diff options
| author | Alan Mishchenko <alanmi@berkeley.edu> | 2006-12-06 08:01:00 -0800 | 
|---|---|---|
| committer | Alan Mishchenko <alanmi@berkeley.edu> | 2006-12-06 08:01:00 -0800 | 
| commit | 4cf99cae95c629b31d6d89c5dcea2eeb17654c85 (patch) | |
| tree | dd5984cdf1b9332b800921fd89cf190aa2c4d8d9 /src | |
| parent | 38254947a57b9899909d8fbabfbf784690ed5a68 (diff) | |
| download | abc-4cf99cae95c629b31d6d89c5dcea2eeb17654c85.tar.gz abc-4cf99cae95c629b31d6d89c5dcea2eeb17654c85.tar.bz2 abc-4cf99cae95c629b31d6d89c5dcea2eeb17654c85.zip | |
Version abc61206
Diffstat (limited to 'src')
| -rw-r--r-- | src/aig/ivy/ivy.h | 2 | ||||
| -rw-r--r-- | src/aig/ivy/ivyFactor.c | 783 | ||||
| -rw-r--r-- | src/aig/ivy/ivyFpga.c | 378 | ||||
| -rw-r--r-- | src/aig/ivy/module.make | 1 | ||||
| -rw-r--r-- | src/base/abc/abcSop.c | 4 | ||||
| -rw-r--r-- | src/base/abci/abc.c | 46 | ||||
| -rw-r--r-- | src/base/abci/abcIf.c | 29 | ||||
| -rw-r--r-- | src/base/abci/abcRenode.c | 68 | ||||
| -rw-r--r-- | src/map/if/if.h | 1 | ||||
| -rw-r--r-- | src/map/if/ifMan.c | 9 | ||||
| -rw-r--r-- | src/map/if/ifTruth.c | 5 | ||||
| -rw-r--r-- | src/misc/extra/extra.h | 1 | ||||
| -rw-r--r-- | src/misc/extra/extraUtilTruth.c | 58 | ||||
| -rw-r--r-- | src/misc/vec/vecInt.h | 3 | ||||
| -rw-r--r-- | src/opt/kit/kit.h | 334 | ||||
| -rw-r--r-- | src/opt/kit/kitBdd.c | 231 | ||||
| -rw-r--r-- | src/opt/kit/kitFactor.c | 337 | ||||
| -rw-r--r-- | src/opt/kit/kitGraph.c | 367 | ||||
| -rw-r--r-- | src/opt/kit/kitHop.c | 115 | ||||
| -rw-r--r-- | src/opt/kit/kitIsop.c (renamed from src/aig/ivy/ivyIsop.c) | 86 | ||||
| -rw-r--r-- | src/opt/kit/kitSop.c | 570 | ||||
| -rw-r--r-- | src/opt/kit/kitTruth.c | 1088 | ||||
| -rw-r--r-- | src/opt/kit/kit_.c | 48 | ||||
| -rw-r--r-- | src/opt/kit/module.make | 7 | ||||
| -rw-r--r-- | src/sat/bsat/satSolver.c | 14 | 
25 files changed, 3271 insertions, 1314 deletions
| diff --git a/src/aig/ivy/ivy.h b/src/aig/ivy/ivy.h index 91d4d767..f48466ef 100644 --- a/src/aig/ivy/ivy.h +++ b/src/aig/ivy/ivy.h @@ -466,8 +466,6 @@ extern void            Ivy_ManHaigPostprocess( Ivy_Man_t * p, int fVerbose );  extern void            Ivy_ManHaigCreateObj( Ivy_Man_t * p, Ivy_Obj_t * pObj );  extern void            Ivy_ManHaigCreateChoice( Ivy_Man_t * p, Ivy_Obj_t * pObjOld, Ivy_Obj_t * pObjNew );  extern void            Ivy_ManHaigSimulate( Ivy_Man_t * p ); -/*=== ivyIsop.c ==========================================================*/ -extern int             Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBoth );  /*=== ivyMan.c ==========================================================*/  extern Ivy_Man_t *     Ivy_ManStart();  extern Ivy_Man_t *     Ivy_ManStartFrom( Ivy_Man_t * p ); diff --git a/src/aig/ivy/ivyFactor.c b/src/aig/ivy/ivyFactor.c deleted file mode 100644 index 19a40b3f..00000000 --- a/src/aig/ivy/ivyFactor.c +++ /dev/null @@ -1,783 +0,0 @@ -/**CFile**************************************************************** - -  FileName    [ivyFactor.c] - -  SystemName  [ABC: Logic synthesis and verification system.] - -  PackageName [And-Inverter Graph package.] - -  Synopsis    [Factoring the cover up to 16 inputs.] - -  Author      [Alan Mishchenko] -   -  Affiliation [UC Berkeley] - -  Date        [Ver. 1.0. Started - May 11, 2006.] - -  Revision    [$Id: ivyFactor.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "ivy.h" -#include "dec.h" - -//////////////////////////////////////////////////////////////////////// -///                        DECLARATIONS                              /// -//////////////////////////////////////////////////////////////////////// - -// ISOP computation fails if intermediate memory usage exceed this limit -#define IVY_FACTOR_MEM_LIMIT  16*4096 - -// intermediate ISOP representation -typedef struct Ivy_Sop_t_ Ivy_Sop_t; -struct Ivy_Sop_t_ -{ -    unsigned * uCubes; -    int        nCubes; -}; - -static inline int          Ivy_CubeHasLit( unsigned uCube, int i )              { return (uCube &  (unsigned)(1<<i)) > 0;} -static inline unsigned     Ivy_CubeSetLit( unsigned uCube, int i )              { return  uCube |  (unsigned)(1<<i);     } -static inline unsigned     Ivy_CubeXorLit( unsigned uCube, int i )              { return  uCube ^  (unsigned)(1<<i);     } -static inline unsigned     Ivy_CubeRemLit( unsigned uCube, int i )              { return  uCube & ~(unsigned)(1<<i);     } - -static inline int          Ivy_CubeContains( unsigned uLarge, unsigned uSmall ) { return (uLarge & uSmall) == uSmall;    } -static inline unsigned     Ivy_CubeSharp( unsigned uCube, unsigned uPart )      { return uCube & ~uPart;                 } -static inline unsigned     Ivy_CubeMask( int nVar )                             { return (~(unsigned)0) >> (32-nVar);    } - -static inline int          Ivy_CubeIsMarked( unsigned uCube )                   { return Ivy_CubeHasLit( uCube, 31 );    } -static inline void         Ivy_CubeMark( unsigned uCube )                       { Ivy_CubeSetLit( uCube, 31 );           } -static inline void         Ivy_CubeUnmark( unsigned uCube )                     { Ivy_CubeRemLit( uCube, 31 );           } - -static inline int          Ivy_SopCubeNum( Ivy_Sop_t * cSop )                   { return cSop->nCubes;                   } -static inline unsigned     Ivy_SopCube( Ivy_Sop_t * cSop, int i )               { return cSop->uCubes[i];                } -static inline void         Ivy_SopAddCube( Ivy_Sop_t * cSop, unsigned uCube )   { cSop->uCubes[cSop->nCubes++] = uCube;  } -static inline void         Ivy_SopSetCube( Ivy_Sop_t * cSop, unsigned uCube, int i ) { cSop->uCubes[i] = uCube;          } -static inline void         Ivy_SopShrink( Ivy_Sop_t * cSop, int nCubesNew )     { cSop->nCubes = nCubesNew;              } - -// iterators -#define Ivy_SopForEachCube( cSop, uCube, i )                                      \ -    for ( i = 0; (i < Ivy_SopCubeNum(cSop)) && ((uCube) = Ivy_SopCube(cSop, i)); i++ ) -#define Ivy_CubeForEachLiteral( uCube, Lit, nLits, i )                            \ -    for ( i = 0; (i < (nLits)) && ((Lit) = Ivy_CubeHasLit(uCube, i)); i++ ) - -/**Function************************************************************* - -  Synopsis    [Divides cover by one cube.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopDivideByCube( Vec_Int_t * vStore, int nVars, Ivy_Sop_t * cSop, Ivy_Sop_t * cDiv, Ivy_Sop_t * vQuo, Ivy_Sop_t * vRem ) -{ -    unsigned uCube, uDiv; -    int i; -    // get the only cube -    assert( Ivy_SopCubeNum(cDiv) == 1 ); -    uDiv = Ivy_SopCube(cDiv, 0); -    // allocate covers -    vQuo->nCubes = 0; -    vQuo->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) ); -    vRem->nCubes = 0; -    vRem->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) ); -    // sort the cubes -    Ivy_SopForEachCube( cSop, uCube, i ) -    { -        if ( Ivy_CubeContains( uCube, uDiv ) ) -            Ivy_SopAddCube( vQuo, Ivy_CubeSharp(uCube, uDiv) ); -        else -            Ivy_SopAddCube( vRem, uCube ); -    } -} - -/**Function************************************************************* - -  Synopsis    [Divides cover by one cube.