig' as format
- identifier, but otherwise is identical to the ASCII header. The standard
- file extension for the binary format is therefore '.aig'.
-
- A header for the binary format is still in ASCII encoding:
-
- aig M I L O A
-
- Constants, variables and literals are handled in the same way as in the
- ASCII format. The first simplifying restriction is on the variable
- indices of inputs and latches. The variable indices of inputs come first,
- followed by the pseudo-primary inputs of the latches and then the variable
- indices of all LHS of AND gates:
-
- input variable indices 1, 2, ... , I
- latch variable indices I+1, I+2, ... , (I+L)
- AND variable indices I+L+1, I+L+2, ... , (I+L+A) == M
-
- The corresponding unsigned literals are
-
- input literals 2, 4, ... , 2*I
- latch literals 2*I+2, 2*I+4, ... , 2*(I+L)
- AND literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A) == 2*M
-
- All literals have to be defined, and therefore 'M = I + L + A'. With this
- restriction it becomes possible that the inputs and the current state
- literals of the latches do not have to be listed explicitly. Therefore,
- after the header only the list of 'L' next state literals follows, one per
- latch on a single line, and then the 'O' outputs, again one per line.
-
- In the binary format we assume that the AND gates are ordered and respect
- the child parent relation. AND gates with smaller literals on the LHS
- come first. Therefore we can assume that the literals on the right-hand
- side of a definition of an AND gate are smaller than the LHS literal.
- Furthermore we can sort the literals on the RHS, such that the larger
- literal comes first. A definition thus consists of three literals
-
- lhs rhs0 rhs1
-
- with 'lhs' even and 'lhs > rhs0 >= rhs1'. Also the variable indices are
- pairwise different to avoid combinational self loops. Since the LHS
- indices of the definitions are all consecutive (as even integers),
- the binary format does not have to keep 'lhs'. In addition, we can use
- the order restriction and only write the differences 'delta0' and 'delta1'
- instead of 'rhs0' and 'rhs1', with
-
- delta0 = lhs - rhs0, delta1 = rhs0 - rhs1
-
- The differences will all be strictly positive, and in practice often very
- small. We can take advantage of this fact by the simple little-endian
- encoding of unsigned integers of the next section. After the binary delta
- encoding of the RHSs of all AND gates, the optional symbol table and
- optional comment section start in the same format as in the ASCII case.
-
- ...
-
-*/
-
-static int Ioa_ObjMakeLit( int Var, int fCompl ) { return (Var << 1) | fCompl; }
-static int Ioa_ObjAigerNum( Aig_Obj_t * pObj ) { return pObj->iData; }
-static void Ioa_ObjSetAigerNum( Aig_Obj_t * pObj, unsigned Num ) { pObj->iData = Num; }
-
-////////////////////////////////////////////////////////////////////////
-/// FUNCTION DEFINITIONS ///
-////////////////////////////////////////////////////////////////////////
-
-/**Function*************************************************************
-
- Synopsis [Adds one unsigned AIG edge to the output buffer.]
-
- Description [This procedure is a slightly modified version of Armin Biere's
- procedure "void encode (FILE * file, unsigned x)" ]
-
- SideEffects [Returns the current writing position.]
-
- SeeAlso []
-
-***********************************************************************/
-int Ioa_WriteAigerEncode( char * pBuffer, int Pos, unsigned x )
-{
- unsigned char ch;
- while (x & ~0x7f)
- {
- ch = (x & 0x7f) | 0x80;
-// putc (ch, file);
- pBuffer[Pos++] = ch;
- x >>= 7;
- }
- ch = x;
-// putc (ch, file);
- pBuffer[Pos++] = ch;
- return Pos;
-}
-
-/**Function*************************************************************
-
- Synopsis [Create the array of literals to be written.]
