summaryrefslogtreecommitdiffstats
path: root/abc70930/src/base/abci/abcRestruct.c
diff options
context:
space:
mode:
Diffstat (limited to 'abc70930/src/base/abci/abcRestruct.c')
-rw-r--r--abc70930/src/base/abci/abcRestruct.c1496
1 files changed, 1496 insertions, 0 deletions
diff --git a/abc70930/src/base/abci/abcRestruct.c b/abc70930/src/base/abci/abcRestruct.c
new file mode 100644
index 00000000..326d1543
--- /dev/null
+++ b/abc70930/src/base/abci/abcRestruct.c
@@ -0,0 +1,1496 @@
+/**CFile****************************************************************
+
+ FileName [abcRestruct.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Network and node package.]
+
+ Synopsis []
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: abcRestruct.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "abc.h"
+#include "dec.h"
+#include "dsd.h"
+#include "cut.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+#define RST_RANDOM_UNSIGNED ((((unsigned)rand()) << 24) ^ (((unsigned)rand()) << 12) ^ ((unsigned)rand()))
+
+typedef struct Abc_ManRst_t_ Abc_ManRst_t;
+struct Abc_ManRst_t_
+{
+ // the network
+ Abc_Ntk_t * pNtk; // the network for restructuring
+ // user specified parameters
+ int nCutMax; // the limit on the size of the supernode
+ int fUpdateLevel; // turns on watching the number of levels
+ int fUseZeros; // turns on zero-cost replacements
+ int fVerbose; // the verbosity flag
+ // internal data structures
+ DdManager * dd; // the BDD manager
+ Dsd_Manager_t * pManDsd; // the DSD manager
+ Vec_Ptr_t * vVisited; // temporary
+ Vec_Ptr_t * vLeaves; // temporary
+ Vec_Ptr_t * vDecs; // temporary
+ Vec_Ptr_t * vTemp; // temporary
+ Vec_Int_t * vSims; // temporary
+ Vec_Int_t * vRands; // temporary
+ Vec_Int_t * vOnes; // temporary
+ Vec_Int_t * vBinate; // temporary
+ Vec_Int_t * vTwos; // temporary
+ // node statistics
+ int nLastGain;
+ int nCutsConsidered;
+ int nCutsExplored;
+ int nNodesConsidered;
+ int nNodesRestructured;
+ int nNodesGained;
+ // runtime statistics
+ int timeCut;
+ int timeBdd;
+ int timeDsd;
+ int timeEval;
+ int timeRes;
+ int timeNtk;
+ int timeTotal;
+};
+
+static Dec_Graph_t * Abc_NodeResubstitute( Abc_ManRst_t * p, Abc_Obj_t * pNode, Cut_Cut_t * pCutList );
+
+static Dec_Graph_t * Abc_NodeRestructure( Abc_ManRst_t * p, Abc_Obj_t * pNode, Cut_Cut_t * pCutList );
+static Dec_Graph_t * Abc_NodeRestructureCut( Abc_ManRst_t * p, Abc_Obj_t * pNode, Cut_Cut_t * pCut );
+static Dec_Graph_t * Abc_NodeEvaluateDsd( Abc_ManRst_t * pManRst, Dsd_Node_t * pNodeDsd, Abc_Obj_t * pRoot, int Required, int nNodesSaved, int * pnNodesAdded );
+
+static Cut_Man_t * Abc_NtkStartCutManForRestruct( Abc_Ntk_t * pNtk, int nCutMax, int fDag );
+static Abc_ManRst_t * Abc_NtkManRstStart( int nCutMax, bool fUpdateLevel, bool fUseZeros, bool fVerbose );
+static void Abc_NtkManRstStop( Abc_ManRst_t * p );
+static void Abc_NtkManRstPrintStats( Abc_ManRst_t * p );
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Implements AIG restructuring.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_NtkRestructure( Abc_Ntk_t * pNtk, int nCutMax, bool fUpdateLevel, bool fUseZeros, bool fVerbose )
+{
+ ProgressBar * pProgress;
+ Abc_ManRst_t * pManRst;
+ Cut_Man_t * pManCut;
+ Cut_Cut_t * pCutList;
+ Dec_Graph_t * pGraph;
+ Abc_Obj_t * pNode;
+ int clk, clkStart = clock();
+ int fMulti = 1;
+ int fResub = 0;
+ int i, nNodes;
+
+ assert( Abc_NtkIsStrash(pNtk) );
+ // cleanup the AIG
+ Abc_AigCleanup(pNtk->pManFunc);
+ Abc_NtkCleanCopy(pNtk);
+
+ // compute the reverse levels if level update is requested
+ if ( fUpdateLevel )
+ Abc_NtkStartReverseLevels( pNtk, 0 );
+
+ // start the restructuring manager
+ pManRst = Abc_NtkManRstStart( nCutMax, fUpdateLevel, fUseZeros, fVerbose );
+ pManRst->pNtk = pNtk;
+ // start the cut manager
+clk = clock();
+ pManCut = Abc_NtkStartCutManForRestruct( pNtk, nCutMax, fMulti );
+pManRst->timeCut += clock() - clk;
+// pNtk->pManCut = pManCut;
+
+ // resynthesize each node once
+ nNodes = Abc_NtkObjNumMax(pNtk);
+ pProgress = Extra_ProgressBarStart( stdout, nNodes );
+ Abc_NtkForEachNode( pNtk, pNode, i )
+ {
+ Extra_ProgressBarUpdate( pProgress, i, NULL );
+ // skip the constant node
+// if ( Abc_NodeIsConst(pNode) )
+// continue;
+ // skip persistant nodes
+ if ( Abc_NodeIsPersistant(pNode) )
+ continue;
+ // skip the node if it is inside the tree
+// if ( Abc_ObjFanoutNum(pNode) < 2 )
+// continue;
+ // skip the nodes with too many fanouts
+ if ( Abc_ObjFanoutNum(pNode) > 1000 )
+ continue;
+ // stop if all nodes have been tried once
+ if ( i >= nNodes )
+ break;
+ // get the cuts for the given node
+clk = clock();
+ pCutList = Abc_NodeGetCutsRecursive( pManCut, pNode, fMulti, 0 );
+pManRst->timeCut += clock() - clk;
+
+ // perform restructuring
+clk = clock();
+ if ( fResub )
+ pGraph = Abc_NodeResubstitute( pManRst, pNode, pCutList );
+ else
+ pGraph = Abc_NodeRestructure( pManRst, pNode, pCutList );
+pManRst->timeRes += clock() - clk;
+ if ( pGraph == NULL )
+ continue;
+
+ // acceptable replacement found, update the graph
+clk = clock();
+ Dec_GraphUpdateNetwork( pNode, pGraph, fUpdateLevel, pManRst->nLastGain );
+pManRst->timeNtk += clock() - clk;
+ Dec_GraphFree( pGraph );
+ }
+ Extra_ProgressBarStop( pProgress );