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopDivideInternal( Vec_Int_t * vStore, int nVars, Ivy_Sop_t * cSop, Ivy_Sop_t * cDiv, Ivy_Sop_t * vQuo, Ivy_Sop_t * vRem ) -{ -    unsigned uCube, uCube2, uDiv, uDiv2, uQuo; -    int i, i2, k, k2; -    assert( Ivy_SopCubeNum(cSop) >= Ivy_SopCubeNum(cDiv) ); -    if ( Ivy_SopCubeNum(cDiv) == 1 ) -    { -        Ivy_SopDivideByCube( cSop, cDiv, vQuo, vRem ); -        return; -    } -    // allocate quotient -    vQuo->nCubes = 0; -    vQuo->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) / Ivy_SopCubeNum(cDiv) ); -    // for each cube of the cover -    // it either belongs to the quotient or to the remainder -    Ivy_SopForEachCube( cSop, uCube, i ) -    { -        // skip taken cubes -        if ( Ivy_CubeIsMarked(uCube) ) -            continue; -        // mark the cube -        Ivy_SopSetCube( cSop, Ivy_CubeMark(uCube), i ); -        // find a matching cube in the divisor -        Ivy_SopForEachCube( cDiv, uDiv, k ) -            if ( Ivy_CubeContains( uCube, uDiv ) ) -                break; -        // the case when the cube is not found -        // (later we will add marked cubes to the remainder) -        if ( k == Ivy_SopCubeNum(cDiv) ) -            continue; -        // if the quotient cube exist, it will be  -        uQuo = Ivy_CubeSharp( uCube, uDiv ); -        // try to find other cubes of the divisor -        Ivy_SopForEachCube( cDiv, uDiv2, k2 ) -        { -            if ( k2 == k ) -                continue; -            // find a matching cube -            Ivy_SopForEachCube( cSop, uCube2, i2 ) -            { -                // skip taken cubes -                if ( Ivy_CubeIsMarked(uCube2) ) -                    continue; -                // check if the cube can be used -                if ( Ivy_CubeContains( uCube2, uDiv2 ) && uQuo == Ivy_CubeSharp( uCube2, uDiv2 ) ) -                    break; -            } -            // the case when the cube is not found -            if ( i2 == Ivy_SopCubeNum(cSop) ) -                break; -            // the case when the cube is found - mark it and keep going -            Ivy_SopSetCube( cSop, Ivy_CubeMark(uCube2), i2 ); -        } -        // if we did not find some cube, continue  -        // (later we will add marked cubes to the remainder) -        if ( k2 != Ivy_SopCubeNum(cDiv) ) -            continue; -        // we found all cubes - add the quotient cube -        Ivy_SopAddCube( vQuo, uQuo ); -    } -    // allocate remainder -    vRem->nCubes = 0; -    vRem->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) - Ivy_SopCubeNum(vQuo) * Ivy_SopCubeNum(cDiv) ); -    // finally add the remaining cubes to the remainder  -    // and clean the marked cubes in the cover -    Ivy_SopForEachCube( cSop, uCube, i ) -    { -        if ( !Ivy_CubeIsMarked(uCube) ) -            continue; -        Ivy_SopSetCube( cSop, Ivy_CubeUnmark(uCube), i ); -        Ivy_SopAddCube( vRem, Ivy_CubeUnmark(uCube) ); -    } -} - -/**Function************************************************************* - -  Synopsis    [Derives the quotient of division by literal.] - -  Description [Reduces the cover to be the equal to the result of -  division of the given cover by the literal.] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopDivideByLiteralQuo( Ivy_Sop_t * cSop, int iLit ) -{ -    unsigned uCube; -    int i, k = 0; -    Ivy_SopForEachCube( cSop, uCube, i ) -    { -        if ( Ivy_CubeHasLit(uCube, iLit) ) -            Ivy_SopSetCube( cSop, Ivy_CubeRemLit(uCube, iLit), k++ ); -    } -    Ivy_SopShrink( cSop, k ); -} - -/**Function************************************************************* - -  Synopsis    [] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopCommonCubeCover( Ivy_Sop_t * cSop, Ivy_Sop_t * vCommon, Vec_Int_t * vStore ) -{ -    unsigned uTemp, uCube; -    int i; -    uCube = ~(unsigned)0; -    Ivy_SopForEachCube( cSop, uTemp, i ) -        uCube &= uTemp; -    vCommon->nCubes = 0; -    vCommon->uCubes = Vec_IntFetch( vStore, 1 ); -    Ivy_SopPush( vCommon, uCube ); -} - -/**Function************************************************************* - -  Synopsis    [] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopCreateInverse( Ivy_Sop_t * cSop, Vec_Int_t * vInput, int nVars, Vec_Int_t * vStore ) -{ -    unsigned uCube, uMask; -    int i; -    // start the cover -    cSop->nCubes = 0; -    cSop->uCubes = Vec_IntFetch( vStore, Vec_IntSize(vInput) ); -    // add the cubes -    uMask = Ivy_CubeMask( nVars ); -    Vec_IntForEachEntry( vInput, uCube, i ) -        Vec_IntPush( cSop, Ivy_CubeSharp(uMask, uCube) ); -} - -/**Function************************************************************* - -  Synopsis    [] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopDup( Ivy_Sop_t * cSop, Ivy_Sop_t * vCopy, Vec_Int_t * vStore ) -{ -    unsigned uCube; -    int i; -    // start the cover -    vCopy->nCubes = 0; -    vCopy->uCubes = Vec_IntFetch( vStore, Vec_IntSize(cSop) ); -    // add the cubes -    Ivy_SopForEachCube( cSop, uTemp, i ) -        Ivy_SopPush( vCopy, uTemp ); -} - - -/**Function************************************************************* - -  Synopsis    [Find the least often occurring literal.] - -  Description [Find the least often occurring literal among those -  that occur more than once.] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -int Ivy_SopWorstLiteral( Ivy_Sop_t * cSop, int nLits ) -{ -    unsigned uCube; -    int nWord, nBit; -    int i, k, iMin, nLitsMin, nLitsCur; -    int fUseFirst = 1; - -    // go through each literal -    iMin = -1; -    nLitsMin = 1000000; -    for ( i = 0; i < nLits; i++ ) -    { -        // go through all the cubes -        nLitsCur = 0; -        Ivy_SopForEachCube( cSop, uCube, k ) -            if ( Ivy_CubeHasLit(uCube, i) ) -                nLitsCur++; -        // skip the literal that does not occur or occurs once -        if ( nLitsCur < 2 ) -            continue; -        // check if this is the best literal -        if ( fUseFirst ) -        { -            if ( nLitsMin > nLitsCur ) -            { -                nLitsMin = nLitsCur; -                iMin = i; -            } -        } -        else -        { -            if ( nLitsMin >= nLitsCur ) -            { -                nLitsMin = nLitsCur; -                iMin = i; -            } -        } -    } -    if ( nLitsMin < 1000000 ) -        return iMin; -    return -1; -} - -/**Function************************************************************* - -  Synopsis    [Computes a level-zero kernel.] - -  Description [Modifies the cover to contain one level-zero kernel.] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopMakeCubeFree( Ivy_Sop_t * cSop ) -{ -    unsigned uMask; -    int i; -    assert( Ivy_SopCubeNum(cSop) > 0 ); -    // find the common cube -    uMask = ~(unsigned)0; -    Ivy_SopForEachCube( cSop, uCube, i ) -        uMask &= uCube; -    if ( uMask == 0 ) -        return; -    // remove the common cube -    Ivy_SopForEachCube( cSop, uCube, i ) -        Ivy_SopSetCube( cSop, Ivy_CubeSharp(uCube, uMask), i ); -} - -/**Function************************************************************* - -  Synopsis    [Computes a level-zero kernel.] - -  Description [Modifies the cover to contain one level-zero kernel.] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_SopDivisorZeroKernel_rec( Ivy_Sop_t * cSop, int nLits ) -{ -    int iLit; -    // find any literal that occurs at least two times -    iLit = Ivy_SopWorstLiteral( cSop, nLits ); -    if ( iLit == -1 ) -        return; -    // derive the cube-free quotient -    Ivy_SopDivideByLiteralQuo( cSop, iLit ); // the same cover -    Ivy_SopMakeCubeFree( cSop );             // the same cover -    // call recursively -    Ivy_SopDivisorZeroKernel_rec( cSop );    // the same cover -} - -/**Function************************************************************* - -  Synopsis    [Returns the quick divisor of the cover.] - -  Description [Returns NULL, if there is not divisor other than -  trivial.] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -int Ivy_SopDivisor( Ivy_Sop_t * cSop, int nLits, Ivy_Sop_t * cDiv, Vec_Int_t * vStore ) -{ -    if ( Ivy_SopCubeNum(cSop) <= 1 ) -        return 0; -    if ( Ivy_SopWorstLiteral( cSop, nLits ) == -1 ) -        return 0; -    // duplicate the cover -    Ivy_SopDup( cSop, cDiv, vStore ); -    // perform the kerneling -    Ivy_SopDivisorZeroKernel_rec( cDiv, int nLits ); -    assert( Ivy_SopCubeNum(cDiv) > 0 ); -    return 1; -} - - - - - -extern Dec_Edge_t  Dec_Factor32_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars ); -extern Dec_Edge_t  Dec_Factor32LF_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars, Vec_Int_t * vSimple ); -extern Dec_Edge_t  Dec_Factor32Trivial( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars ); -extern Dec_Edge_t  Dec_Factor32TrivialCube( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars, unsigned uCube, Vec_Int_t * vEdgeLits ); -extern Dec_Edge_t  Dec_Factor32TrivialTree_rec( Dec_Graph_t * pFForm, Dec_Edge_t * peNodes, int nNodes, int fNodeOr ); -extern int         Dec_Factor32Verify( Vec_Int_t * cSop, Dec_Graph_t * pFForm ) - - -//////////////////////////////////////////////////////////////////////// -///                     FUNCTION DEFINITIONS                         /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - -  Synopsis    [Factors the cover.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -Dec_Graph_t * Dec_Factor32( Vec_Int_t * cSop, int nVars, Vec_Int_t * vStore ) -{ -    Ivy_Sop_t cSop, cRes; -    Ivy_Sop_t * pcSop = &cSop, * pcRes = &cRes; -    Dec_Graph_t * pFForm; -    Dec_Edge_t eRoot; - -    assert( nVars < 16 ); - -    // check for trivial functions -    if ( Vec_IntSize(cSop) == 0 ) -        return Dec_GraphCreateConst0(); -    if ( Vec_IntSize(cSop) == 1 && Vec_IntEntry(cSop, 0) == Ivy_CubeMask(nVars) ) -        return Dec_GraphCreateConst1(); - -    // prepare memory manager -    Vec_IntClear( vStore ); -    Vec_IntGrow( vStore, IVY_FACTOR_MEM_LIMIT ); - -    // perform CST -    Ivy_SopCreateInverse( cSop, pcSop, nVars, vStore ); // CST - -    // start the factored form -    pFForm = Dec_GraphCreate( nVars ); -    // factor the cover -    eRoot = Dec_Factor32_rec( pFForm, cSop, 2 * nVars ); -    // finalize the factored form -    Dec_GraphSetRoot( pFForm, eRoot ); - -    // verify the factored form -    if ( !Dec_Factor32Verify( pSop, pFForm, nVars ) ) -        printf( "Verification has failed.\n" ); -    return pFForm; -} - -/**Function************************************************************* - -  Synopsis    [Internal recursive factoring procedure.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nLits ) -{ -    Vec_Int_t * cDiv, * vQuo, * vRem, * vCom; -    Dec_Edge_t eNodeDiv, eNodeQuo, eNodeRem; -    Dec_Edge_t eNodeAnd, eNode; - -    // make sure the cover contains some cubes -    assert( Vec_IntSize(cSop) ); - -    // get the divisor -    cDiv = Ivy_SopDivisor( cSop, nLits ); -    if ( cDiv == NULL ) -        return Dec_Factor32Trivial( pFForm, cSop, nLits ); - -    // divide the cover by the divisor -    Ivy_SopDivideInternal( cSop, nLits, cDiv, &vQuo, &vRem ); -    assert( Vec_IntSize(vQuo) ); - -    Vec_IntFree( cDiv ); -    Vec_IntFree( vRem ); - -    // check the trivial case -    if ( Vec_IntSize(vQuo) == 1 ) -    { -        eNode = Dec_Factor32LF_rec( pFForm, cSop, nLits, vQuo ); -        Vec_IntFree( vQuo ); -        return eNode; -    } - -    // make the quotient cube free -    Ivy_SopMakeCubeFree( vQuo ); - -    // divide the cover by the quotient -    Ivy_SopDivideInternal( cSop, nLits, vQuo, &cDiv, &vRem ); - -    // check the trivial case -    if ( Ivy_SopIsCubeFree( cDiv ) ) -    { -        eNodeDiv = Dec_Factor32_rec( pFForm, cDiv ); -        eNodeQuo = Dec_Factor32_rec( pFForm, vQuo ); -        Vec_IntFree( cDiv ); -        Vec_IntFree( vQuo ); -        eNodeAnd = Dec_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); -        if ( Vec_IntSize(vRem) == 0 ) -        { -            Vec_IntFree( vRem ); -            return eNodeAnd; -        } -        else -        { -            eNodeRem = Dec_Factor32_rec( pFForm, vRem ); -            Vec_IntFree( vRem ); -            return Dec_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); -        } -    } - -    // get the common cube -    vCom = Ivy_SopCommonCubeCover( cDiv ); -    Vec_IntFree( cDiv ); -    Vec_IntFree( vQuo ); -    Vec_IntFree( vRem ); - -    // solve the simple problem -    eNode = Dec_Factor32LF_rec( pFForm, cSop, nLits, vCom ); -    Vec_IntFree( vCom ); -    return eNode; -} - - -/**Function************************************************************* - -  Synopsis    [Internal recursive factoring procedure for the leaf case.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32LF_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nLits, Vec_Int_t * vSimple ) -{ -    Dec_Man_t * pManDec = Abc_FrameReadManDec(); -    Vec_Int_t * vEdgeLits  = pManDec->vLits; -    Vec_Int_t * cDiv, * vQuo, * vRem; -    Dec_Edge_t eNodeDiv, eNodeQuo, eNodeRem; -    Dec_Edge_t eNodeAnd; - -    // get the most often occurring literal -    cDiv = Ivy_SopBestLiteralCover( cSop, nLits, vSimple ); -    // divide the cover by the literal -    Ivy_SopDivideByLiteral( cSop, nLits, cDiv, &vQuo, &vRem ); -    // get the node pointer for the literal -    eNodeDiv = Dec_Factor32TrivialCube( pFForm, cDiv, Ivy_SopReadCubeHead(cDiv), vEdgeLits ); -    Vec_IntFree( cDiv ); -    // factor the quotient and remainder -    eNodeQuo = Dec_Factor32_rec( pFForm, vQuo ); -    Vec_IntFree( vQuo ); -    eNodeAnd = Dec_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); -    if ( Vec_IntSize(vRem) == 0 ) -    { -        Vec_IntFree( vRem ); -        return eNodeAnd; -    } -    else -    { -        eNodeRem = Dec_Factor32_rec( pFForm, vRem ); -        Vec_IntFree( vRem ); -        return Dec_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); -    } -} - - - -/**Function************************************************************* - -  Synopsis    [Factoring the cover, which has no algebraic divisors.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32Trivial( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nLits ) -{ -    Dec_Man_t * pManDec = Abc_FrameReadManDec(); -    Vec_Int_t * vEdgeCubes = pManDec->vCubes; -    Vec_Int_t * vEdgeLits  = pManDec->vLits; -    Mvc_Manager_t * pMem = pManDec->pMvcMem; -    Dec_Edge_t eNode; -    unsigned uCube; -    int i; -    // create the factored form for each cube -    Vec_IntClear( vEdgeCubes ); -    Ivy_SopForEachCube( cSop, uCube ) -    { -        eNode = Dec_Factor32TrivialCube( pFForm, cSop, nLits, uCube, vEdgeLits ); -        Vec_IntPush( vEdgeCubes, Dec_EdgeToInt_(eNode) ); -    } -    // balance the factored forms -    return Dec_Factor32TrivialTree_rec( pFForm, (Dec_Edge_t *)vEdgeCubes->pArray, vEdgeCubes->nSize, 1 ); -} - -/**Function************************************************************* - -  Synopsis    [Factoring the cube.