-
- Description []
-
- SideEffects []
-
- SeeAlso []
-
-***********************************************************************/
-Vec_Int_t * Ioa_WriteAigerLiterals( Aig_Man_t * pMan )
-{
- Vec_Int_t * vLits;
- Aig_Obj_t * pObj, * pDriver;
- int i;
- vLits = Vec_IntAlloc( Aig_ManPoNum(pMan) );
- Aig_ManForEachLiSeq( pMan, pObj, i )
- {
- pDriver = Aig_ObjFanin0(pObj);
- Vec_IntPush( vLits, Ioa_ObjMakeLit( Ioa_ObjAigerNum(pDriver), Aig_ObjFaninC0(pObj) ^ (Ioa_ObjAigerNum(pDriver) == 0) ) );
- }
- Aig_ManForEachPoSeq( pMan, pObj, i )
- {
- pDriver = Aig_ObjFanin0(pObj);
- Vec_IntPush( vLits, Ioa_ObjMakeLit( Ioa_ObjAigerNum(pDriver), Aig_ObjFaninC0(pObj) ^ (Ioa_ObjAigerNum(pDriver) == 0) ) );
- }
- return vLits;
-}
-
-/**Function*************************************************************
-
- Synopsis [Creates the binary encoded array of literals.]
-
- Description []
-
- SideEffects []
-
- SeeAlso []
-
-***********************************************************************/
-Vec_Str_t * Ioa_WriteEncodeLiterals( Vec_Int_t * vLits )
-{
- Vec_Str_t * vBinary;
- int Pos = 0, Lit, LitPrev, Diff, i;
- vBinary = Vec_StrAlloc( 2 * Vec_IntSize(vLits) );
- LitPrev = Vec_IntEntry( vLits, 0 );
- Pos = Ioa_WriteAigerEncode( Vec_StrArray(vBinary), Pos, LitPrev );
- Vec_IntForEachEntryStart( vLits, Lit, i, 1 )
- {
- Diff = Lit - LitPrev;
- Diff = (Lit < LitPrev)? -Diff : Diff;
- Diff = (Diff << 1) | (int)(Lit < LitPrev);
- Pos = Ioa_WriteAigerEncode( Vec_StrArray(vBinary), Pos, Diff );
- LitPrev = Lit;
- if ( Pos + 10 > vBinary->nCap )
- Vec_StrGrow( vBinary, vBinary->nCap+1 );
- }
- vBinary->nSize = Pos;
-/*
- // verify
- {
- extern Vec_Int_t * Ioa_WriteDecodeLiterals( char ** ppPos, int nEntries );
- char * pPos = Vec_StrArray( vBinary );
- Vec_Int_t * vTemp = Ioa_WriteDecodeLiterals( &pPos, Vec_IntSize(vLits) );
- for ( i = 0; i < Vec_IntSize(vLits); i++ )
- {
- int Entry1 = Vec_IntEntry(vLits,i);
- int Entry2 = Vec_IntEntry(vTemp,i);
- assert( Entry1 == Entry2 );
- }
- Vec_IntFree( vTemp );
- }
-*/
- return vBinary;
-}
-
-/**Function*************************************************************
-
- Synopsis [Writes the AIG in the binary AIGER format.]
-
- Description []
-
- SideEffects []
-
- SeeAlso []
-
-***********************************************************************/
-void Ioa_WriteAiger( Aig_Man_t * pMan, char * pFileName, int fWriteSymbols, int fCompact )
-{
-// Bar_Progress_t * pProgress;
- FILE * pFile;
- Aig_Obj_t * pObj, * pDriver;
- int i, nNodes, Pos, nBufferSize;
- unsigned char * pBuffer;
- unsigned uLit0, uLit1, uLit;
-
-// assert( Aig_ManIsStrash(pMan) );
- // start the output stream
- pFile = fopen( pFileName, "wb" );
- if ( pFile == NULL )
- {
- fprintf( stdout, "Ioa_WriteAiger(): Cannot open the output file \"%s\".\n", pFileName );
- return;
- }
-/*
- Aig_ManForEachLatch( pMan, pObj, i )
- if ( !Aig_LatchIsInit0(pObj) )
- {
- fprintf( stdout, "Ioa_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" );
- return;
- }
-*/
- // set the node numbers to be used in the output file
- nNodes = 0;
- Ioa_ObjSetAigerNum( Aig_ManConst1(pMan), nNodes++ );
- Aig_ManForEachPi( pMan, pObj, i )
- Ioa_ObjSetAigerNum( pObj, nNodes++ );
- Aig_ManForEachNode( pMan, pObj, i )