+pManRst->timeTotal = clock() - clkStart;
+
+ // print statistics of the manager
+// if ( fVerbose )
+ Abc_NtkManRstPrintStats( pManRst );
+ // delete the managers
+ Cut_ManStop( pManCut );
+ Abc_NtkManRstStop( pManRst );
+ // put the nodes into the DFS order and reassign their IDs
+ Abc_NtkReassignIds( pNtk );
+// Abc_AigCheckFaninOrder( pNtk->pManFunc );
+ // fix the levels
+ if ( fUpdateLevel )
+ Abc_NtkStopReverseLevels( pNtk );
+ else
+ Abc_NtkLevel( pNtk );
+ // check
+ if ( !Abc_NtkCheck( pNtk ) )
+ {
+ printf( "Abc_NtkRefactor: The network check has failed.\n" );
+ return 0;
+ }
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_RestructNodeDivisors( Abc_ManRst_t * p, Abc_Obj_t * pRoot, int nNodesSaved )
+{
+ Abc_Obj_t * pNode, * pFanout;//, * pFanin;
+ int i, k;
+ // start with the leaves
+ Vec_PtrClear( p->vDecs );
+ Vec_PtrForEachEntry( p->vLeaves, pNode, i )
+ {
+ Vec_PtrPush( p->vDecs, pNode );
+ assert( pNode->fMarkC == 0 );
+ pNode->fMarkC = 1;
+ }
+ // explore the fanouts
+ Vec_PtrForEachEntry( p->vDecs, pNode, i )
+ {
+ // if the fanout has both fanins in the set, add it
+ Abc_ObjForEachFanout( pNode, pFanout, k )
+ {
+ if ( pFanout->fMarkC || Abc_ObjIsPo(pFanout) )
+ continue;
+ if ( Abc_ObjFanin0(pFanout)->fMarkC && Abc_ObjFanin1(pFanout)->fMarkC )
+ {
+ Vec_PtrPush( p->vDecs, pFanout );
+ pFanout->fMarkC = 1;
+ }
+ }
+ }
+ // unmark the nodes
+ Vec_PtrForEachEntry( p->vDecs, pNode, i )
+ pNode->fMarkC = 0;
+/*
+ // print the nodes
+ Vec_PtrForEachEntryStart( p->vDecs, pNode, i, Vec_PtrSize(p->vLeaves) )
+ {
+ printf( "%2d %s = ", i, Abc_NodeIsTravIdCurrent(pNode)? "*" : " " );
+ // find the first fanin
+ Vec_PtrForEachEntry( p->vDecs, pFanin, k )
+ if ( Abc_ObjFanin0(pNode) == pFanin )
+ break;
+ if ( k < Vec_PtrSize(p->vLeaves) )
+ printf( "%c", 'a' + k );
+ else
+ printf( "%d", k );
+ printf( "%s ", Abc_ObjFaninC0(pNode)? "\'" : "" );
+ // find the second fanin
+ Vec_PtrForEachEntry( p->vDecs, pFanin, k )
+ if ( Abc_ObjFanin1(pNode) == pFanin )
+ break;
+ if ( k < Vec_PtrSize(p->vLeaves) )
+ printf( "%c", 'a' + k );
+ else
+ printf( "%d", k );
+ printf( "%s ", Abc_ObjFaninC1(pNode)? "\'" : "" );
+ printf( "\n" );
+ }
+*/
+ printf( "%d\n", Vec_PtrSize(p->vDecs)-nNodesSaved-Vec_PtrSize(p->vLeaves) );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Starts the cut manager for rewriting.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeRestructure( Abc_ManRst_t * p, Abc_Obj_t * pNode, Cut_Cut_t * pCutList )
+{
+ Dec_Graph_t * pGraph;
+ Cut_Cut_t * pCut;
+// int nCuts;
+ p->nNodesConsidered++;
+/*
+ // count the number of cuts with four inputs or more
+ nCuts = 0;
+ for ( pCut = pCutList; pCut; pCut = pCut->pNext )
+ nCuts += (int)(pCut->nLeaves > 3);
+ printf( "-----------------------------------\n" );
+ printf( "Node %6d : Factor-cuts = %5d.\n", pNode->Id, nCuts );
+*/
+ // go through the interesting cuts
+ for ( pCut = pCutList; pCut; pCut = pCut->pNext )
+ {
+ if ( pCut->nLeaves < 4 )
+ continue;
+ if ( pGraph = Abc_NodeRestructureCut( p, pNode, pCut ) )
+ return pGraph;
+ }
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Starts the cut manager for rewriting.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeRestructureCut( Abc_ManRst_t * p, Abc_Obj_t * pRoot, Cut_Cut_t * pCut )
+{
+ Dec_Graph_t * pGraph;
+ Dsd_Node_t * pNodeDsd;
+ Abc_Obj_t * pLeaf;
+ DdNode * bFunc;
+ int nNodesSaved, nNodesAdded;
+ int Required, nMaxSize, clk, i;
+ int fVeryVerbose = 0;
+
+ p->nCutsConsidered++;
+
+ // get the required time for the node
+ Required = p->fUpdateLevel? Abc_ObjRequiredLevel(pRoot) : ABC_INFINITY;
+
+ // collect the leaves of the cut
+ Vec_PtrClear( p->vLeaves );
+ for ( i = 0; i < (int)pCut->nLeaves; i++ )
+ {
+ pLeaf = Abc_NtkObj(pRoot->pNtk, pCut->pLeaves[i]);
+ if ( pLeaf == NULL ) // the so-called "bad cut phenomenon" is due to removed nodes
+ return NULL;
+ Vec_PtrPush( p->vLeaves, pLeaf );
+ }
+
+ if ( pRoot->Id == 29 )
+ {
+ int x = 0;
+ }
+
+clk = clock();
+ // collect the internal nodes of the cut
+// Abc_NodeConeCollect( &pRoot, 1, p->vLeaves, p->vVisited, 0 );
+ // derive the BDD of the cut
+ bFunc = Abc_NodeConeBdd( p->dd, p->dd->vars, pRoot, p->vLeaves, p->vVisited ); Cudd_Ref( bFunc );
+p->timeBdd += clock() - clk;
+
+ // consider the special case, when the function is a constant
+ if ( Cudd_IsConstant(bFunc) )
+ {
+ p->nLastGain = Abc_NodeMffcSize( pRoot );
+ p->nNodesGained += p->nLastGain;
+ p->nNodesRestructured++;
+ Cudd_RecursiveDeref( p->dd, bFunc );
+ if ( Cudd_IsComplement(bFunc) )
+ return Dec_GraphCreateConst0();
+ return Dec_GraphCreateConst1();
+ }
+
+clk = clock();
+ // try disjoint support decomposition
+ pNodeDsd = Dsd_DecomposeOne( p->pManDsd, bFunc );
+p->timeDsd += clock() - clk;
+
+ // skip nodes with non-decomposable blocks
+ Dsd_TreeNodeGetInfoOne( pNodeDsd, NULL, &nMaxSize );
+ if ( nMaxSize > 3 )
+ {
+ Cudd_RecursiveDeref( p->dd, bFunc );
+ return NULL;
+ }
+
+
+/*
+ // skip nodes that cannot be improved
+ if ( Vec_PtrSize(p->vVisited) <= Dsd_TreeGetAigCost(pNodeDsd) )
+ {
+ Cudd_RecursiveDeref( p->dd, bFunc );
+ return NULL;
+ }
+*/
+
+ p->nCutsExplored++;
+
+ // mark the fanin boundary
+ // (can mark only essential fanins, belonging to bNodeFunc!)