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32TrivialCube( Dec_Graph_t * pFForm, Vec_Int_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vEdgeLits ) -{ -    Dec_Edge_t eNode; -    int iBit, Value; -    // create the factored form for each literal -    Vec_IntClear( vEdgeLits ); -    Mvc_CubeForEachLit( cSop, uCube, iBit, Value ) -        if ( Value ) -        { -            eNode = Dec_EdgeCreate( iBit/2, iBit%2 ); // CST -            Vec_IntPush( vEdgeLits, Dec_EdgeToInt_(eNode) ); -        } -    // balance the factored forms -    return Dec_Factor32TrivialTree_rec( pFForm, (Dec_Edge_t *)vEdgeLits->pArray, vEdgeLits->nSize, 0 ); -} - -/**Function************************************************************* - -  Synopsis    [Create the well-balanced tree of nodes.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32TrivialTree_rec( Dec_Graph_t * pFForm, Dec_Edge_t * peNodes, int nNodes, int fNodeOr ) -{ -    Dec_Edge_t eNode1, eNode2; -    int nNodes1, nNodes2; - -    if ( nNodes == 1 ) -        return peNodes[0]; - -    // split the nodes into two parts -    nNodes1 = nNodes/2; -    nNodes2 = nNodes - nNodes1; -//    nNodes2 = nNodes/2; -//    nNodes1 = nNodes - nNodes2; - -    // recursively construct the tree for the parts -    eNode1 = Dec_Factor32TrivialTree_rec( pFForm, peNodes,           nNodes1, fNodeOr ); -    eNode2 = Dec_Factor32TrivialTree_rec( pFForm, peNodes + nNodes1, nNodes2, fNodeOr ); - -    if ( fNodeOr ) -        return Dec_GraphAddNodeOr( pFForm, eNode1, eNode2 ); -    else -        return Dec_GraphAddNodeAnd( pFForm, eNode1, eNode2 ); -} - - - - -// verification using temporary BDD package -#include "cuddInt.h" - -/**Function************************************************************* - -  Synopsis    [Verifies that the factoring is correct.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -DdNode * Ivy_SopCoverToBdd( DdManager * dd, Vec_Int_t * cSop, int nVars ) -{ -    DdNode * bSum, * bCube, * bTemp, * bVar; -    unsigned uCube; -    int Value, v; -    assert( nVars < 16 ); -    // start the cover -    bSum = Cudd_ReadLogicZero(dd);   Cudd_Ref( bSum ); -   // check the logic function of the node -    Vec_IntForEachEntry( cSop, uCube, i ) -    { -        bCube = Cudd_ReadOne(dd);   Cudd_Ref( bCube ); -        for ( v = 0; v < nVars; v++ ) -        { -            Value = ((uCube >> 2*v) & 3); -            if ( Value == 1 ) -                bVar = Cudd_Not( Cudd_bddIthVar( dd, v ) ); -            else if ( Value == 2 ) -                bVar = Cudd_bddIthVar( dd, v ); -            else -                continue; -            bCube  = Cudd_bddAnd( dd, bTemp = bCube, bVar );   Cudd_Ref( bCube ); -            Cudd_RecursiveDeref( dd, bTemp ); -        } -        bSum = Cudd_bddOr( dd, bTemp = bSum, bCube );    -        Cudd_Ref( bSum ); -        Cudd_RecursiveDeref( dd, bTemp ); -        Cudd_RecursiveDeref( dd, bCube ); -    } -    // complement the result if necessary -    Cudd_Deref( bSum ); -    return bSum; -} - -/**Function************************************************************* - -  Synopsis    [Verifies that the factoring is correct.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -int Dec_Factor32Verify( Vec_Int_t * cSop, Dec_Graph_t * pFForm, int nVars ) -{ -    static DdManager * dd = NULL; -    DdNode * bFunc1, * bFunc2; -    int RetValue; -    // get the manager -    if ( dd == NULL ) -        dd = Cudd_Init( 16, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); -    // get the functions -    bFunc1 = Ivy_SopCoverToBdd( dd, cSop, nVars );   Cudd_Ref( bFunc1 ); -    bFunc2 = Dec_GraphDeriveBdd( dd, pFForm );         Cudd_Ref( bFunc2 ); -//Extra_bddPrint( dd, bFunc1 ); printf("\n"); -//Extra_bddPrint( dd, bFunc2 ); printf("\n"); -    RetValue = (bFunc1 == bFunc2); -    if ( bFunc1 != bFunc2 ) -    { -        int s; -        Extra_bddPrint( dd, bFunc1 ); printf("\n"); -        Extra_bddPrint( dd, bFunc2 ); printf("\n"); -        s  = 0; -    } -    Cudd_RecursiveDeref( dd, bFunc1 ); -    Cudd_RecursiveDeref( dd, bFunc2 ); -    return RetValue; -} - - -//////////////////////////////////////////////////////////////////////// -///                       END OF FILE                                /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/ivy/ivyFpga.c b/src/aig/ivy/ivyFpga.c deleted file mode 100644 index 122cc0e2..00000000 --- a/src/aig/ivy/ivyFpga.c +++ /dev/null @@ -1,378 +0,0 @@ -/**CFile**************************************************************** - -  FileName    [ivyFpga.c] - -  SystemName  [ABC: Logic synthesis and verification system.] - -  PackageName [And-Inverter Graph package.] - -  Synopsis    [Prepares the AIG package to work as an FPGA mapper.] - -  Author      [Alan Mishchenko] -   -  Affiliation [UC Berkeley] - -  Date        [Ver. 1.0. Started - May 11, 2006.] - -  Revision    [$Id: ivyFpga.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "ivy.h" -#include "attr.h" - -//////////////////////////////////////////////////////////////////////// -///                        DECLARATIONS                              /// -//////////////////////////////////////////////////////////////////////// - -typedef struct Ivy_FpgaMan_t_     Ivy_FpgaMan_t; -typedef struct Ivy_FpgaObj_t_     Ivy_FpgaObj_t; -typedef struct Ivy_FpgaCut_t_     Ivy_FpgaCut_t; - -// manager -struct Ivy_FpgaMan_t_ -{ -    Ivy_Man_t *        pManIvy;       // the AIG manager -    Attr_Man_t *       pManAttr;      // the attribute manager -    int                nLutSize;      // the LUT size -    int                nCutsMax;      // the max number of cuts -    int                nEntrySize;    // the size of the entry -    int                nEntryBase;    // the size of the entry minus cut leaf arrays -    int                fVerbose;      // the verbosity flag -    // temporary cut storage -    Ivy_FpgaCut_t *    pCutStore;     // the temporary cuts -}; - -// priority cut -struct Ivy_FpgaCut_t_ -{ -    float              Delay;         // the delay of the cut -    float              AreaFlow;      // the area flow of the cut -    float              Area;          // the area of the cut -    int                nLeaves;       // the number of leaves -    int *              pLeaves;       // the array of fanins -}; - -// node extension -struct Ivy_FpgaObj_t_ -{ -    unsigned           Type   :  4;   // type -    unsigned           nCuts  : 28;   // the number of cuts -    int                Id;            // integer ID -    int                nRefs;         // the number of references -    Ivy_FpgaObj_t *    pFanin0;       // the first fanin  -    Ivy_FpgaObj_t *    pFanin1;       // the second fanin -    float              Required;      // required time of the onde -    Ivy_FpgaCut_t *    pCut;          // the best cut -    Ivy_FpgaCut_t      Cuts[0];       // the cuts of the node -}; - - -static Ivy_FpgaMan_t * Ivy_ManFpgaPrepare( Ivy_Man_t * p, int nLutSize, int nCutsMax, int fVerbose ); -static void Ivy_ManFpgaUndo( Ivy_FpgaMan_t * pFpga ); -static void Ivy_ObjFpgaCreate( Ivy_FpgaMan_t * pFpga, int ObjId ); -static void Ivy_ManFpgaDelay( Ivy_FpgaMan_t * pFpga ); - -//////////////////////////////////////////////////////////////////////// -///                     FUNCTION DEFINITIONS                         /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - -  Synopsis    [Performs FPGA mapping.