summaryrefslogtreecommitdiffstats
path: root/abc70930/src/misc/extra/extraBddCas.c
diff options
context:
space:
mode:
Diffstat (limited to 'abc70930/src/misc/extra/extraBddCas.c')
-rw-r--r--abc70930/src/misc/extra/extraBddCas.c1230
1 files changed, 1230 insertions, 0 deletions
diff --git a/abc70930/src/misc/extra/extraBddCas.c b/abc70930/src/misc/extra/extraBddCas.c
new file mode 100644
index 00000000..29382bfb
--- /dev/null
+++ b/abc70930/src/misc/extra/extraBddCas.c
@@ -0,0 +1,1230 @@
+/**CFile****************************************************************
+
+ FileName [extraBddCas.c]
+
+ PackageName [extra]
+
+ Synopsis [Procedures related to LUT cascade synthesis.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 2.0. Started - September 1, 2003.]
+
+ Revision [$Id: extraBddCas.c,v 1.0 2003/05/21 18:03:50 alanmi Exp $]
+
+***********************************************************************/
+
+#include "extra.h"
+
+/*---------------------------------------------------------------------------*/
+/* Constant declarations */
+/*---------------------------------------------------------------------------*/
+
+/*---------------------------------------------------------------------------*/
+/* Stucture declarations */
+/*---------------------------------------------------------------------------*/
+
+/*---------------------------------------------------------------------------*/
+/* Type declarations */
+/*---------------------------------------------------------------------------*/
+
+// the table to store cofactor operations
+#define _TABLESIZE_COF 51113
+typedef struct
+{
+ unsigned Sign;
+ DdNode * Arg1;
+} _HashEntry_cof;
+_HashEntry_cof HHTable1[_TABLESIZE_COF];
+
+// the table to store the result of computation of the number of minterms
+#define _TABLESIZE_MINT 15113
+typedef struct
+{
+ DdNode * Arg1;
+ unsigned Arg2;
+ unsigned Res;
+} _HashEntry_mint;
+_HashEntry_mint HHTable2[_TABLESIZE_MINT];
+
+typedef struct
+{
+ int nEdges; // the number of in-coming edges of the node
+ DdNode * bSum; // the sum of paths of the incoming edges
+} traventry;
+
+// the signature used for hashing
+static unsigned s_Signature = 1;
+
+static int s_CutLevel = 0;
+
+/*---------------------------------------------------------------------------*/
+/* Variable declarations */
+/*---------------------------------------------------------------------------*/
+
+// because the proposed solution to the optimal encoding problem has exponential complexity
+// we limit the depth of the branch and bound procedure to 5 levels
+static int s_MaxDepth = 5;
+
+static int s_nVarsBest; // the number of vars in the best ordering
+static int s_VarOrderBest[32]; // storing the best ordering of vars in the "simple encoding"
+static int s_VarOrderCur[32]; // storing the current ordering of vars
+
+// the place to store the supports of the encoded function
+static DdNode * s_Field[8][256]; // the size should be K, 2^K, where K is no less than MaxDepth
+static DdNode * s_Encoded; // this is the original function
+static DdNode * s_VarAll; // the set of all column variables
+static int s_MultiStart; // the total number of encoding variables used
+// the array field now stores the supports
+
+static DdNode ** s_pbTemp; // the temporary storage for the columns
+
+static int s_BackTracks;
+static int s_BackTrackLimit = 100;
+
+static DdNode * s_Terminal; // the terminal value for counting minterms
+
+
+static int s_EncodingVarsLevel;
+
+
+/*---------------------------------------------------------------------------*/
+/* Macro declarations */
+/*---------------------------------------------------------------------------*/
+
+
+/**AutomaticStart*************************************************************/
+
+/*---------------------------------------------------------------------------*/
+/* Static function prototypes */
+/*---------------------------------------------------------------------------*/
+
+static DdNode * CreateTheCodes_rec( DdManager * dd, DdNode * bEncoded, int Level, DdNode ** pCVars );
+static void EvaluateEncodings_rec( DdManager * dd, DdNode * bVarsCol, int nVarsCol, int nMulti, int Level );
+// functions called from EvaluateEncodings_rec()
+static DdNode * ComputeVarSetAndCountMinterms( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost );
+static DdNode * ComputeVarSetAndCountMinterms2( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost );
+unsigned Extra_CountCofactorMinterms( DdManager * dd, DdNode * bFunc, DdNode * bVarsCof, DdNode * bVarsAll );
+static unsigned Extra_CountMintermsSimple( DdNode * bFunc, unsigned max );
+
+static void CountNodeVisits_rec( DdManager * dd, DdNode * aFunc, st_table * Visited );
+static void CollectNodesAndComputePaths_rec( DdManager * dd, DdNode * aFunc, DdNode * bCube, st_table * Visited, st_table * CutNodes );
+
+/**AutomaticEnd***************************************************************/
+
+
+/*---------------------------------------------------------------------------*/
+/* Definition of exported functions */
+/*---------------------------------------------------------------------------*/
+
+/**Function********************************************************************
+
+ Synopsis [Performs the binary encoding of the set of function using the given vars.]