+ Vec_PtrForEachEntry( p->vLeaves, pLeaf, i )
+ pLeaf->vFanouts.nSize++;
+ // label MFFC with current traversal ID
+ Abc_NtkIncrementTravId( pRoot->pNtk );
+ nNodesSaved = Abc_NodeMffcLabelAig( pRoot );
+ // unmark the fanin boundary and set the fanins as leaves in the form
+ Vec_PtrForEachEntry( p->vLeaves, pLeaf, i )
+ pLeaf->vFanouts.nSize--;
+/*
+ if ( nNodesSaved < 3 )
+ {
+ Cudd_RecursiveDeref( p->dd, bFunc );
+ return NULL;
+ }
+*/
+
+/*
+ printf( "%5d : Cut-size = %d. Old AIG = %2d. New AIG = %2d. Old MFFC = %2d.\n",
+ pRoot->Id, pCut->nLeaves, Vec_PtrSize(p->vVisited), Dsd_TreeGetAigCost(pNodeDsd),
+ nNodesSaved );
+ Dsd_NodePrint( stdout, pNodeDsd );
+
+ Abc_RestructNodeDivisors( p, pRoot );
+
+ if ( pRoot->Id == 433 )
+ {
+ int x = 0;
+ }
+*/
+// Abc_RestructNodeDivisors( p, pRoot, nNodesSaved );
+
+
+ // detect how many new nodes will be added (while taking into account reused nodes)
+clk = clock();
+ if ( nMaxSize > 3 )
+ pGraph = NULL;
+ else
+ pGraph = Abc_NodeEvaluateDsd( p, pNodeDsd, pRoot, Required, nNodesSaved, &nNodesAdded );
+// pGraph = NULL;
+p->timeEval += clock() - clk;
+
+ // quit if there is no improvement
+ if ( pGraph == NULL || nNodesAdded == -1 || nNodesAdded == nNodesSaved && !p->fUseZeros )
+ {
+ Cudd_RecursiveDeref( p->dd, bFunc );
+ if ( pGraph ) Dec_GraphFree( pGraph );
+ return NULL;
+ }
+
+/*
+ // print stats
+ printf( "%5d : Cut-size = %d. Old AIG = %2d. New AIG = %2d. Old MFFC = %2d. New MFFC = %2d. Gain = %d.\n",
+ pRoot->Id, pCut->nLeaves, Vec_PtrSize(p->vVisited), Dsd_TreeGetAigCost(pNodeDsd),
+ nNodesSaved, nNodesAdded, (nNodesAdded == -1)? 0 : nNodesSaved-nNodesAdded );
+// Dsd_NodePrint( stdout, pNodeDsd );
+// Dec_GraphPrint( stdout, pGraph, NULL, NULL );
+*/
+
+ // compute the total gain in the number of nodes
+ p->nLastGain = nNodesSaved - nNodesAdded;
+ p->nNodesGained += p->nLastGain;
+ p->nNodesRestructured++;
+
+ // report the progress
+ if ( fVeryVerbose )
+ {
+ printf( "Node %6s : ", Abc_ObjName(pRoot) );
+ printf( "Cone = %2d. ", p->vLeaves->nSize );
+ printf( "BDD = %2d. ", Cudd_DagSize(bFunc) );
+ printf( "FF = %2d. ", 1 + Dec_GraphNodeNum(pGraph) );
+ printf( "MFFC = %2d. ", nNodesSaved );
+ printf( "Add = %2d. ", nNodesAdded );
+ printf( "GAIN = %2d. ", p->nLastGain );
+ printf( "\n" );
+ }
+ Cudd_RecursiveDeref( p->dd, bFunc );
+ return pGraph;
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Moves closer to the end the node that is best for sharing.]
+
+ Description [If the flag is set, tries to find an EXOR, otherwise, tries
+ to find an OR.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NodeEdgeDsdPermute( Dec_Graph_t * pGraph, Abc_ManRst_t * pManRst, Vec_Int_t * vEdges, int fExor )
+{
+ Dec_Edge_t eNode1, eNode2, eNode3;
+ Abc_Obj_t * pNode1, * pNode2, * pNode3, * pTemp;
+ int LeftBound = 0, RightBound, i;
+ // get the right bound
+ RightBound = Vec_IntSize(vEdges) - 2;
+ assert( LeftBound <= RightBound );
+ if ( LeftBound == RightBound )
+ return;
+ // get the two last nodes
+ eNode1 = Dec_IntToEdge( Vec_IntEntry(vEdges, RightBound + 1) );
+ eNode2 = Dec_IntToEdge( Vec_IntEntry(vEdges, RightBound ) );
+ pNode1 = Dec_GraphNode( pGraph, eNode1.Node )->pFunc;
+ pNode2 = Dec_GraphNode( pGraph, eNode2.Node )->pFunc;
+ pNode1 = !pNode1? NULL : Abc_ObjNotCond( pNode1, eNode1.fCompl );
+ pNode2 = !pNode2? NULL : Abc_ObjNotCond( pNode2, eNode2.fCompl );
+ // quit if the last node does not exist
+ if ( pNode1 == NULL )
+ return;
+ // find the first node that can be shared
+ for ( i = RightBound; i >= LeftBound; i-- )
+ {
+ // get the third node
+ eNode3 = Dec_IntToEdge( Vec_IntEntry(vEdges, i) );
+ pNode3 = Dec_GraphNode( pGraph, eNode3.Node )->pFunc;
+ pNode3 = !pNode3? NULL : Abc_ObjNotCond( pNode3, eNode3.fCompl );
+ if ( pNode3 == NULL )
+ continue;
+ // check if the node exists
+ if ( fExor )
+ {
+ if ( pNode1 && pNode3 )
+ {
+ pTemp = Abc_AigXorLookup( pManRst->pNtk->pManFunc, pNode1, pNode3, NULL );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ continue;
+
+ if ( pNode3 == pNode2 )
+ return;
+ Vec_IntWriteEntry( vEdges, i, Dec_EdgeToInt(eNode2) );
+ Vec_IntWriteEntry( vEdges, RightBound, Dec_EdgeToInt(eNode3) );
+ return;
+ }
+ }
+ else
+ {
+ if ( pNode1 && pNode3 )
+ {
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, Abc_ObjNot(pNode1), Abc_ObjNot(pNode3) );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ continue;
+
+ if ( eNode3.Node == eNode2.Node )
+ return;
+ Vec_IntWriteEntry( vEdges, i, Dec_EdgeToInt(eNode2) );
+ Vec_IntWriteEntry( vEdges, RightBound, Dec_EdgeToInt(eNode3) );
+ return;
+ }
+ }
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Adds the new edge in the given order.]