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_ManFpga( Ivy_Man_t * p, int nLutSize, int nCutsMax, int fVerbose ) -{ -    Ivy_FpgaMan_t * pFpga; -    pFpga = Ivy_ManFpgaPrepare( p, nLutSize, nCutsMax, fVerbose ); -    Ivy_ManFpgaDelay( pFpga ); -    Ivy_ManFpgaUndo( pFpga ); -} - -/**Function************************************************************* - -  Synopsis    [Prepares manager for FPGA mapping.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -Ivy_FpgaMan_t * Ivy_ManFpgaPrepare( Ivy_Man_t * p, int nLutSize, int nCutsMax, int fVerbose ) -{ -    Ivy_FpgaMan_t * pFpga; -    Ivy_Obj_t * pObj; -    int i; -    pFpga = ALLOC( Ivy_FpgaMan_t, 1 ); -    memset( pFpga, 0, sizeof(Ivy_FpgaMan_t) ); -    // compute the size of the node -    pFpga->pManIvy    = p; -    pFpga->nLutSize   = nLutSize;  -    pFpga->nCutsMax   = nCutsMax;  -    pFpga->fVerbose   = fVerbose; -    pFpga->nEntrySize = sizeof(Ivy_FpgaObj_t) + (nCutsMax + 1) * (sizeof(Ivy_FpgaCut_t) + sizeof(int) * nLutSize); -    pFpga->nEntryBase = sizeof(Ivy_FpgaObj_t) + (nCutsMax + 1) * (sizeof(Ivy_FpgaCut_t)); -    pFpga->pManAttr   = Attr_ManStartPtrMem( Ivy_ManObjIdMax(p) + 1, pFpga->nEntrySize ); -    if ( fVerbose ) -        printf( "Entry size = %d. Total memory = %5.2f Mb.\n", pFpga->nEntrySize,  -            1.0 * pFpga->nEntrySize * (Ivy_ManObjIdMax(p) + 1) / (1<<20) ); -    // connect memory for cuts -    Ivy_ManForEachObj( p, pObj, i ) -        Ivy_ObjFpgaCreate( pFpga, pObj->Id ); -    // create temporary cuts -    pFpga->pCutStore  = (Ivy_FpgaCut_t *)ALLOC( char, pFpga->nEntrySize * (nCutsMax + 1) * (nCutsMax + 1) ); -    memset( pFpga->pCutStore, 0, pFpga->nEntrySize * (nCutsMax + 1) * (nCutsMax + 1) ); -    { -        int i, * pArrays; -        pArrays = (int *)((char *)pFpga->pCutStore + sizeof(Ivy_FpgaCut_t) * (nCutsMax + 1) * (nCutsMax + 1)); -        for ( i = 0; i < (nCutsMax + 1) * (nCutsMax + 1); i++ ) -            pFpga->pCutStore[i].pLeaves = pArrays + i * pFpga->nLutSize; -    } -    return pFpga; -} - -/**Function************************************************************* - -  Synopsis    [Quits the manager for FPGA mapping.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_ManFpgaUndo( Ivy_FpgaMan_t * pFpga ) -{ -    Attr_ManStop( pFpga->pManAttr ); -    free( pFpga ); -} - - -/**Function************************************************************* - -  Synopsis    [Prepares the object for FPGA mapping.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_ObjFpgaCreate( Ivy_FpgaMan_t * pFpga, int ObjId ) -{ -    Ivy_FpgaObj_t * pObjFpga; -    int i, * pArrays; -    pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, ObjId ); -    pArrays = (int *)((char *)pObjFpga + pFpga->nEntryBase); -    for ( i = 0; i <= pFpga->nCutsMax; i++ ) -        pObjFpga->Cuts[i].pLeaves = pArrays + i * pFpga->nLutSize; -} - - -/**Function************************************************************* - -  Synopsis    [Prepares the object for FPGA mapping.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -int Ivy_ObjFpgaMerge( Ivy_FpgaCut_t * pC0, Ivy_FpgaCut_t * pC1, Ivy_FpgaCut_t * pC, int nLimit ) -{ -    int i, k, c; -    assert( pC0->nLeaves >= pC1->nLeaves ); -    // the case of the largest cut sizes -    if ( pC0->nLeaves == nLimit && pC1->nLeaves == nLimit ) -    { -        for ( i = 0; i < pC0->nLeaves; i++ ) -            if ( pC0->pLeaves[i] != pC1->pLeaves[i] ) -                return 0; -        for ( i = 0; i < pC0->nLeaves; i++ ) -            pC->pLeaves[i] = pC0->pLeaves[i]; -        pC->nLeaves = pC0->nLeaves; -        pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); -        return 1; -    } -    // the case when one of the cuts is the largest -    if ( pC0->nLeaves == nLimit ) -    { -        for ( i = 0; i < pC1->nLeaves; i++ ) -        { -            for ( k = pC0->nLeaves - 1; k >= 0; k-- ) -                if ( pC0->pLeaves[k] == pC1->pLeaves[i] ) -                    break; -            if ( k == -1 ) // did not find -                return 0; -        } -        for ( i = 0; i < pC0->nLeaves; i++ ) -            pC->pLeaves[i] = pC0->pLeaves[i]; -        pC->nLeaves = pC0->nLeaves; -        pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); -        return 1; -    } - -    // compare two cuts with different numbers -    i = k = 0; -    for ( c = 0; c < nLimit; c++ ) -    { -        if ( k == pC1->nLeaves ) -        { -            if ( i == pC0->nLeaves ) -            { -                pC->nLeaves = c; -                pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); -                return 1; -            } -            pC->pLeaves[c] = pC0->pLeaves[i++]; -            continue; -        } -        if ( i == pC0->nLeaves ) -        { -            if ( k == pC1->nLeaves ) -            { -                pC->nLeaves = c; -                pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); -                return 1; -            } -            pC->pLeaves[c] = pC1->pLeaves[k++]; -            continue; -        } -        if ( pC0->pLeaves[i] < pC1->pLeaves[k] ) -        { -            pC->pLeaves[c] = pC0->pLeaves[i++]; -            continue; -        } -        if ( pC0->pLeaves[i] > pC1->pLeaves[k] ) -        { -            pC->pLeaves[c] = pC1->pLeaves[k++]; -            continue; -        } -        pC->pLeaves[c] = pC0->pLeaves[i++];  -        k++; -    } -    if ( i < pC0->nLeaves || k < pC1->nLeaves ) -        return 0; -    pC->nLeaves = c; -    pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); -    return 1; -} - -/**Function************************************************************* - -  Synopsis    [Prepares the object for FPGA mapping.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -int Ivy_FpgaCutCompare( Ivy_FpgaCut_t * pC0, Ivy_FpgaCut_t * pC1 ) -{ -    if ( pC0->Delay < pC1->Delay ) -        return -1; -    if ( pC0->Delay > pC1->Delay ) -        return 1; -    if ( pC0->nLeaves < pC1->nLeaves ) -        return -1; -    if ( pC0->nLeaves > pC1->nLeaves ) -        return 1; -    return 0; -} - -/**Function************************************************************* - -  Synopsis    [Prepares the object for FPGA mapping.