+
+ Description [Performs a straight binary encoding of the set of functions using
+ the variable cubes formed from the given set of variables. ]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+DdNode *
+Extra_bddEncodingBinary(
+ DdManager * dd,
+ DdNode ** pbFuncs, // pbFuncs is the array of columns to be encoded
+ int nFuncs, // nFuncs is the number of columns in the array
+ DdNode ** pbVars, // pbVars is the array of variables to use for the codes
+ int nVars ) // nVars is the column multiplicity, [log2(nFuncs)]
+{
+ int i;
+ DdNode * bResult;
+ DdNode * bCube, * bTemp, * bProd;
+
+ assert( nVars >= Extra_Base2Log(nFuncs) );
+
+ bResult = b0; Cudd_Ref( bResult );
+ for ( i = 0; i < nFuncs; i++ )
+ {
+ bCube = Extra_bddBitsToCube( dd, i, nVars, pbVars, 1 ); Cudd_Ref( bCube );
+ bProd = Cudd_bddAnd( dd, bCube, pbFuncs[i] ); Cudd_Ref( bProd );
+ Cudd_RecursiveDeref( dd, bCube );
+
+ bResult = Cudd_bddOr( dd, bProd, bTemp = bResult ); Cudd_Ref( bResult );
+ Cudd_RecursiveDeref( dd, bTemp );
+ Cudd_RecursiveDeref( dd, bProd );
+ }
+
+ Cudd_Deref( bResult );
+ return bResult;
+} /* end of Extra_bddEncodingBinary */
+
+
+/**Function********************************************************************
+
+ Synopsis [Solves the column encoding problem using a sophisticated method.]
+
+ Description [The encoding is based on the idea of deriving functions which
+ depend on only one variable, which corresponds to the case of non-disjoint
+ decompostion. It is assumed that the variables pCVars are ordered below the variables
+ representing the solumns, and the first variable pCVars[0] is the topmost one.]
+
+ SideEffects []
+
+ SeeAlso [Extra_bddEncodingBinary]
+
+******************************************************************************/
+
+DdNode *
+Extra_bddEncodingNonStrict(
+ DdManager * dd,
+ DdNode ** pbColumns, // pbColumns is the array of columns to be encoded;
+ int nColumns, // nColumns is the number of columns in the array
+ DdNode * bVarsCol, // bVarsCol is the cube of variables on which the columns depend
+ DdNode ** pCVars, // pCVars is the array of variables to use for the codes
+ int nMulti, // nMulti is the column multiplicity, [log2(nColumns)]
+ int * pSimple ) // pSimple gets the number of code variables taken from the input varibles without change
+{
+ DdNode * bEncoded, * bResult;
+ int nVarsCol = Cudd_SupportSize(dd,bVarsCol);
+ long clk;
+
+ // cannot work with more that 32-bit codes
+ assert( nMulti < 32 );
+
+ // perform the preliminary encoding using the straight binary code
+ bEncoded = Extra_bddEncodingBinary( dd, pbColumns, nColumns, pCVars, nMulti ); Cudd_Ref( bEncoded );
+ //printf( "Node count = %d", Cudd_DagSize(bEncoded) );
+
+ // set the backgroup value for counting minterms
+ s_Terminal = b0;
+ // set the level of the encoding variables
+ s_EncodingVarsLevel = dd->invperm[pCVars[0]->index];
+
+ // the current number of backtracks
+ s_BackTracks = 0;
+ // the variables that are cofactored on the topmost level where everything starts (no vars)
+ s_Field[0][0] = b1;
+ // the size of the best set of "simple" encoding variables found so far
+ s_nVarsBest = 0;
+
+ // set the relation to be accessible to traversal procedures
+ s_Encoded = bEncoded;
+ // the set of all vars to be accessible to traversal procedures
+ s_VarAll = bVarsCol;
+ // the column multiplicity
+ s_MultiStart = nMulti;
+
+
+ clk = clock();
+ // find the simplest encoding
+ if ( nColumns > 2 )
+ EvaluateEncodings_rec( dd, bVarsCol, nVarsCol, nMulti, 1 );
+// printf( "The number of backtracks = %d\n", s_BackTracks );
+// s_EncSearchTime += clock() - clk;
+
+ // allocate the temporary storage for the columns
+ s_pbTemp = (DdNode **) malloc( nColumns * sizeof(DdNode *) );
+
+// clk = clock();
+ bResult = CreateTheCodes_rec( dd, bEncoded, 0, pCVars ); Cudd_Ref( bResult );
+// s_EncComputeTime += clock() - clk;
+
+ // delocate the preliminarily encoded set
+ Cudd_RecursiveDeref( dd, bEncoded );
+// Cudd_RecursiveDeref( dd, aEncoded );
+
+ free( s_pbTemp );
+
+ *pSimple = s_nVarsBest;
+ Cudd_Deref( bResult );
+ return bResult;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Collects the nodes under the cut and, for each node, computes the sum of paths leading to it from the root.]
+
+ Description [The table returned contains the set of BDD nodes pointed to under the cut
+ and, for each node, the BDD of the sum of paths leading to this node from the root
+ The sums of paths in the table are referenced. CutLevel is the first DD level
+ considered to be under the cut.]