+
+ Description [Similar to Vec_IntPushOrder, except in decreasing order.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NodeEdgeDsdPushOrdered( Dec_Graph_t * pGraph, Vec_Int_t * vEdges, int Edge )
+{
+ int i, NodeOld, NodeNew;
+ vEdges->nSize++;
+ for ( i = vEdges->nSize-2; i >= 0; i-- )
+ {
+ NodeOld = Dec_IntToEdge(vEdges->pArray[i]).Node;
+ NodeNew = Dec_IntToEdge(Edge).Node;
+ // use <= because we are trying to push the new (non-existent) nodes as far as possible
+ if ( Dec_GraphNode(pGraph, NodeOld)->Level <= Dec_GraphNode(pGraph, NodeNew)->Level )
+ vEdges->pArray[i+1] = vEdges->pArray[i];
+ else
+ break;
+ }
+ vEdges->pArray[i+1] = Edge;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Evaluation one DSD.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Edge_t Abc_NodeEvaluateDsd_rec( Dec_Graph_t * pGraph, Abc_ManRst_t * pManRst, Dsd_Node_t * pNodeDsd, int Required, int nNodesSaved, int * pnNodesAdded )
+{
+ Dec_Edge_t eNode1, eNode2, eNode3, eResult, eQuit = { 0, 2006 };
+ Abc_Obj_t * pNode1, * pNode2, * pNode3, * pNode4, * pTemp;
+ Dsd_Node_t * pChildDsd;
+ Dsd_Type_t DecType;
+ Vec_Int_t * vEdges;
+ int Level1, Level2, Level3, Level4;
+ int i, Index, fCompl, Type;
+
+ // remove the complemented attribute
+ fCompl = Dsd_IsComplement( pNodeDsd );
+ pNodeDsd = Dsd_Regular( pNodeDsd );
+
+ // consider the trivial case
+ DecType = Dsd_NodeReadType( pNodeDsd );
+ if ( DecType == DSD_NODE_BUF )
+ {
+ Index = Dsd_NodeReadFunc(pNodeDsd)->index;
+ assert( Index < Dec_GraphLeaveNum(pGraph) );
+ eResult = Dec_EdgeCreate( Index, fCompl );
+ return eResult;
+ }
+ assert( DecType == DSD_NODE_OR || DecType == DSD_NODE_EXOR || DecType == DSD_NODE_PRIME );
+
+ // solve the problem for the children
+ vEdges = Vec_IntAlloc( Dsd_NodeReadDecsNum(pNodeDsd) );
+ Dsd_NodeForEachChild( pNodeDsd, i, pChildDsd )
+ {
+ eResult = Abc_NodeEvaluateDsd_rec( pGraph, pManRst, pChildDsd, Required, nNodesSaved, pnNodesAdded );
+ if ( eResult.Node == eQuit.Node ) // infeasible
+ {
+ Vec_IntFree( vEdges );
+ return eQuit;
+ }
+ // order the inputs only if this is OR or EXOR
+ if ( DecType == DSD_NODE_PRIME )
+ Vec_IntPush( vEdges, Dec_EdgeToInt(eResult) );
+ else
+ Abc_NodeEdgeDsdPushOrdered( pGraph, vEdges, Dec_EdgeToInt(eResult) );
+ }
+ // the edges are sorted by the level of their nodes in decreasing order
+
+
+ // consider special cases
+ if ( DecType == DSD_NODE_OR )
+ {
+ // try to balance the nodes by delay
+ assert( Vec_IntSize(vEdges) > 1 );
+ while ( Vec_IntSize(vEdges) > 1 )
+ {
+ // permute the last two entries
+ if ( Vec_IntSize(vEdges) > 2 )
+ Abc_NodeEdgeDsdPermute( pGraph, pManRst, vEdges, 0 );
+ // get the two last nodes
+ eNode1 = Dec_IntToEdge( Vec_IntPop(vEdges) );
+ eNode2 = Dec_IntToEdge( Vec_IntPop(vEdges) );
+ pNode1 = Dec_GraphNode( pGraph, eNode1.Node )->pFunc;
+ pNode2 = Dec_GraphNode( pGraph, eNode2.Node )->pFunc;
+ pNode1 = !pNode1? NULL : Abc_ObjNotCond( pNode1, eNode1.fCompl );
+ pNode2 = !pNode2? NULL : Abc_ObjNotCond( pNode2, eNode2.fCompl );
+ // check if the new node exists
+ pNode3 = NULL;
+ if ( pNode1 && pNode2 )
+ {
+ pNode3 = Abc_AigAndLookup( pManRst->pNtk->pManFunc, Abc_ObjNot(pNode1), Abc_ObjNot(pNode2) );
+ pNode3 = !pNode3? NULL : Abc_ObjNot(pNode3);
+ }
+ // create the new node
+ eNode3 = Dec_GraphAddNodeOr( pGraph, eNode1, eNode2 );
+ // set level
+ Level1 = Dec_GraphNode( pGraph, eNode1.Node )->Level;
+ Level2 = Dec_GraphNode( pGraph, eNode2.Node )->Level;
+ Dec_GraphNode( pGraph, eNode3.Node )->Level = 1 + ABC_MAX(Level1, Level2);
+ // get the new node if possible
+ if ( pNode3 )
+ {
+ Dec_GraphNode( pGraph, eNode3.Node )->pFunc = Abc_ObjNotCond(pNode3, eNode3.fCompl);
+ Level3 = Dec_GraphNode( pGraph, eNode3.Node )->Level;
+ assert( Required == ABC_INFINITY || Level3 == (int)Abc_ObjRegular(pNode3)->Level );
+ }
+ if ( !pNode3 || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pNode3)) )
+ {
+ (*pnNodesAdded)++;
+ if ( *pnNodesAdded > nNodesSaved )
+ {
+ Vec_IntFree( vEdges );
+ return eQuit;
+ }
+ }
+ // add the resulting node to the form
+ Abc_NodeEdgeDsdPushOrdered( pGraph, vEdges, Dec_EdgeToInt(eNode3) );
+ }
+ // get the last node
+ eResult = Dec_IntToEdge( Vec_IntPop(vEdges) );
+ Vec_IntFree( vEdges );
+ // complement the graph if the node was complemented
+ eResult.fCompl ^= fCompl;
+ return eResult;
+ }
+ if ( DecType == DSD_NODE_EXOR )
+ {
+ // try to balance the nodes by delay
+ assert( Vec_IntSize(vEdges) > 1 );
+ while ( Vec_IntSize(vEdges) > 1 )
+ {
+ // permute the last two entries
+ if ( Vec_IntSize(vEdges) > 2 )
+ Abc_NodeEdgeDsdPermute( pGraph, pManRst, vEdges, 1 );
+ // get the two last nodes
+ eNode1 = Dec_IntToEdge( Vec_IntPop(vEdges) );
+ eNode2 = Dec_IntToEdge( Vec_IntPop(vEdges) );
+ pNode1 = Dec_GraphNode( pGraph, eNode1.Node )->pFunc;
+ pNode2 = Dec_GraphNode( pGraph, eNode2.Node )->pFunc;
+ pNode1 = !pNode1? NULL : Abc_ObjNotCond( pNode1, eNode1.fCompl );
+ pNode2 = !pNode2? NULL : Abc_ObjNotCond( pNode2, eNode2.fCompl );
+ // check if the new node exists
+ Type = 0;
+ pNode3 = NULL;
+ if ( pNode1 && pNode2 )