- Ioa_ObjSetAigerNum( pObj, nNodes++ );
-
- // write the header "M I L O A" where M = I + L + A
- fprintf( pFile, "aig%s %u %u %u %u %u\n",
- fCompact? "2" : "",
- Aig_ManPiNum(pMan) + Aig_ManNodeNum(pMan),
- Aig_ManPiNum(pMan) - Aig_ManRegNum(pMan),
- Aig_ManRegNum(pMan),
- Aig_ManPoNum(pMan) - Aig_ManRegNum(pMan),
- Aig_ManNodeNum(pMan) );
-
- // if the driver node is a constant, we need to complement the literal below
- // because, in the AIGER format, literal 0/1 is represented as number 0/1
- // while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0
-
- if ( !fCompact )
- {
- // write latch drivers
- Aig_ManForEachLiSeq( pMan, pObj, i )
- {
- pDriver = Aig_ObjFanin0(pObj);
- fprintf( pFile, "%u\n", Ioa_ObjMakeLit( Ioa_ObjAigerNum(pDriver), Aig_ObjFaninC0(pObj) ^ (Ioa_ObjAigerNum(pDriver) == 0) ) );
- }
-
- // write PO drivers
- Aig_ManForEachPoSeq( pMan, pObj, i )
- {
- pDriver = Aig_ObjFanin0(pObj);
- fprintf( pFile, "%u\n", Ioa_ObjMakeLit( Ioa_ObjAigerNum(pDriver), Aig_ObjFaninC0(pObj) ^ (Ioa_ObjAigerNum(pDriver) == 0) ) );
- }
- }
- else
- {
- Vec_Int_t * vLits = Ioa_WriteAigerLiterals( pMan );
- Vec_Str_t * vBinary = Ioa_WriteEncodeLiterals( vLits );
- fwrite( Vec_StrArray(vBinary), 1, Vec_StrSize(vBinary), pFile );
- Vec_StrFree( vBinary );
- Vec_IntFree( vLits );
- }
-
- // write the nodes into the buffer
- Pos = 0;
- nBufferSize = 6 * Aig_ManNodeNum(pMan) + 100; // skeptically assuming 3 chars per one AIG edge
- pBuffer = ALLOC( unsigned char, nBufferSize );
-// pProgress = Bar_ProgressStart( stdout, Aig_ManObjNumMax(pMan) );
- Aig_ManForEachNode( pMan, pObj, i )
- {
-// Bar_ProgressUpdate( pProgress, i, NULL );
- uLit = Ioa_ObjMakeLit( Ioa_ObjAigerNum(pObj), 0 );
- uLit0 = Ioa_ObjMakeLit( Ioa_ObjAigerNum(Aig_ObjFanin0(pObj)), Aig_ObjFaninC0(pObj) );
- uLit1 = Ioa_ObjMakeLit( Ioa_ObjAigerNum(Aig_ObjFanin1(pObj)), Aig_ObjFaninC1(pObj) );
- assert( uLit0 < uLit1 );
- Pos = Ioa_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit - uLit1) );
- Pos = Ioa_WriteAigerEncode( pBuffer, Pos, (unsigned)(uLit1 - uLit0) );
- if ( Pos > nBufferSize - 10 )
- {
- printf( "Ioa_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" );
- fclose( pFile );
- return;
- }
- }
- assert( Pos < nBufferSize );
-// Bar_ProgressStop( pProgress );
-
- // write the buffer
- fwrite( pBuffer, 1, Pos, pFile );
- free( pBuffer );
-/*
- // write the symbol table
- if ( fWriteSymbols )
- {
- // write PIs
- Aig_ManForEachPi( pMan, pObj, i )
- fprintf( pFile, "i%d %s\n", i, Aig_ObjName(pObj) );
- // write latches
- Aig_ManForEachLatch( pMan, pObj, i )
- fprintf( pFile, "l%d %s\n", i, Aig_ObjName(Aig_ObjFanout0(pObj)) );
- // write POs
- Aig_ManForEachPo( pMan, pObj, i )
- fprintf( pFile, "o%d %s\n", i, Aig_ObjName(pObj) );
- }
-*/
- // write the comment
- fprintf( pFile, "c\n" );
- if ( pMan->pName )
- fprintf( pFile, ".model %s\n", pMan->pName );
- fprintf( pFile, "This file was produced by the AIG package on %s\n", Ioa_TimeStamp() );
- fprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" );
- fclose( pFile );
-}
-
-////////////////////////////////////////////////////////////////////////
-/// END OF FILE ///
-////////////////////////////////////////////////////////////////////////
-
-