+
+ SideEffects []
+
+ SeeAlso [Extra_bddNodePaths]
+
+******************************************************************************/
+st_table * Extra_bddNodePathsUnderCut( DdManager * dd, DdNode * bFunc, int CutLevel )
+{
+ st_table * Visited; // temporary table to remember the visited nodes
+ st_table * CutNodes; // the result goes here
+ st_table * Result; // the result goes here
+ DdNode * aFunc;
+
+ s_CutLevel = CutLevel;
+
+ Result = st_init_table(st_ptrcmp,st_ptrhash);
+ // the terminal cases
+ if ( Cudd_IsConstant( bFunc ) )
+ {
+ if ( bFunc == b1 )
+ {
+ st_insert( Result, (char*)b1, (char*)b1 );
+ Cudd_Ref( b1 );
+ Cudd_Ref( b1 );
+ }
+ else
+ {
+ st_insert( Result, (char*)b0, (char*)b0 );
+ Cudd_Ref( b0 );
+ Cudd_Ref( b0 );
+ }
+ return Result;
+ }
+
+ // create the ADD to simplify processing (no complemented edges)
+ aFunc = Cudd_BddToAdd( dd, bFunc ); Cudd_Ref( aFunc );
+
+ // Step 1: Start the tables and collect information about the nodes above the cut
+ // this information tells how many edges point to each node
+ Visited = st_init_table(st_ptrcmp,st_ptrhash);
+ CutNodes = st_init_table(st_ptrcmp,st_ptrhash);
+
+ CountNodeVisits_rec( dd, aFunc, Visited );
+
+ // Step 2: Traverse the BDD using the visited table and compute the sum of paths
+ CollectNodesAndComputePaths_rec( dd, aFunc, b1, Visited, CutNodes );
+
+ // at this point the table of cut nodes is ready and the table of visited is useless
+ {
+ st_generator * gen;
+ DdNode * aNode;
+ traventry * p;
+ st_foreach_item( Visited, gen, (char**)&aNode, (char**)&p )
+ {
+ Cudd_RecursiveDeref( dd, p->bSum );
+ free( p );
+ }
+ st_free_table( Visited );
+ }
+
+ // go through the table CutNodes and create the BDD and the path to be returned
+ {
+ st_generator * gen;
+ DdNode * aNode, * bNode, * bSum;
+ st_foreach_item( CutNodes, gen, (char**)&aNode, (char**)&bSum)
+ {
+ // aNode is not referenced, because aFunc is holding it
+ bNode = Cudd_addBddPattern( dd, aNode ); Cudd_Ref( bNode );
+ st_insert( Result, (char*)bNode, (char*)bSum );
+ // the new table takes both refs
+ }
+ st_free_table( CutNodes );
+ }
+
+ // dereference the ADD
+ Cudd_RecursiveDeref( dd, aFunc );
+
+ // return the table
+ return Result;
+
+} /* end of Extra_bddNodePathsUnderCut */
+
+/**Function********************************************************************
+
+ Synopsis [Collects the nodes under the cut in the ADD starting from the given set of ADD nodes.]
+
+ Description [Takes the array, paNodes, of ADD nodes to start the traversal,
+ the array, pbCubes, of BDD cubes to start the traversal with in each node,
+ and the number, nNodes, of ADD nodes and BDD cubes in paNodes and pbCubes.
+ Returns the number of columns found. Fills in paNodesRes (pbCubesRes)
+ with the set of ADD columns (BDD paths). These arrays should be allocated
+ by the user.]
+
+ SideEffects []
+
+ SeeAlso [Extra_bddNodePaths]
+
+******************************************************************************/
+int Extra_bddNodePathsUnderCutArray( DdManager * dd, DdNode ** paNodes, DdNode ** pbCubes, int nNodes, DdNode ** paNodesRes, DdNode ** pbCubesRes, int CutLevel )
+{
+ st_table * Visited; // temporary table to remember the visited nodes
+ st_table * CutNodes; // the nodes under the cut go here
+ int i, Counter;
+
+ s_CutLevel = CutLevel;
+
+ // there should be some nodes
+ assert( nNodes > 0 );
+ if ( nNodes == 1 && Cudd_IsConstant( paNodes[0] ) )
+ {
+ if ( paNodes[0] == a1 )
+ {
+ paNodesRes[0] = a1; Cudd_Ref( a1 );
+ pbCubesRes[0] = pbCubes[0]; Cudd_Ref( pbCubes[0] );
+ }
+ else
+ {
+ paNodesRes[0] = a0; Cudd_Ref( a0 );
+ pbCubesRes[0] = pbCubes[0]; Cudd_Ref( pbCubes[0] );
+ }
+ return 1;
+ }
+
+ // Step 1: Start the table and collect information about the nodes above the cut
+ // this information tells how many edges point to each node
+ CutNodes = st_init_table(st_ptrcmp,st_ptrhash);
+ Visited = st_init_table(st_ptrcmp,st_ptrhash);
+
+ for ( i = 0; i < nNodes; i++ )
+ CountNodeVisits_rec( dd, paNodes[i], Visited );
+
+ // Step 2: Traverse the BDD using the visited table and compute the sum of paths
+ for ( i = 0; i < nNodes; i++ )
+ CollectNodesAndComputePaths_rec( dd, paNodes[i], pbCubes[i], Visited, CutNodes );
+
+ // at this point, the table of cut nodes is ready and the table of visited is useless
+ {
+ st_generator * gen;
+ DdNode * aNode;
+ traventry * p;
+ st_foreach_item( Visited, gen, (char**)&aNode, (char**)&p )
+ {
+ Cudd_RecursiveDeref( dd, p->bSum );
+ free( p );
+ }
+ st_free_table( Visited );
+ }
+
+ // go through the table CutNodes and create the BDD and the path to be returned
+ {
+ st_generator * gen;
+ DdNode * aNode, * bSum;
+ Counter = 0;
+ st_foreach_item( CutNodes, gen, (char**)&aNode, (char**)&bSum)
+ {
+ paNodesRes[Counter] = aNode; Cudd_Ref( aNode );
+ pbCubesRes[Counter] = bSum;
+ Counter++;
+ }
+ st_free_table( CutNodes );
+ }
+
+ // return the number of cofactors found
+ return Counter;
+
+} /* end of Extra_bddNodePathsUnderCutArray */
+
+/**Function*************************************************************
+
+ Synopsis [Collects all the BDD nodes into the table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void extraCollectNodes( DdNode * Func, st_table * tNodes )
+{
+ DdNode * FuncR;
+ FuncR = Cudd_Regular(Func);
+ if ( st_find_or_add( tNodes, (char*)FuncR, NULL ) )
+ return;
+ if ( cuddIsConstant(FuncR) )
+ return;
+ extraCollectNodes( cuddE(FuncR), tNodes );
+ extraCollectNodes( cuddT(FuncR), tNodes );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Collects all the nodes of one DD into the table.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+st_table * Extra_CollectNodes( DdNode * Func )
+{
+ st_table * tNodes;
+ tNodes = st_init_table( st_ptrcmp, st_ptrhash );
+ extraCollectNodes( Func, tNodes );
+ return tNodes;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Updates the topmost level from which the given node is referenced.]