+ pNode3 = Abc_AigXorLookup( pManRst->pNtk->pManFunc, pNode1, pNode2, &Type );
+ // create the new node
+ eNode3 = Dec_GraphAddNodeXor( pGraph, eNode1, eNode2, Type ); // should have the same structure as in AIG
+ // set level
+ Level1 = Dec_GraphNode( pGraph, eNode1.Node )->Level;
+ Level2 = Dec_GraphNode( pGraph, eNode2.Node )->Level;
+ Dec_GraphNode( pGraph, eNode3.Node )->Level = 2 + ABC_MAX(Level1, Level2);
+ // get the new node if possible
+ if ( pNode3 )
+ {
+ Dec_GraphNode( pGraph, eNode3.Node )->pFunc = Abc_ObjNotCond(pNode3, eNode3.fCompl);
+ Level3 = Dec_GraphNode( pGraph, eNode3.Node )->Level;
+ assert( Required == ABC_INFINITY || Level3 == (int)Abc_ObjRegular(pNode3)->Level );
+ }
+ if ( !pNode3 || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pNode3)) )
+ {
+ (*pnNodesAdded)++;
+ if ( !pNode1 || !pNode2 )
+ (*pnNodesAdded) += 2;
+ else if ( Type == 0 )
+ {
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, pNode1, Abc_ObjNot(pNode2) );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, Abc_ObjNot(pNode1), pNode2 );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ }
+ else
+ {
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, Abc_ObjNot(pNode1), Abc_ObjNot(pNode2) );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, pNode1, pNode2 );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ }
+ if ( *pnNodesAdded > nNodesSaved )
+ {
+ Vec_IntFree( vEdges );
+ return eQuit;
+ }
+ }
+ // add the resulting node to the form
+ Abc_NodeEdgeDsdPushOrdered( pGraph, vEdges, Dec_EdgeToInt(eNode3) );
+ }
+ // get the last node
+ eResult = Dec_IntToEdge( Vec_IntPop(vEdges) );
+ Vec_IntFree( vEdges );
+ // complement the graph if the node is complemented
+ eResult.fCompl ^= fCompl;
+ return eResult;
+ }
+ if ( DecType == DSD_NODE_PRIME )
+ {
+ DdNode * bLocal, * bVar, * bCofT, * bCofE;
+ bLocal = Dsd_TreeGetPrimeFunction( pManRst->dd, pNodeDsd ); Cudd_Ref( bLocal );
+//Extra_bddPrint( pManRst->dd, bLocal );
+
+ bVar = pManRst->dd->vars[0];
+ bCofE = Cudd_Cofactor( pManRst->dd, bLocal, Cudd_Not(bVar) ); Cudd_Ref( bCofE );
+ bCofT = Cudd_Cofactor( pManRst->dd, bLocal, bVar ); Cudd_Ref( bCofT );
+ if ( !Extra_bddIsVar(bCofE) || !Extra_bddIsVar(bCofT) )
+ {
+ Cudd_RecursiveDeref( pManRst->dd, bCofE );
+ Cudd_RecursiveDeref( pManRst->dd, bCofT );
+ bVar = pManRst->dd->vars[1];
+ bCofE = Cudd_Cofactor( pManRst->dd, bLocal, Cudd_Not(bVar) ); Cudd_Ref( bCofE );
+ bCofT = Cudd_Cofactor( pManRst->dd, bLocal, bVar ); Cudd_Ref( bCofT );
+ if ( !Extra_bddIsVar(bCofE) || !Extra_bddIsVar(bCofT) )
+ {
+ Cudd_RecursiveDeref( pManRst->dd, bCofE );
+ Cudd_RecursiveDeref( pManRst->dd, bCofT );
+ bVar = pManRst->dd->vars[2];
+ bCofE = Cudd_Cofactor( pManRst->dd, bLocal, Cudd_Not(bVar) ); Cudd_Ref( bCofE );
+ bCofT = Cudd_Cofactor( pManRst->dd, bLocal, bVar ); Cudd_Ref( bCofT );
+ if ( !Extra_bddIsVar(bCofE) || !Extra_bddIsVar(bCofT) )
+ {
+ Cudd_RecursiveDeref( pManRst->dd, bCofE );
+ Cudd_RecursiveDeref( pManRst->dd, bCofT );
+ Cudd_RecursiveDeref( pManRst->dd, bLocal );
+ Vec_IntFree( vEdges );
+ return eQuit;
+ }
+ }
+ }
+ Cudd_RecursiveDeref( pManRst->dd, bLocal );
+ // we found the control variable (bVar) and the var-cofactors (bCofT, bCofE)
+
+ // find the graph nodes
+ eNode1 = Dec_IntToEdge( Vec_IntEntry(vEdges, bVar->index) );
+ eNode2 = Dec_IntToEdge( Vec_IntEntry(vEdges, Cudd_Regular(bCofT)->index) );
+ eNode3 = Dec_IntToEdge( Vec_IntEntry(vEdges, Cudd_Regular(bCofE)->index) );
+ // add the complements to the graph nodes
+ eNode2.fCompl ^= Cudd_IsComplement(bCofT);
+ eNode3.fCompl ^= Cudd_IsComplement(bCofE);
+
+ // because the cofactors are vars, we can just as well deref them here
+ Cudd_RecursiveDeref( pManRst->dd, bCofE );
+ Cudd_RecursiveDeref( pManRst->dd, bCofT );
+
+ // find the ABC nodes
+ pNode1 = Dec_GraphNode( pGraph, eNode1.Node )->pFunc;
+ pNode2 = Dec_GraphNode( pGraph, eNode2.Node )->pFunc;
+ pNode3 = Dec_GraphNode( pGraph, eNode3.Node )->pFunc;
+ pNode1 = !pNode1? NULL : Abc_ObjNotCond( pNode1, eNode1.fCompl );
+ pNode2 = !pNode2? NULL : Abc_ObjNotCond( pNode2, eNode2.fCompl );
+ pNode3 = !pNode3? NULL : Abc_ObjNotCond( pNode3, eNode3.fCompl );
+
+ // check if the new node exists
+ Type = 0;
+ pNode4 = NULL;
+ if ( pNode1 && pNode2 && pNode3 )
+ pNode4 = Abc_AigMuxLookup( pManRst->pNtk->pManFunc, pNode1, pNode2, pNode3, &Type );
+
+ // create the new node
+ eResult = Dec_GraphAddNodeMux( pGraph, eNode1, eNode2, eNode3, Type ); // should have the same structure as AIG
+
+ // set level
+ Level1 = Dec_GraphNode( pGraph, eNode1.Node )->Level;
+ Level2 = Dec_GraphNode( pGraph, eNode2.Node )->Level;
+ Level3 = Dec_GraphNode( pGraph, eNode3.Node )->Level;
+ Dec_GraphNode( pGraph, eResult.Node )->Level = 2 + ABC_MAX( ABC_MAX(Level1, Level2), Level3 );
+ // get the new node if possible
+ if ( pNode4 )
+ {
+ Dec_GraphNode( pGraph, eResult.Node )->pFunc = Abc_ObjNotCond(pNode4, eResult.fCompl);
+ Level4 = Dec_GraphNode( pGraph, eResult.Node )->Level;
+ assert( Required == ABC_INFINITY || Level4 == (int)Abc_ObjRegular(pNode4)->Level );