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_ObjFpgaDelay( Ivy_FpgaMan_t * pFpga, int ObjId, int Fan0Id, int Fan1Id ) -{ -    Ivy_FpgaObj_t * pObjFpga, * pObjFpga0, * pObjFpga1; -    int nCuts, i, k; -    pObjFpga  = Attr_ManReadAttrPtr( pFpga->pManAttr, ObjId ); -    pObjFpga0 = Attr_ManReadAttrPtr( pFpga->pManAttr, Fan0Id ); -    pObjFpga1 = Attr_ManReadAttrPtr( pFpga->pManAttr, Fan1Id ); -    // create cross-product of the cuts -    nCuts = 0; -    for ( i = 0; pObjFpga0->Cuts[i].nLeaves > 0 && i < pFpga->nCutsMax; i++ ) -    for ( k = 0; pObjFpga1->Cuts[k].nLeaves > 0 && k < pFpga->nCutsMax; k++ ) -        if ( Ivy_ObjFpgaMerge( pObjFpga0->Cuts + i, pObjFpga1->Cuts + k, pFpga->pCutStore + nCuts, pFpga->nLutSize ) ) -            nCuts++; -    // sort the cuts -    qsort( pFpga->pCutStore, nCuts, sizeof(Ivy_FpgaCut_t), (int (*)(const void *, const void *))Ivy_FpgaCutCompare ); -    // take the first -    pObjFpga->Cuts[0].nLeaves    = 1; -    pObjFpga->Cuts[0].pLeaves[0] = ObjId; -    pObjFpga->Cuts[0].Delay      = pFpga->pCutStore[0].Delay; -    pObjFpga->Cuts[1] = pFpga->pCutStore[0]; -} - -/**Function************************************************************* - -  Synopsis    [Maps the nodes for delay.] - -  Description [] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -void Ivy_ManFpgaDelay( Ivy_FpgaMan_t * pFpga ) -{ -    Ivy_FpgaObj_t * pObjFpga; -    Ivy_Obj_t * pObj; -    int i, DelayBest; -    int clk = clock(); -    // set arrival times and trivial cuts at const 1 and PIs -    pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, 0 ); -    pObjFpga->Cuts[0].nLeaves = 1; -    Ivy_ManForEachPi( pFpga->pManIvy, pObj, i ) -    { -        pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, pObj->Id ); -        pObjFpga->Cuts[0].nLeaves    = 1; -        pObjFpga->Cuts[0].pLeaves[0] = pObj->Id; -    } -    // map the internal nodes -    Ivy_ManForEachNode( pFpga->pManIvy, pObj, i ) -    { -        Ivy_ObjFpgaDelay( pFpga, pObj->Id, Ivy_ObjFaninId0(pObj), Ivy_ObjFaninId1(pObj) ); -    } -    // get the best arrival time of the POs -    DelayBest = 0; -    Ivy_ManForEachPo( pFpga->pManIvy, pObj, i ) -    { -        pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, Ivy_ObjFanin0(pObj)->Id ); -        if ( DelayBest < (int)pObjFpga->Cuts[1].Delay ) -            DelayBest = (int)pObjFpga->Cuts[1].Delay; -    } -    printf( "Best delay = %d. ", DelayBest ); -    PRT( "Time", clock() - clk ); -} - -//////////////////////////////////////////////////////////////////////// -///                       END OF FILE                                /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/ivy/module.make b/src/aig/ivy/module.make index c1f7d1b8..daef43df 100644 --- a/src/aig/ivy/module.make +++ b/src/aig/ivy/module.make @@ -9,7 +9,6 @@ SRC +=    src/aig/ivy/ivyBalance.c \      src/aig/ivy/ivyFastMap.c \      src/aig/ivy/ivyFraig.c \      src/aig/ivy/ivyHaig.c \ -    src/aig/ivy/ivyIsop.c \      src/aig/ivy/ivyMan.c \      src/aig/ivy/ivyMem.c \      src/aig/ivy/ivyMulti.c \ diff --git a/src/base/abc/abcSop.c b/src/base/abc/abcSop.c index 81d91499..3578139b 100644 --- a/src/base/abc/abcSop.c +++ b/src/base/abc/abcSop.c @@ -427,9 +427,9 @@ char * Abc_SopCreateFromIsop( Extra_MmFlex_t * pMan, int nVars, Vec_Int_t * vCov          {              Literal = 3 & (Entry >> (k << 1));              if ( Literal == 1 ) -                pCube[k] = '1'; -            else if ( Literal == 2 )                  pCube[k] = '0'; +            else if ( Literal == 2 ) +                pCube[k] = '1';              else if ( Literal != 0 )                  assert( 0 );          } diff --git a/src/base/abci/abc.c b/src/base/abci/abc.c index 77ae4d5a..901e1df4 100644 --- a/src/base/abci/abc.c +++ b/src/base/abci/abc.c @@ -2034,25 +2034,28 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv )  {      FILE * pOut, * pErr;      Abc_Ntk_t * pNtk, * pNtkRes; -    int nFaninMax, c; +    int nFaninMax, nCubeMax, c;      int fUseBdds; +    int fUseSops;      int fVerbose; -    extern Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fVerbose ); +    extern Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int nCubeMax, int fUseBdds, int fUseSops, int fVerbose );      pNtk = Abc_FrameReadNtk(pAbc);      pOut = Abc_FrameReadOut(pAbc);      pErr = Abc_FrameReadErr(pAbc);      // set defaults -    nFaninMax =  8; +    nFaninMax =  5; +    nCubeMax  =  5;      fUseBdds  =  0; +    fUseSops  =  0;      fVerbose  =  0;      Extra_UtilGetoptReset(); -    while ( ( c = Extra_UtilGetopt( argc, argv, "Fbvh" ) ) != EOF ) +    while ( ( c = Extra_UtilGetopt( argc, argv, "KCbsvh" ) ) != EOF )      {          switch ( c )          { -        case 'F': +        case 'K':              if ( globalUtilOptind >= argc )              {                  fprintf( pErr, "Command line switch \"-F\" should be followed by an integer.\n" ); @@ -2063,9 +2066,23 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv )              if ( nFaninMax < 0 )                   goto usage;              break; +        case 'C': +            if ( globalUtilOptind >= argc ) +            { +                fprintf( pErr, "Command line switch \"-C\" should be followed by an integer.\n" ); +                goto usage; +            } +            nCubeMax = atoi(argv[globalUtilOptind]); +            globalUtilOptind++; +            if ( nCubeMax < 0 )  +                goto usage; +            break;          case 'b':              fUseBdds ^= 1;              break; +        case 's': +            fUseSops ^= 1; +            break;          case 'v':              fVerbose ^= 1;              break; @@ -2076,6 +2093,12 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv )          }      } +    if ( fUseBdds && fUseSops ) +    { +        fprintf( pErr, "Cannot optimize both BDDs and SOPs at the same time.\n" ); +        goto usage; +    } +      if ( pNtk == NULL )      {          fprintf( pErr, "Empty network.\n" ); @@ -2088,7 +2111,7 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv )      }      // get the new network -    pNtkRes = Abc_NtkRenode( pNtk, nFaninMax, fUseBdds, fVerbose ); +    pNtkRes = Abc_NtkRenode( pNtk, nFaninMax, nCubeMax, fUseBdds, fUseSops, fVerbose );      if ( pNtkRes == NULL )      {          fprintf( pErr, "Renoding has failed.\n" ); @@ -2099,10 +2122,13 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv )      return 0;  usage: -    fprintf( pErr, "usage: renode [-F num] [-bv]\n" ); -    fprintf( pErr, "\t          transforms an AIG into a logic network by creating larger nodes\n" ); -    fprintf( pErr, "\t-F num  : the maximum fanin size after renoding [default = %d]\n", nFaninMax ); -    fprintf( pErr, "\t-b      : toggles cost function (BDD nodes or FF literals) [default = %s]\n", fUseBdds? "BDD nodes": "FF literals" ); +    fprintf( pErr, "usage: renode [-K num] [-C num] [-bsv]\n" ); +    fprintf( pErr, "\t          transforms the AIG into a logic network with larger nodes\n" ); +    fprintf( pErr, "\t          while minimizing the number of FF literals of the node SOPs\n" ); +    fprintf( pErr, "\t-K num  : the maximum fanin size after renoding [default = %d]\n", nFaninMax ); +    fprintf( pErr, "\t-C num  : the maximum number of cubes used at a node [default = %d]\n", nCubeMax ); +    fprintf( pErr, "\t-b      : toggles minimizing the number of BDD nodes [default = %s]\n", fUseBdds? "yes": "no" ); +    fprintf( pErr, "\t-s      : toggles minimizing the number of SOP cubes [default = %s]\n", fUseSops? "yes": "no" );      fprintf( pErr, "\t-v      : print verbose information [default = %s]\n", fVerbose? "yes": "no" );       fprintf( pErr, "\t-h      : print the command usage\n");      return 1; diff --git a/src/base/abci/abcIf.c b/src/base/abci/abcIf.c index b76385f8..948a1d77 100644 --- a/src/base/abci/abcIf.c +++ b/src/base/abci/abcIf.c @@ -20,6 +20,7 @@  #include "abc.h"  #include "if.h" +#include "kit.h"  ////////////////////////////////////////////////////////////////////////  ///                        DECLARATIONS                              /// @@ -164,6 +165,8 @@ Abc_Ntk_t * Abc_NtkFromIf( If_Man_t * pIfMan, Abc_Ntk_t * pNtk )      // create