+
+ Description [Takes the table which maps each BDD nodes (including the constants)
+ into the topmost level on which this node counts as a cofactor. Takes the topmost
+ level, on which this node counts as a cofactor (see Extra_ProfileWidthFast().
+ Takes the node, for which the table entry should be updated.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void extraProfileUpdateTopLevel( st_table * tNodeTopRef, int TopLevelNew, DdNode * node )
+{
+ int * pTopLevel;
+
+ if ( st_find_or_add( tNodeTopRef, (char*)node, (char***)&pTopLevel ) )
+ { // the node is already referenced
+ // the current top level should be updated if it is larger than the new level
+ if ( *pTopLevel > TopLevelNew )
+ *pTopLevel = TopLevelNew;
+ }
+ else
+ { // the node is not referenced
+ // its level should be set to the current new level
+ *pTopLevel = TopLevelNew;
+ }
+}
+/**Function*************************************************************
+
+ Synopsis [Fast computation of the BDD profile.]
+
+ Description [The array to store the profile is given by the user and should
+ contain at least as many entries as there is the maximum of the BDD/ZDD
+ size of the manager PLUS ONE.
+ When we say that the widths of the DD on level L is W, we mean the following.
+ Let us create the cut between the level L-1 and the level L and count the number
+ of different DD nodes pointed to across the cut. This number is the width W.
+ From this it follows the on level 0, the width is equal to the number of external
+ pointers to the considered DDs. If there is only one DD, then the profile on
+ level 0 is always 1. If this DD is rooted in the topmost variable, then the width
+ on level 1 is always 2, etc. The width at the level equal to dd->size is the
+ number of terminal nodes in the DD. (Because we consider the first level #0
+ and the last level #dd->size, the profile array should contain dd->size+1 entries.)
+ ]
+
+ SideEffects [This procedure will not work for BDDs w/ complement edges, only for ADDs and ZDDs]
+
+ SeeAlso []
+
+***********************************************************************/
+int Extra_ProfileWidth( DdManager * dd, DdNode * Func, int * pProfile, int CutLevel )
+{
+ st_generator * gen;
+ st_table * tNodeTopRef; // this table stores the top level from which this node is pointed to
+ st_table * tNodes;
+ DdNode * node;
+ DdNode * nodeR;
+ int LevelStart, Limit;
+ int i, size;
+ int WidthMax;
+
+ // start the mapping table
+ tNodeTopRef = st_init_table(st_ptrcmp,st_ptrhash);
+ // add the topmost node to the profile
+ extraProfileUpdateTopLevel( tNodeTopRef, 0, Func );
+
+ // collect all nodes
+ tNodes = Extra_CollectNodes( Func );
+ // go though all the nodes and set the top level the cofactors are pointed from
+// Cudd_ForeachNode( dd, Func, genDD, node )
+ st_foreach_item( tNodes, gen, (char**)&node, NULL )
+ {
+// assert( Cudd_Regular(node) ); // this procedure works only with ADD/ZDD (not BDD w/ compl.edges)
+ nodeR = Cudd_Regular(node);
+ if ( cuddIsConstant(nodeR) )
+ continue;
+ // this node is not a constant - consider its cofactors
+ extraProfileUpdateTopLevel( tNodeTopRef, dd->perm[node->index]+1, cuddE(nodeR) );
+ extraProfileUpdateTopLevel( tNodeTopRef, dd->perm[node->index]+1, cuddT(nodeR) );
+ }
+ st_free_table( tNodes );
+
+ // clean the profile
+ size = ddMax(dd->size, dd->sizeZ) + 1;
+ for ( i = 0; i < size; i++ )
+ pProfile[i] = 0;
+
+ // create the profile
+ st_foreach_item( tNodeTopRef, gen, (char**)&node, (char**)&LevelStart )
+ {
+ nodeR = Cudd_Regular(node);
+ Limit = (cuddIsConstant(nodeR))? dd->size: dd->perm[nodeR->index];
+ for ( i = LevelStart; i <= Limit; i++ )
+ pProfile[i]++;
+ }
+
+ if ( CutLevel != -1 && CutLevel != 0 )
+ size = CutLevel;
+
+ // get the max width
+ WidthMax = 0;
+ for ( i = 0; i < size; i++ )
+ if ( WidthMax < pProfile[i] )
+ WidthMax = pProfile[i];
+
+ // deref the table
+ st_free_table( tNodeTopRef );
+
+ return WidthMax;
+} /* end of Extra_ProfileWidth */
+
+
+/*---------------------------------------------------------------------------*/
+/* Definition of internal functions */
+/*---------------------------------------------------------------------------*/
+
+/*---------------------------------------------------------------------------*/
+/* Definition of static functions */
+/*---------------------------------------------------------------------------*/
+
+/**Function********************************************************************
+
+ Synopsis [Computes the non-strict codes when evaluation is finished.]
+
+ Description [The information about the best code is stored in s_VarOrderBest,
+ which has s_nVarsBest entries.]
+
+ SideEffects [None]
+
+******************************************************************************/
+DdNode * CreateTheCodes_rec( DdManager * dd, DdNode * bEncoded, int Level, DdNode ** pCVars )
+// bEncoded is the preliminarily encoded set of columns
+// Level is the current level in the recursion
+// pCVars are the variables to be used for encoding
+{
+ DdNode * bRes;
+ if ( Level == s_nVarsBest )
+ { // the terminal case, when we need to remap the encoded function
+ // from the preliminary encoded variables to the new ones
+ st_table * CutNodes;
+ int nCols;
+// double nMints;
+/*
+#ifdef _DEBUG
+
+ {
+ DdNode * bTemp;
+ // make sure that the given number of variables is enough
+ bTemp = Cudd_bddExistAbstract( dd, bEncoded, s_VarAll ); Cudd_Ref( bTemp );
+// nMints = Cudd_CountMinterm( dd, bTemp, s_MultiStart );
+ nMints = Extra_CountMintermsSimple( bTemp, (1<<s_MultiStart) );
+ if ( nMints > Extra_Power2( s_MultiStart-Level ) )
+ { // the number of minterms is too large to encode the columns
+ // using the given minimum number of encoding variables
+ assert( 0 );
+ }
+ Cudd_RecursiveDeref( dd, bTemp );
+ }
+#endif
+*/
+ // get the columns to be re-encoded
+ CutNodes = Extra_bddNodePathsUnderCut( dd, bEncoded, s_EncodingVarsLevel );
+ // LUT size is the cut level because because the temporary encoding variables
+ // are above the functional variables - this is not true!!!