+ }
+ if ( !pNode4 || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pNode4)) )
+ {
+ (*pnNodesAdded)++;
+ if ( Type == 0 )
+ {
+ if ( !pNode1 || !pNode2 )
+ (*pnNodesAdded)++;
+ else
+ {
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, pNode1, pNode2 );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ }
+ if ( !pNode1 || !pNode3 )
+ (*pnNodesAdded)++;
+ else
+ {
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, Abc_ObjNot(pNode1), pNode3 );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ }
+ }
+ else
+ {
+ if ( !pNode1 || !pNode2 )
+ (*pnNodesAdded)++;
+ else
+ {
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, pNode1, Abc_ObjNot(pNode2) );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ }
+ if ( !pNode1 || !pNode3 )
+ (*pnNodesAdded)++;
+ else
+ {
+ pTemp = Abc_AigAndLookup( pManRst->pNtk->pManFunc, Abc_ObjNot(pNode1), Abc_ObjNot(pNode3) );
+ if ( !pTemp || Abc_NodeIsTravIdCurrent(Abc_ObjRegular(pTemp)) )
+ (*pnNodesAdded)++;
+ }
+ }
+ if ( *pnNodesAdded > nNodesSaved )
+ {
+ Vec_IntFree( vEdges );
+ return eQuit;
+ }
+ }
+
+ Vec_IntFree( vEdges );
+ // complement the graph if the node was complemented
+ eResult.fCompl ^= fCompl;
+ return eResult;
+ }
+ Vec_IntFree( vEdges );
+ return eQuit;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Evaluation one DSD.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeEvaluateDsd( Abc_ManRst_t * pManRst, Dsd_Node_t * pNodeDsd, Abc_Obj_t * pRoot, int Required, int nNodesSaved, int * pnNodesAdded )
+{
+ Dec_Graph_t * pGraph;
+ Dec_Edge_t gEdge;
+ Abc_Obj_t * pLeaf;
+ Dec_Node_t * pNode;
+ int i;
+
+ // create the graph and set the leaves
+ pGraph = Dec_GraphCreate( Vec_PtrSize(pManRst->vLeaves) );
+ Dec_GraphForEachLeaf( pGraph, pNode, i )
+ {
+ pLeaf = Vec_PtrEntry( pManRst->vLeaves, i );
+ pNode->pFunc = pLeaf;
+ pNode->Level = pLeaf->Level;
+ }
+
+ // create the decomposition structure from the DSD
+ *pnNodesAdded = 0;
+ gEdge = Abc_NodeEvaluateDsd_rec( pGraph, pManRst, pNodeDsd, Required, nNodesSaved, pnNodesAdded );
+ if ( gEdge.Node > 1000 ) // infeasible
+ {
+ *pnNodesAdded = -1;
+ Dec_GraphFree( pGraph );
+ return NULL;
+ }
+
+ // quit if the root node is the same
+ pLeaf = Dec_GraphNode( pGraph, gEdge.Node )->pFunc;
+ if ( Abc_ObjRegular(pLeaf) == pRoot )
+ {
+ *pnNodesAdded = -1;
+ Dec_GraphFree( pGraph );
+ return NULL;
+ }
+
+ Dec_GraphSetRoot( pGraph, gEdge );
+ return pGraph;
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Starts the cut manager for rewriting.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Cut_Man_t * Abc_NtkStartCutManForRestruct( Abc_Ntk_t * pNtk, int nCutMax, int fDag )
+{
+ static Cut_Params_t Params, * pParams = &Params;
+ Cut_Man_t * pManCut;
+ Abc_Obj_t * pObj;
+ int i;
+ // start the cut manager
+ memset( pParams, 0, sizeof(Cut_Params_t) );
+ pParams->nVarsMax = nCutMax; // the max cut size ("k" of the k-feasible cuts)
+ pParams->nKeepMax = 250; // the max number of cuts kept at a node
+ pParams->fTruth = 0; // compute truth tables
+ pParams->fFilter = 1; // filter dominated cuts
+ pParams->fSeq = 0; // compute sequential cuts
+ pParams->fDrop = 0; // drop cuts on the fly
+ pParams->fDag = fDag; // compute DAG cuts
+ pParams->fTree = 0; // compute tree cuts
+ pParams->fVerbose = 0; // the verbosiness flag
+ pParams->nIdsMax = Abc_NtkObjNumMax( pNtk );
+ pManCut = Cut_ManStart( pParams );
+ if ( pParams->fDrop )
+ Cut_ManSetFanoutCounts( pManCut, Abc_NtkFanoutCounts(pNtk) );
+ // set cuts for PIs
+ Abc_NtkForEachCi( pNtk, pObj, i )
+ if ( Abc_ObjFanoutNum(pObj) > 0 )
+ Cut_NodeSetTriv( pManCut, pObj->Id );
+ return pManCut;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Starts the resynthesis manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_ManRst_t * Abc_NtkManRstStart( int nCutMax, bool fUpdateLevel, bool fUseZeros, bool fVerbose )
+{
+ Abc_ManRst_t * p;
+ p = ALLOC( Abc_ManRst_t, 1 );
+ memset( p, 0, sizeof(Abc_ManRst_t) );
+ // set the parameters
+ p->nCutMax = nCutMax;
+ p->fUpdateLevel = fUpdateLevel;
+ p->fUseZeros = fUseZeros;
+ p->fVerbose = fVerbose;
+ // start the BDD manager
+ p->dd = Cudd_Init( p->nCutMax, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );
+ Cudd_zddVarsFromBddVars( p->dd, 2 );
+ // start the DSD manager
+ p->pManDsd = Dsd_ManagerStart( p->dd, p->dd->size, 0 );
+ // other temp datastructures
+ p->vVisited = Vec_PtrAlloc( 100 );
+ p->vLeaves = Vec_PtrAlloc( 100 );
+ p->vDecs = Vec_PtrAlloc( 100 );
+ p->vTemp = Vec_PtrAlloc( 100 );
+ p->vSims = Vec_IntAlloc( 100 );
+ p->vOnes = Vec_IntAlloc( 100 );
+ p->vBinate = Vec_IntAlloc( 100 );
+ p->vTwos = Vec_IntAlloc( 100 );
+ p->vRands = Vec_IntAlloc( 20 );
+
+ {
+ int i;
+ for ( i = 0; i < 20; i++ )
+ Vec_IntPush( p->vRands, (int)RST_RANDOM_UNSIGNED );
+ }
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Stops the resynthesis manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NtkManRstStop( Abc_ManRst_t * p )
+{
+ Dsd_ManagerStop( p->pManDsd );
+ Extra_StopManager( p->dd );
+ Vec_PtrFree( p->vDecs );
+ Vec_PtrFree( p->vLeaves );