the new network      if ( pIfMan->pPars->fUseBdds )          pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD ); +    else if ( pIfMan->pPars->fUseSops ) +        pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_SOP );      else          pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_AIG );      // prepare the mapping manager @@ -223,7 +226,6 @@ Abc_Obj_t * Abc_NodeFromIf_rec( Abc_Ntk_t * pNtkNew, If_Man_t * pIfMan, If_Obj_t      If_CutForEachLeaf( pIfMan, pCutBest, pIfLeaf, i )          Abc_ObjAddFanin( pNodeNew, Abc_NodeFromIf_rec(pNtkNew, pIfMan, pIfLeaf) );      // derive the function of this node -      if ( pIfMan->pPars->fTruth )      {          if ( pIfMan->pPars->fUseBdds ) @@ -235,20 +237,29 @@ Abc_Obj_t * Abc_NodeFromIf_rec( Abc_Ntk_t * pNtkNew, If_Man_t * pIfMan, If_Obj_t              // reorder the fanins to minimize the BDD size              Abc_NodeBddReorder( pIfMan->pPars->pReoMan, pNodeNew );          } -        else +        else if ( pIfMan->pPars->fUseSops )           { -            typedef int Kit_Graph_t; -            extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars ); -            extern Hop_Obj_t * Dec_GraphToNetworkAig( Hop_Man_t * pMan, Kit_Graph_t * pGraph ); -            // transform truth table into the decomposition tree -            Kit_Graph_t * pGraph = Kit_TruthToGraph( If_CutTruth(pCutBest), pCutBest->nLimit ); +            Vec_Int_t * vCover = Vec_IntAlloc( 1 << 16 ); +            // transform truth table into the SOP +            int RetValue = Kit_TruthIsop( If_CutTruth(pCutBest), pCutBest->nLimit, vCover, 0 ); +            assert( RetValue == 0 );              // derive the AIG for that tree -            pNodeNew->pData = Dec_GraphToNetworkAig( pNtkNew->pManFunc, pGraph ); +            pNodeNew->pData = Abc_SopCreateFromIsop( pNtkNew->pManFunc, pCutBest->nLimit, vCover ); +            Vec_IntFree( vCover ); +        } +        else  +        { +            extern Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ); +            Vec_Int_t * vMemory = Vec_IntAlloc( 1 << 16 ); +            // transform truth table into the decomposition tree +            Kit_Graph_t * pGraph = Kit_TruthToGraph( If_CutTruth(pCutBest), pCutBest->nLimit, vMemory ); +            // derive the AIG for the decomposition tree +            pNodeNew->pData = Kit_GraphToHop( pNtkNew->pManFunc, pGraph );              Kit_GraphFree( pGraph ); +            Vec_IntFree( vMemory );          }      }      else -          pNodeNew->pData = Abc_NodeIfToHop( pNtkNew->pManFunc, pIfMan, pIfObj );      If_ObjSetCopy( pIfObj, pNodeNew );      return pNodeNew; diff --git a/src/base/abci/abcRenode.c b/src/base/abci/abcRenode.c index a3360953..4f3003a6 100644 --- a/src/base/abci/abcRenode.c +++ b/src/base/abci/abcRenode.c @@ -21,6 +21,7 @@  #include "abc.h"  #include "reo.h"  #include "if.h" +#include "kit.h"  ////////////////////////////////////////////////////////////////////////  ///                        DECLARATIONS                              /// @@ -28,13 +29,11 @@  static int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars );  static int Abc_NtkRenodeEvalSop( unsigned * pTruth, int nVars ); +static int Abc_NtkRenodeEvalAig( unsigned * pTruth, int nVars ); -static reo_man * s_pReo = NULL; -static DdManager * s_pDd  = NULL; - -typedef int Kit_Graph_t; -extern DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ); -extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars ); +static reo_man * s_pReo      = NULL; +static DdManager * s_pDd     = NULL; +static Vec_Int_t * s_vMemory = NULL;  ////////////////////////////////////////////////////////////////////////  ///                     FUNCTION DEFINITIONS                         /// @@ -51,7 +50,7 @@ extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars );    SeeAlso     []  ***********************************************************************/ -Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fVerbose ) +Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int nCubeMax, int fUseBdds, int fUseSops, int fVerbose )  {      extern Abc_Ntk_t * Abc_NtkIf( Abc_Ntk_t * pNtk, If_Par_t * pPars );      If_Par_t Pars, * pPars = &Pars; @@ -77,7 +76,14 @@ Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fV      pPars->pLutLib     =  NULL; // Abc_FrameReadLibLut();      pPars->pTimesArr   =  NULL;       pPars->pTimesArr   =  NULL;    -    pPars->pFuncCost   =  fUseBdds? Abc_NtkRenodeEvalBdd : Abc_NtkRenodeEvalSop;    +    pPars->fUseBdds    =  fUseBdds; +    pPars->fUseSops    =  fUseSops; +    if ( fUseBdds ) +        pPars->pFuncCost = Abc_NtkRenodeEvalBdd; +    else if ( fUseSops ) +        pPars->pFuncCost = Abc_NtkRenodeEvalSop; +    else +        pPars->pFuncCost = Abc_NtkRenodeEvalAig;      // start the manager      if ( fUseBdds ) @@ -85,9 +91,13 @@ Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fV          assert( s_pReo == NULL );          s_pDd  = Cudd_Init( nFaninMax, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 );          s_pReo = Extra_ReorderInit( nFaninMax, 100 ); -        pPars->fUseBdds = 1;          pPars->pReoMan  = s_pReo;      } +    else +    { +        assert( s_vMemory == NULL ); +        s_vMemory = Vec_IntAlloc( 1 << 16 ); +    }      // perform mapping/renoding      pNtkNew = Abc_NtkIf( pNtk, pPars ); @@ -98,14 +108,20 @@ Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fV          Extra_StopManager( s_pDd );          Extra_ReorderQuit( s_pReo );          s_pReo = NULL; -        s_pDd = NULL; +        s_pDd  = NULL; +    } +    else +    { +        Vec_IntFree( s_vMemory ); +        s_vMemory = NULL;      } +      return pNtkNew;  }  /**Function************************************************************* -  Synopsis    [Derives the BDD after reordering.] +  Synopsis    [Computes the cost based on the BDD size after reordering.]    Description [] @@ -120,7 +136,8 @@ int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars )      int nNodes, nSupport;      bFunc = Kit_TruthToBdd( s_pDd, pTruth, nVars );           Cudd_Ref( bFunc );      bFuncNew = Extra_Reorder( s_pReo, s_pDd, bFunc, NULL );   Cudd_Ref( bFuncNew ); -    nSupport = Cudd_SupportSize( s_pDd, bFuncNew ); +//    nSupport = Cudd_SupportSize( s_pDd, bFuncNew ); +    nSupport = 1;      nNodes = Cudd_DagSize( bFuncNew );      Cudd_RecursiveDeref( s_pDd, bFuncNew );      Cudd_RecursiveDeref( s_pDd, bFunc ); @@ -129,7 +146,7 @@ int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars )  /**Function************************************************************* -  Synopsis    [Derives the BDD after reordering.] +  Synopsis    [Computes the cost based on ISOP.]    Description [] @@ -140,11 +157,32 @@ int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars )  ***********************************************************************/  int Abc_NtkRenodeEvalSop( unsigned * pTruth, int nVars )  { +    int nCubes, RetValue; +    RetValue = Kit_TruthIsop( pTruth, nVars, s_vMemory, 0 ); +    assert( RetValue == 0 ); +    nCubes = Vec_IntSize( s_vMemory ); +    return (1 << 16) | nCubes; +} + +/**Function************************************************************* + +  Synopsis    [Computes the cost based on the factored form.