+ // the temporary variables are below!
+
+ // put the entries from the table into the temporary array
+ {
+ st_generator * gen;
+ DdNode * bColumn, * bCode;
+ nCols = 0;
+ st_foreach_item( CutNodes, gen, (char**)&bCode, (char**)&bColumn )
+ {
+ if ( bCode == b0 )
+ { // the unused part of the columns
+ Cudd_RecursiveDeref( dd, bColumn );
+ Cudd_RecursiveDeref( dd, bCode );
+ continue;
+ }
+ else
+ {
+ s_pbTemp[ nCols ] = bColumn; // takes ref
+ Cudd_RecursiveDeref( dd, bCode );
+ nCols++;
+ }
+ }
+ st_free_table( CutNodes );
+// assert( nCols == (int)nMints );
+ }
+
+ // encode the columns
+ if ( s_MultiStart-Level == 0 ) // we reached the bottom level of recursion
+ {
+ assert( nCols == 1 );
+// assert( (int)nMints == 1 );
+ bRes = s_pbTemp[0]; Cudd_Ref( bRes );
+ }
+ else
+ {
+ bRes = Extra_bddEncodingBinary( dd, s_pbTemp, nCols, pCVars+Level, s_MultiStart-Level ); Cudd_Ref( bRes );
+ }
+
+ // deref the columns
+ {
+ int i;
+ for ( i = 0; i < nCols; i++ )
+ Cudd_RecursiveDeref( dd, s_pbTemp[i] );
+ }
+ }
+ else
+ {
+ // cofactor the problem as specified in the best solution
+ DdNode * bCof0, * bCof1;
+ DdNode * bRes0, * bRes1;
+ DdNode * bProd0, * bProd1;
+ DdNode * bTemp;
+ DdNode * bVarNext = dd->vars[ s_VarOrderBest[Level] ];
+
+ bCof0 = Cudd_Cofactor( dd, bEncoded, Cudd_Not( bVarNext ) ); Cudd_Ref( bCof0 );
+ bCof1 = Cudd_Cofactor( dd, bEncoded, bVarNext ); Cudd_Ref( bCof1 );
+
+ // call recursively
+ bRes0 = CreateTheCodes_rec( dd, bCof0, Level+1, pCVars ); Cudd_Ref( bRes0 );
+ bRes1 = CreateTheCodes_rec( dd, bCof1, Level+1, pCVars ); Cudd_Ref( bRes1 );
+
+ Cudd_RecursiveDeref( dd, bCof0 );
+ Cudd_RecursiveDeref( dd, bCof1 );
+
+ // compose the result using the identity (bVarNext <=> pCVars[Level]) - this is wrong!
+ // compose the result as follows: x'y'F0 + xyF1
+ bProd0 = Cudd_bddAnd( dd, Cudd_Not(bVarNext), Cudd_Not(pCVars[Level]) ); Cudd_Ref( bProd0 );
+ bProd1 = Cudd_bddAnd( dd, bVarNext , pCVars[Level] ); Cudd_Ref( bProd1 );
+
+ bProd0 = Cudd_bddAnd( dd, bTemp = bProd0, bRes0 ); Cudd_Ref( bProd0 );
+ Cudd_RecursiveDeref( dd, bTemp );
+ Cudd_RecursiveDeref( dd, bRes0 );
+
+ bProd1 = Cudd_bddAnd( dd, bTemp = bProd1, bRes1 ); Cudd_Ref( bProd1 );
+ Cudd_RecursiveDeref( dd, bTemp );
+ Cudd_RecursiveDeref( dd, bRes1 );
+
+ bRes = Cudd_bddOr( dd, bProd0, bProd1 ); Cudd_Ref( bRes );
+
+ Cudd_RecursiveDeref( dd, bProd0 );
+ Cudd_RecursiveDeref( dd, bProd1 );
+ }
+ Cudd_Deref( bRes );
+ return bRes;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Computes the current set of variables and counts the number of minterms.]