+ Vec_PtrFree( p->vVisited );
+ Vec_PtrFree( p->vTemp );
+ Vec_IntFree( p->vSims );
+ Vec_IntFree( p->vOnes );
+ Vec_IntFree( p->vBinate );
+ Vec_IntFree( p->vTwos );
+ Vec_IntFree( p->vRands );
+ free( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Stops the resynthesis manager.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NtkManRstPrintStats( Abc_ManRst_t * p )
+{
+ printf( "Refactoring statistics:\n" );
+ printf( "Nodes considered = %8d.\n", p->nNodesConsidered );
+ printf( "Cuts considered = %8d.\n", p->nCutsConsidered );
+ printf( "Cuts explored = %8d.\n", p->nCutsExplored );
+ printf( "Nodes restructured = %8d.\n", p->nNodesRestructured );
+ printf( "Calculated gain = %8d.\n", p->nNodesGained );
+ PRT( "Cuts ", p->timeCut );
+ PRT( "Resynthesis", p->timeRes );
+ PRT( " BDD ", p->timeBdd );
+ PRT( " DSD ", p->timeDsd );
+ PRT( " Eval ", p->timeEval );
+ PRT( "AIG update ", p->timeNtk );
+ PRT( "TOTAL ", p->timeTotal );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_Abc_NodeResubCollectDivs( Abc_ManRst_t * p, Abc_Obj_t * pRoot, Cut_Cut_t * pCut )
+{
+ Abc_Obj_t * pNode, * pFanout;
+ int i, k;
+ // collect the leaves of the cut
+ Vec_PtrClear( p->vDecs );
+ Abc_NtkIncrementTravId( pRoot->pNtk );
+ for ( i = 0; i < (int)pCut->nLeaves; i++ )
+ {
+ pNode = Abc_NtkObj(pRoot->pNtk, pCut->pLeaves[i]);
+ if ( pNode == NULL ) // the so-called "bad cut phenomenon" is due to removed nodes
+ return 0;
+ Vec_PtrPush( p->vDecs, pNode );
+ Abc_NodeSetTravIdCurrent( pNode );
+ }
+ // explore the fanouts
+ Vec_PtrForEachEntry( p->vDecs, pNode, i )
+ {
+ // if the fanout has both fanins in the set, add it
+ Abc_ObjForEachFanout( pNode, pFanout, k )
+ {
+ if ( Abc_NodeIsTravIdCurrent(pFanout) || Abc_ObjIsPo(pFanout) )
+ continue;
+ if ( Abc_NodeIsTravIdCurrent(Abc_ObjFanin0(pFanout)) && Abc_NodeIsTravIdCurrent(Abc_ObjFanin1(pFanout)) )
+ {
+ Vec_PtrPush( p->vDecs, pFanout );
+ Abc_NodeSetTravIdCurrent( pFanout );
+ }
+ }
+ }
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_NodeResubMffc_rec( Abc_Obj_t * pNode )
+{
+ if ( Abc_NodeIsTravIdCurrent(pNode) )
+ return 0;
+ Abc_NodeSetTravIdCurrent( pNode );
+ return 1 + Abc_NodeResubMffc_rec( Abc_ObjFanin0(pNode) ) +
+ Abc_NodeResubMffc_rec( Abc_ObjFanin1(pNode) );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_NodeResubMffc( Abc_ManRst_t * p, Vec_Ptr_t * vDecs, int nLeaves, Abc_Obj_t * pRoot )
+{
+ Abc_Obj_t * pObj;
+ int Counter, i, k;
+ // increment the traversal ID for the leaves
+ Abc_NtkIncrementTravId( pRoot->pNtk );
+ // label the leaves
+ Vec_PtrForEachEntryStop( vDecs, pObj, i, nLeaves )
+ Abc_NodeSetTravIdCurrent( pObj );
+ // make sure the node is in the cone and is no one of the leaves
+ assert( Abc_NodeIsTravIdPrevious(pRoot) );
+ Counter = Abc_NodeResubMffc_rec( pRoot );
+ // move the labeled nodes to the end
+ Vec_PtrClear( p->vTemp );
+ k = 0;
+ Vec_PtrForEachEntryStart( vDecs, pObj, i, nLeaves )
+ if ( Abc_NodeIsTravIdCurrent(pObj) )
+ Vec_PtrPush( p->vTemp, pObj );
+ else
+ Vec_PtrWriteEntry( vDecs, k++, pObj );
+ // add the labeled nodes
+ Vec_PtrForEachEntry( p->vTemp, pObj, i )
+ Vec_PtrWriteEntry( vDecs, k++, pObj );
+ assert( k == Vec_PtrSize(p->vDecs) );
+ assert( pRoot == Vec_PtrEntryLast(p->vDecs) );
+ return Counter;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs simulation.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_NodeMffcSimulate( Vec_Ptr_t * vDecs, int nLeaves, Vec_Int_t * vRands, Vec_Int_t * vSims )
+{
+ Abc_Obj_t * pObj;
+ unsigned uData0, uData1, uData;
+ int i;
+ // initialize random simulation data
+ Vec_IntClear( vSims );
+ Vec_PtrForEachEntryStop( vDecs, pObj, i, nLeaves )
+ {
+ uData = (unsigned)Vec_IntEntry( vRands, i );
+ pObj->pData = (void *)uData;
+ Vec_IntPush( vSims, uData );
+ }
+ // simulate
+ Vec_PtrForEachEntryStart( vDecs, pObj, i, nLeaves )
+ {
+ uData0 = (unsigned)Abc_ObjFanin0(pObj)->pData;
+ uData1 = (unsigned)Abc_ObjFanin1(pObj)->pData;
+ uData = (Abc_ObjFaninC0(pObj)? ~uData0 : uData0) & (Abc_ObjFaninC1(pObj)? ~uData1 : uData1);
+ pObj->pData = (void *)uData;
+ Vec_IntPush( vSims, uData );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Full equality check.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_NodeCheckFull( Abc_ManRst_t * p, Dec_Graph_t * pGraph )
+{
+ return 1;
+}
+/**Function*************************************************************
+
+ Synopsis [Detect contants.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeMffcConstants( Abc_ManRst_t * p, Vec_Int_t * vSims )
+{
+ Dec_Graph_t * pGraph;
+ unsigned uRoot;
+ // get the root node
+ uRoot = (unsigned)Vec_IntEntryLast( vSims );
+ // get the graph if the node looks constant
+ if ( uRoot == 0 )
+ pGraph = Dec_GraphCreateConst0();
+ else if ( uRoot == ~(unsigned)0 )
+ pGraph = Dec_GraphCreateConst1();
+ // check the graph
+ if ( Abc_NodeCheckFull( p, pGraph ) )
+ return pGraph;
+ Dec_GraphFree( pGraph );
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Detect single non-overlaps.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeMffcSingleVar( Abc_ManRst_t * p, Vec_Int_t * vSims, int nNodes, Vec_Int_t * vOnes )