+
+ Description [Old implementation.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void EvaluateEncodings_rec( DdManager * dd, DdNode * bVarsCol, int nVarsCol, int nMulti, int Level )
+// bVarsCol is the set of remaining variables
+// nVarsCol is the number of remaining variables
+// nMulti is the number of encoding variables to be used
+// Level is the level of recursion, from which this function is called
+// if we successfully finish this procedure, Level also stands for how many encoding variabled we saved
+{
+ int i, k;
+ int nEntries = (1<<(Level-1)); // the number of entries in the field of the previous level
+ DdNode * bVars0, * bVars1; // the cofactors
+ unsigned nMint0, nMint1; // the number of minterms
+ DdNode * bTempV;
+ DdNode * bVarTop;
+ int fBreak;
+
+
+ // there is no need to search above this level
+ if ( Level > s_MaxDepth )
+ return;
+
+ // if there are no variables left, quit the research
+ if ( bVarsCol == b1 )
+ return;
+
+ if ( s_BackTracks > s_BackTrackLimit )
+ return;
+
+ s_BackTracks++;
+
+ // otherwise, go through the remaining variables
+ for ( bTempV = bVarsCol; bTempV != b1; bTempV = cuddT(bTempV) )
+ {
+ // the currently tested variable
+ bVarTop = dd->vars[bTempV->index];
+
+ // put it into the array
+ s_VarOrderCur[Level-1] = bTempV->index;
+
+ // go through the entries and fill them out by cofactoring
+ fBreak = 0;
+ for ( i = 0; i < nEntries; i++ )
+ {
+ bVars0 = ComputeVarSetAndCountMinterms( dd, s_Field[Level-1][i], Cudd_Not(bVarTop), &nMint0 );
+ Cudd_Ref( bVars0 );
+
+ if ( nMint0 > Extra_Power2( nMulti-1 ) )
+ {
+ // there is no way to encode - dereference and return
+ Cudd_RecursiveDeref( dd, bVars0 );
+ fBreak = 1;
+ break;
+ }
+
+ bVars1 = ComputeVarSetAndCountMinterms( dd, s_Field[Level-1][i], bVarTop, &nMint1 );
+ Cudd_Ref( bVars1 );
+
+ if ( nMint1 > Extra_Power2( nMulti-1 ) )
+ {
+ // there is no way to encode - dereference and return
+ Cudd_RecursiveDeref( dd, bVars0 );
+ Cudd_RecursiveDeref( dd, bVars1 );
+ fBreak = 1;
+ break;
+ }
+
+ // otherwise, add these two cofactors
+ s_Field[Level][2*i + 0] = bVars0; // takes ref
+ s_Field[Level][2*i + 1] = bVars1; // takes ref
+ }
+
+ if ( !fBreak )
+ {
+ DdNode * bVarsRem;
+ // if we ended up here, it means that the cofactors w.r.t. variable bVarTop satisfy the condition
+ // save this situation
+ if ( s_nVarsBest < Level )
+ {
+ s_nVarsBest = Level;
+ // copy the variable assignment
+ for ( k = 0; k < Level; k++ )
+ s_VarOrderBest[k] = s_VarOrderCur[k];
+ }
+
+ // call recursively
+ // get the new variable set
+ if ( nMulti-1 > 0 )
+ {
+ bVarsRem = Cudd_bddExistAbstract( dd, bVarsCol, bVarTop ); Cudd_Ref( bVarsRem );
+ EvaluateEncodings_rec( dd, bVarsRem, nVarsCol-1, nMulti-1, Level+1 );
+ Cudd_RecursiveDeref( dd, bVarsRem );
+ }
+ }
+
+ // deref the contents of the array
+ for ( k = 0; k < i; k++ )
+ {
+ Cudd_RecursiveDeref( dd, s_Field[Level][2*k + 0] );
+ Cudd_RecursiveDeref( dd, s_Field[Level][2*k + 1] );
+ }
+
+ // if the solution is found, there is no need to continue
+ if ( s_nVarsBest == s_MaxDepth )
+ return;
+
+ // if the solution is found, there is no need to continue
+ if ( s_nVarsBest == s_MultiStart )
+ return;
+ }
+ // at this point, we have tried all possible directions in the space of variables
+}
+
+/**Function********************************************************************
+
+ Synopsis [Computes the current set of variables and counts the number of minterms.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+DdNode * ComputeVarSetAndCountMinterms( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost )
+// takes bVars - the variables cofactored so far (some of them may be in negative polarity)
+// bVarTop - the topmost variable w.r.t. which to cofactor (may be in negative polarity)
+// returns the cost and the new set of variables (bVars & bVarTop)
+{
+ DdNode * bVarsRes;
+
+ // get the resulting set of variables
+ bVarsRes = Cudd_bddAnd( dd, bVars, bVarTop ); Cudd_Ref( bVarsRes );
+
+ // increment signature before calling Cudd_CountCofactorMinterms()
+ s_Signature++;
+ *Cost = Extra_CountCofactorMinterms( dd, s_Encoded, bVarsRes, s_VarAll );
+
+ Cudd_Deref( bVarsRes );
+// s_CountCalls++;
+ return bVarsRes;
+}
+
+/**Function********************************************************************
+
+ Synopsis [Computes the current set of variables and counts the number of minterms.]
+
+ Description [The old implementation, which is approximately 4 times slower.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+DdNode * ComputeVarSetAndCountMinterms2( DdManager * dd, DdNode * bVars, DdNode * bVarTop, unsigned * Cost )
+{
+ DdNode * bVarsRes;
+ DdNode * bCof, * bFun;
+
+ bVarsRes = Cudd_bddAnd( dd, bVars, bVarTop ); Cudd_Ref( bVarsRes );
+
+ bCof = Cudd_Cofactor( dd, s_Encoded, bVarsRes ); Cudd_Ref( bCof );
+ bFun = Cudd_bddExistAbstract( dd, bCof, s_VarAll ); Cudd_Ref( bFun );
+ *Cost = (unsigned)Cudd_CountMinterm( dd, bFun, s_MultiStart );
+ Cudd_RecursiveDeref( dd, bFun );
+ Cudd_RecursiveDeref( dd, bCof );
+
+ Cudd_Deref( bVarsRes );
+// s_CountCalls++;
+ return bVarsRes;
+}
+
+
+/**Function********************************************************************
+
+ Synopsis [Counts the number of encoding minterms pointed to by the cofactor of the function.]
+
+ Description []
+
+ SideEffects [None]
+
+******************************************************************************/
+unsigned Extra_CountCofactorMinterms( DdManager * dd, DdNode * bFunc, DdNode * bVarsCof, DdNode * bVarsAll )
+// this function computes how many minterms depending on the encoding variables
+// are there in the cofactor of bFunc w.r.t. variables bVarsCof
+// bFunc is assumed to depend on variables s_VarsAll
+// the variables s_VarsAll should be ordered above the encoding variables
+{
+ unsigned HKey;
+ DdNode * bFuncR;
+
+ // if the function is zero, there are no minterms
+// if ( bFunc == b0 )
+// return 0;
+
+// if ( st_lookup(Visited, (char*)bFunc, NULL) )
+// return 0;
+
+// HKey = hashKey2c( s_Signature, bFuncR );
+// if ( HHTable1[HKey].Sign == s_Signature && HHTable1[HKey].Arg1 == bFuncR ) // this node is visited
+// return 0;
+
+
+ // check the hash-table
+ bFuncR = Cudd_Regular(bFunc);
+// HKey = hashKey2( s_Signature, bFuncR, _TABLESIZE_COF );
+ HKey = hashKey2( s_Signature, bFunc, _TABLESIZE_COF );
+ for ( ; HHTable1[HKey].Sign == s_Signature; HKey = (HKey+1) % _TABLESIZE_COF )
+// if ( HHTable1[HKey].Arg1 == bFuncR ) // this node is visited
+ if ( HHTable1[HKey].Arg1 == bFunc ) // this node is visited
+ return 0;
+
+
+ // if the function is already the code
+ if ( dd->perm[bFuncR->index] >= s_EncodingVarsLevel )
+ {
+// st_insert(Visited, (char*)bFunc, NULL);
+
+// HHTable1[HKey].Sign = s_Signature;
+// HHTable1[HKey].Arg1 = bFuncR;
+
+ assert( HHTable1[HKey].Sign != s_Signature );
+ HHTable1[HKey].Sign = s_Signature;
+// HHTable1[HKey].Arg1 = bFuncR;
+ HHTable1[HKey].Arg1 = bFunc;
+
+ return Extra_CountMintermsSimple( bFunc, (1<<s_MultiStart) );
+ }
+ else
+ {
+ DdNode * bFunc0, * bFunc1;
+ DdNode * bVarsCof0, * bVarsCof1;
+ DdNode * bVarsCofR = Cudd_Regular(bVarsCof);
+ unsigned Res;
+
+ // get the levels
+ int LevelF = dd->perm[bFuncR->index];
+ int LevelC = cuddI(dd,bVarsCofR->index);
+ int LevelA = dd->perm[bVarsAll->index];
+
+ int LevelTop = LevelF;
+
+ if ( LevelTop > LevelC )
+ LevelTop = LevelC;
+
+ if ( LevelTop > LevelA )
+ LevelTop = LevelA;
+
+ // the top var in the function or in cofactoring vars always belongs to the set of all vars
+ assert( !( LevelTop == LevelF || LevelTop == LevelC ) || LevelTop == LevelA );
+
+ // cofactor the function
+ if ( LevelTop == LevelF )
+ {
+ if ( bFuncR != bFunc ) // bFunc is complemented
+ {
+ bFunc0 = Cudd_Not( cuddE(bFuncR) );
+ bFunc1 = Cudd_Not( cuddT(bFuncR) );
+ }
+ else
+ {
+ bFunc0 = cuddE(bFuncR);
+ bFunc1 = cuddT(bFuncR);
+ }
+ }
+ else // bVars is higher in the variable order
+ bFunc0 = bFunc1 = bFunc;
+
+ // cofactor the cube
+ if ( LevelTop == LevelC )
+ {
+ if ( bVarsCofR != bVarsCof ) // bFunc is complemented
+ {
+ bVarsCof0 = Cudd_Not( cuddE(bVarsCofR) );
+ bVarsCof1 = Cudd_Not( cuddT(bVarsCofR) );
+ }
+ else
+ {
+ bVarsCof0 = cuddE(bVarsCofR);
+ bVarsCof1 = cuddT(bVarsCofR);
+ }
+ }
+ else // bVars is higher in the variable order
+ bVarsCof0 = bVarsCof1 = bVarsCof;
+
+ // there are two cases:
+ // (1) the top variable belongs to the cofactoring variables
+ // (2) the top variable does not belong to the cofactoring variables
+
+ // (1) the top variable belongs to the cofactoring variables
+ Res = 0;
+ if ( LevelTop == LevelC )
+ {
+ if ( bVarsCof1 == b0 ) // this is a negative cofactor
+ {
+ if ( bFunc0 != b0 )
+ Res = Extra_CountCofactorMinterms( dd, bFunc0, bVarsCof0, cuddT(bVarsAll) );
+ }
+ else // this is a positive cofactor
+ {
+ if ( bFunc1 != b0 )
+ Res = Extra_CountCofactorMinterms( dd, bFunc1, bVarsCof1, cuddT(bVarsAll) );
+ }
+ }
+ else
+ {
+ if ( bFunc0 != b0 )
+ Res += Extra_CountCofactorMinterms( dd, bFunc0, bVarsCof0, cuddT(bVarsAll) );
+
+ if ( bFunc1 != b0 )
+ Res += Extra_CountCofactorMinterms( dd, bFunc1, bVarsCof1, cuddT(bVarsAll) );
+ }
+
+// st_insert(Visited, (char*)bFunc, NULL);
+
+// HHTable1[HKey].Sign = s_Signature;
+// HHTable1[HKey].Arg1 = bFuncR;
+
+ // skip through the entries with the same signatures
+ // (these might have been created at the time of recursive calls)
+ for ( ; HHTable1[HKey].Sign == s_Signature; HKey = (HKey+1) % _TABLESIZE_COF );
+ assert( HHTable1[HKey].Sign != s_Signature );
+ HHTable1[HKey].Sign = s_Signature;
+// HHTable1[HKey].Arg1 = bFuncR;
+ HHTable1[HKey].Arg1 = bFunc;
+
+ return Res;
+ }
+}
+
+/**Function********************************************************************
+
+ Synopsis [Counts the number of minterms.]
+
+ Description [This function counts minterms for functions up to 32 variables
+ using a local cache. The terminal value (s_Termina) should be adjusted for
+ BDDs and ADDs.]