+{
+ Dec_Graph_t * pGraph;
+ unsigned uRoot, uNode;
+ int i;
+
+ Vec_IntClear( vOnes );
+ Vec_IntClear( p->vBinate );
+ uRoot = (unsigned)Vec_IntEntryLast( vSims );
+ for ( i = 0; i < nNodes; i++ )
+ {
+ uNode = (unsigned)Vec_IntEntry( vSims, i );
+ if ( uRoot == uNode || uRoot == ~uNode )
+ {
+ pGraph = Dec_GraphCreate( 1 );
+ Dec_GraphNode( pGraph, 0 )->pFunc = Vec_PtrEntry( p->vDecs, i );
+ Dec_GraphSetRoot( pGraph, Dec_IntToEdge( (int)(uRoot == ~uNode) ) );
+ // check the graph
+ if ( Abc_NodeCheckFull( p, pGraph ) )
+ return pGraph;
+ Dec_GraphFree( pGraph );
+ }
+ if ( (uRoot & uNode) == 0 )
+ Vec_IntPush( vOnes, i << 1 );
+ else if ( (uRoot & ~uNode) == 0 )
+ Vec_IntPush( vOnes, (i << 1) + 1 );
+ else
+ Vec_IntPush( p->vBinate, i );
+ }
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Detect single non-overlaps.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeMffcSingleNode( Abc_ManRst_t * p, Vec_Int_t * vSims, int nNodes, Vec_Int_t * vOnes )
+{
+ Dec_Graph_t * pGraph;
+ Dec_Edge_t eNode0, eNode1, eRoot;
+ unsigned uRoot;
+ int i, k;
+ uRoot = (unsigned)Vec_IntEntryLast( vSims );
+ for ( i = 0; i < vOnes->nSize; i++ )
+ for ( k = i+1; k < vOnes->nSize; k++ )
+ if ( ~uRoot == ((unsigned)vOnes->pArray[i] | (unsigned)vOnes->pArray[k]) )
+ {
+ eNode0 = Dec_IntToEdge( vOnes->pArray[i] ^ 1 );
+ eNode1 = Dec_IntToEdge( vOnes->pArray[k] ^ 1 );
+ pGraph = Dec_GraphCreate( 2 );
+ Dec_GraphNode( pGraph, 0 )->pFunc = Vec_PtrEntry( p->vDecs, eNode0.Node );
+ Dec_GraphNode( pGraph, 1 )->pFunc = Vec_PtrEntry( p->vDecs, eNode1.Node );
+ eRoot = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 );
+ Dec_GraphSetRoot( pGraph, eRoot );
+ if ( Abc_NodeCheckFull( p, pGraph ) )
+ return pGraph;
+ Dec_GraphFree( pGraph );
+ }
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Detect single non-overlaps.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeMffcDoubleNode( Abc_ManRst_t * p, Vec_Int_t * vSims, int nNodes, Vec_Int_t * vOnes )
+{
+// Dec_Graph_t * pGraph;
+// unsigned uRoot, uNode;
+// int i;
+
+
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Evaluates resubstution of one cut.]
+
+ Description [Returns the graph to add if any.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeResubEval( Abc_ManRst_t * p, Abc_Obj_t * pRoot, Cut_Cut_t * pCut )
+{
+ Dec_Graph_t * pGraph;
+ int nNodesSaved;
+
+ // collect the nodes in the cut
+ if ( !Abc_Abc_NodeResubCollectDivs( p, pRoot, pCut ) )
+ return NULL;
+
+ // label MFFC and count its size
+ nNodesSaved = Abc_NodeResubMffc( p, p->vDecs, pCut->nLeaves, pRoot );
+ assert( nNodesSaved > 0 );
+
+ // simulate MFFC
+ Abc_NodeMffcSimulate( p->vDecs, pCut->nLeaves, p->vRands, p->vSims );
+
+ // check for constant output
+ pGraph = Abc_NodeMffcConstants( p, p->vSims );
+ if ( pGraph )
+ {
+ p->nNodesGained += nNodesSaved;
+ p->nNodesRestructured++;
+ return pGraph;
+ }
+
+ // check for one literal (fill up the ones array)
+ pGraph = Abc_NodeMffcSingleVar( p, p->vSims, Vec_IntSize(p->vSims) - nNodesSaved, p->vOnes );
+ if ( pGraph )
+ {
+ p->nNodesGained += nNodesSaved;
+ p->nNodesRestructured++;
+ return pGraph;
+ }
+ if ( nNodesSaved == 1 )
+ return NULL;
+
+ // look for one node
+ pGraph = Abc_NodeMffcSingleNode( p, p->vSims, Vec_IntSize(p->vSims) - nNodesSaved, p->vOnes );
+ if ( pGraph )
+ {
+ p->nNodesGained += nNodesSaved - 1;
+ p->nNodesRestructured++;
+ return pGraph;
+ }
+ if ( nNodesSaved == 2 )
+ return NULL;
+
+ // look for two nodes
+ pGraph = Abc_NodeMffcDoubleNode( p, p->vSims, Vec_IntSize(p->vSims) - nNodesSaved, p->vOnes );
+ if ( pGraph )
+ {
+ p->nNodesGained += nNodesSaved - 2;
+ p->nNodesRestructured++;
+ return pGraph;
+ }
+ if ( nNodesSaved == 3 )
+ return NULL;
+/*
+ // look for MUX/EXOR
+ pGraph = Abc_NodeMffcMuxNode( p, p->vSims, Vec_IntSize(p->vSims) - nNodesSaved );
+ if ( pGraph )
+ {
+ p->nNodesGained += nNodesSaved - 1;
+ p->nNodesRestructured++;
+ return pGraph;
+ }
+*/
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Performs resubstution.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_NodeResubstitute( Abc_ManRst_t * p, Abc_Obj_t * pNode, Cut_Cut_t * pCutList )
+{
+ Dec_Graph_t * pGraph, * pGraphBest = NULL;
+ Cut_Cut_t * pCut;
+ int nCuts;
+ p->nNodesConsidered++;
+
+ // count the number of cuts with four inputs or more
+ nCuts = 0;
+ for ( pCut = pCutList; pCut; pCut = pCut->pNext )
+ nCuts += (int)(pCut->nLeaves > 3);
+ printf( "-----------------------------------\n" );
+ printf( "Node %6d : Factor-cuts = %5d.\n", pNode->Id, nCuts );
+
+ // go through the interesting cuts
+ for ( pCut = pCutList; pCut; pCut = pCut->pNext )
+ {
+ if ( pCut->nLeaves < 4 )
+ continue;
+ pGraph = Abc_NodeResubEval( p, pNode, pCut );
+ if ( pGraph == NULL )
+ continue;
+ if ( !pGraphBest || Dec_GraphNodeNum(pGraph) < Dec_GraphNodeNum(pGraphBest) )
+ {
+ if ( pGraphBest )
+ Dec_GraphFree(pGraphBest);
+ pGraphBest = pGraph;
+ }
+ else
+ Dec_GraphFree(pGraph);
+ }
+ return pGraphBest;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+