+
+ SideEffects [None]
+
+******************************************************************************/
+unsigned Extra_CountMintermsSimple( DdNode * bFunc, unsigned max )
+{
+ unsigned HKey;
+
+ // normalize
+ if ( Cudd_IsComplement(bFunc) )
+ return max - Extra_CountMintermsSimple( Cudd_Not(bFunc), max );
+
+ // now it is known that the function is not complemented
+ if ( cuddIsConstant(bFunc) )
+ return ((bFunc==s_Terminal)? 0: max);
+
+ // check cache
+ HKey = hashKey2( bFunc, max, _TABLESIZE_MINT );
+ if ( HHTable2[HKey].Arg1 == bFunc && HHTable2[HKey].Arg2 == max )
+ return HHTable2[HKey].Res;
+ else
+ {
+ // min = min0/2 + min1/2;
+ unsigned min = (Extra_CountMintermsSimple( cuddE(bFunc), max ) >> 1) +
+ (Extra_CountMintermsSimple( cuddT(bFunc), max ) >> 1);
+
+ HHTable2[HKey].Arg1 = bFunc;
+ HHTable2[HKey].Arg2 = max;
+ HHTable2[HKey].Res = min;
+
+ return min;
+ }
+} /* end of Extra_CountMintermsSimple */
+
+
+/**Function********************************************************************
+
+ Synopsis [Visits the nodes.]
+
+ Description [Visits the nodes above the cut and the nodes pointed to below the cut;
+ collects the visited nodes, counts how many times each node is visited, and sets
+ the path-sum to be the constant zero BDD.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void CountNodeVisits_rec( DdManager * dd, DdNode * aFunc, st_table * Visited )
+
+{
+ traventry * p;
+ char **slot;
+ if ( st_find_or_add(Visited, (char*)aFunc, &slot) )
+ { // the entry already exists
+ p = (traventry*) *slot;
+ // increment the counter of incoming edges
+ p->nEdges++;
+ return;
+ }
+ // this node has not been visited
+ assert( !Cudd_IsComplement(aFunc) );
+
+ // create the new traversal entry
+ p = (traventry *) malloc( sizeof(traventry) );
+ // set the initial sum of edges to zero BDD
+ p->bSum = b0; Cudd_Ref( b0 );
+ // set the starting number of incoming edges
+ p->nEdges = 1;
+ // set this entry into the slot
+ *slot = (char*)p;
+
+ // recur if the node is above the cut
+ if ( cuddI(dd,aFunc->index) < s_CutLevel )
+ {
+ CountNodeVisits_rec( dd, cuddE(aFunc), Visited );
+ CountNodeVisits_rec( dd, cuddT(aFunc), Visited );
+ }
+} /* end of CountNodeVisits_rec */
+
+
+/**Function********************************************************************
+
+ Synopsis [Revisits the nodes and computes the paths.]
+
+ Description [This function visits the nodes above the cut having the goal of
+ summing all the incomming BDD edges; when this function comes across the node
+ below the cut, it saves this node in the CutNode table.]
+
+ SideEffects []
+
+ SeeAlso []
+
+******************************************************************************/
+void CollectNodesAndComputePaths_rec( DdManager * dd, DdNode * aFunc, DdNode * bCube, st_table * Visited, st_table * CutNodes )
+{
+ // find the node in the visited table
+ DdNode * bTemp;
+ traventry * p;
+ char **slot;
+ if ( st_find_or_add(Visited, (char*)aFunc, &slot) )
+ { // the node is found
+ // get the pointer to the traversal entry
+ p = (traventry*) *slot;
+
+ // make sure that the counter of incoming edges is positive
+ assert( p->nEdges > 0 );
+
+ // add the cube to the currently accumulated cubes
+ p->bSum = Cudd_bddOr( dd, bTemp = p->bSum, bCube ); Cudd_Ref( p->bSum );
+ Cudd_RecursiveDeref( dd, bTemp );
+
+ // decrement the number of visits
+ p->nEdges--;
+
+ // if more visits to this node are expected, return
+ if ( p->nEdges )
+ return;
+ else // if ( p->nEdges == 0 )
+ { // this is the last visit - propagate the cube
+
+ // check where this node is
+ if ( cuddI(dd,aFunc->index) < s_CutLevel )
+ { // the node is above the cut
+ DdNode * bCube0, * bCube1;
+
+ // get the top-most variable
+ DdNode * bVarTop = dd->vars[aFunc->index];
+
+ // compute the propagated cubes
+ bCube0 = Cudd_bddAnd( dd, p->bSum, Cudd_Not( bVarTop ) ); Cudd_Ref( bCube0 );
+ bCube1 = Cudd_bddAnd( dd, p->bSum, bVarTop ); Cudd_Ref( bCube1 );
+
+ // call recursively
+ CollectNodesAndComputePaths_rec( dd, cuddE(aFunc), bCube0, Visited, CutNodes );
+ CollectNodesAndComputePaths_rec( dd, cuddT(aFunc), bCube1, Visited, CutNodes );
+
+ // dereference the cubes
+ Cudd_RecursiveDeref( dd, bCube0 );
+ Cudd_RecursiveDeref( dd, bCube1 );
+ return;
+ }
+ else
+ { // the node is below the cut
+ // add this node to the cut node table, if it is not yet there
+
+// DdNode * bNode;
+// bNode = Cudd_addBddPattern( dd, aFunc ); Cudd_Ref( bNode );
+ if ( st_find_or_add(CutNodes, (char*)aFunc, &slot) )
+ { // the node exists - should never happen
+ assert( 0 );
+ }
+ *slot = (char*) p->bSum; Cudd_Ref( p->bSum );
+ // the table takes the reference of bNode
+ return;
+ }
+ }
+ }
+
+ // the node does not exist in the visited table - should never happen
+ assert(0);
+
+} /* end of CollectNodesAndComputePaths_rec */
+
+
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////