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Abc_NtkRenodeEvalAig( unsigned * pTruth, int nVars ) +{      Kit_Graph_t * pGraph;      int nNodes, nDepth; -    pGraph = Kit_TruthToGraph( pTruth, nVars ); +    pGraph = Kit_TruthToGraph( pTruth, nVars, s_vMemory );      nNodes = Kit_GraphNodeNum( pGraph ); -    nDepth = Kit_GraphLevelNum( pGraph ); +//    nDepth = Kit_GraphLevelNum( pGraph ); +    nDepth = 1;      Kit_GraphFree( pGraph );      return (nDepth << 16) | nNodes;  } diff --git a/src/map/if/if.h b/src/map/if/if.h index 32bb07f8..12769eb6 100644 --- a/src/map/if/if.h +++ b/src/map/if/if.h @@ -85,6 +85,7 @@ struct If_Par_t_      // internal parameters      int                fTruth;        // truth table computation enabled      int                fUseBdds;      // sets local BDDs at the nodes +    int                fUseSops;      // sets local SOPs at the nodes      int                nLatches;      // the number of latches in seq mapping      If_Lib_t *         pLutLib;       // the LUT library      float *            pTimesArr;     // arrival times diff --git a/src/map/if/ifMan.c b/src/map/if/ifMan.c index 9e3d8e88..46ca1b5b 100644 --- a/src/map/if/ifMan.c +++ b/src/map/if/ifMan.c @@ -205,7 +205,7 @@ If_Obj_t * If_ManSetupObj( If_Man_t * p )  {      If_Cut_t * pCut;      If_Obj_t * pObj; -    int i, * pArrays; +    int i, * pArrays, nTruthWords;      // get memory for the object      pObj = (If_Obj_t *)Mem_FixedEntryFetch( p->pMem );      memset( pObj, 0, p->nEntryBase ); @@ -230,6 +230,13 @@ If_Obj_t * If_ManSetupObj( If_Man_t * p )      pObj->nCuts = 1;      // set the required times      pObj->Required = IF_FLOAT_LARGE; +    // set up elementary truth table of the unit cut +    if ( p->pPars->fTruth ) +    { +        nTruthWords = Extra_TruthWordNum( pCut->nLimit ); +        for ( i = 0; i < nTruthWords; i++ ) +            If_CutTruth(pCut)[i] = 0xAAAAAAAA; +    }      return pObj;  } diff --git a/src/map/if/ifTruth.c b/src/map/if/ifTruth.c index 68affc4a..3f9f9f14 100644 --- a/src/map/if/ifTruth.c +++ b/src/map/if/ifTruth.c @@ -69,6 +69,8 @@ static inline unsigned Cut_TruthPhase( If_Cut_t * pCut, If_Cut_t * pCut1 )  ***********************************************************************/  void If_CutComputeTruth( If_Man_t * p, If_Cut_t * pCut, If_Cut_t * pCut0, If_Cut_t * pCut1, int fCompl0, int fCompl1 )  { +    extern void Kit_FactorTest( unsigned * pTruth, int nVars ); +      // permute the first table      if ( fCompl0 )           Extra_TruthNot( p->puTemp[0], If_CutTruth(pCut0), pCut->nLimit ); @@ -86,6 +88,9 @@ void If_CutComputeTruth( If_Man_t * p, If_Cut_t * pCut, If_Cut_t * pCut0, If_Cut          Extra_TruthNand( If_CutTruth(pCut), p->puTemp[2], p->puTemp[3], pCut->nLimit );      else          Extra_TruthAnd( If_CutTruth(pCut), p->puTemp[2], p->puTemp[3], pCut->nLimit ); + +    // perform  +//    Kit_FactorTest( If_CutTruth(pCut), pCut->nLimit );  }  //////////////////////////////////////////////////////////////////////// diff --git a/src/misc/extra/extra.h b/src/misc/extra/extra.h index 8f08eaff..585a5561 100644 --- a/src/misc/extra/extra.h +++ b/src/misc/extra/extra.h @@ -511,7 +511,6 @@ static inline void Extra_TruthNand( unsigned * pOut, unsigned * pIn0, unsigned *  extern void     Extra_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int Start );  extern void     Extra_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase );  extern void     Extra_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ); -extern DdNode * Extra_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars );  extern int      Extra_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar );  extern int      Extra_TruthSupportSize( unsigned * pTruth, int nVars );  extern int      Extra_TruthSupport( unsigned * pTruth, int nVars ); diff --git a/src/misc/extra/extraUtilTruth.c b/src/misc/extra/extraUtilTruth.c index ab476f6f..7a22545b 100644 --- a/src/misc/extra/extraUtilTruth.c +++ b/src/misc/extra/extraUtilTruth.c @@ -250,64 +250,6 @@ void Extra_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll  /**Function************************************************************* -  Synopsis    [Performs truth table computation.] - -  Description [Note the caching makes no sense for this procedure.] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -DdNode * Extra_TruthToBdd_rec( DdManager * dd, unsigned * pTruth, int iBit, int nVars, int nVarsTotal ) -{ -    DdNode * bF0, * bF1, * bF; -    if ( nVars == 0 ) -    { -        if ( pTruth[iBit>>5] & (1 << iBit&31) ) -            return b1; -        return b0; -    } -    if ( nVars == 5 ) -    { -        if ( pTruth[iBit>>5] == 0xFFFFFFFF ) -            return b1; -        if ( pTruth[iBit>>5] == 0 ) -            return b0; -    } -    // other special cases can be added -    bF0 = Extra_TruthToBdd_rec( dd, pTruth, iBit,                nVars-1, nVarsTotal );  Cudd_Ref( bF0 ); -    bF1 = Extra_TruthToBdd_rec( dd, pTruth, iBit+(1<<(nVars-1)), nVars-1, nVarsTotal );  Cudd_Ref( bF1 ); -    bF  = Cudd_bddIte( dd, dd->vars[nVarsTotal-nVars], bF1, bF0 );                       Cudd_Ref( bF ); -    Cudd_RecursiveDeref( dd, bF0 ); -    Cudd_RecursiveDeref( dd, bF1 ); -    Cudd_Deref( bF ); -    return bF; -} - -/**Function************************************************************* - -  Synopsis    [Compute BDD corresponding to the truth table.] - -  Description [If truth table has N vars, the BDD depends on N topmost -  variables of the BDD manager. The most significant variable of the table -  is encoded by the topmost variable of the manager. BDD construction is  -  very efficient in this case because BDD is constructed one node at a time,  -  by simply adding BDD nodes on top of existent BDD nodes.] -                -  SideEffects [] - -  SeeAlso     [] - -***********************************************************************/ -DdNode * Extra_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ) -{ -    return Extra_TruthToBdd_rec( dd, pTruth, 0, nVars, nVars ); -} - - -/**Function************************************************************* -    Synopsis    [Returns 1 if TT depends on the given variable.]    Description [] diff --git a/src/misc/vec/vecInt.h b/src/misc/vec/vecInt.h index 1973bd46..10918156 100644 --- a/src/misc/vec/vecInt.h +++ b/src/misc/vec/vecInt.h @@ -598,6 +598,9 @@ static inline int Vec_IntPushUnique( Vec_Int_t * p, int Entry )  ***********************************************************************/  static inline unsigned * Vec_IntFetch( Vec_Int_t * p, int nWords )  { +    if ( nWords == 0 ) +        return NULL; +    assert( nWords > 0 );      p->nSize += nWords;      if ( p->nSize > p->nCap )      { diff --git a/src/opt/kit/kit.h b/src/opt/kit/kit.h new file mode 100644 index 00000000..d97fca58 --- /dev/null +++ b/src/opt/kit/kit.h @@ -0,0 +1,334 @@ +/**CFile**************************************************************** + +  FileName    [kit.h] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [External declarations.] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kit.h,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#ifndef __KIT_H__ +#define __KIT_H__ + +#ifdef __cplusplus +extern "C" { +#endif + +//////////////////////////////////////////////////////////////////////// +///                          INCLUDES                                /// +//////////////////////////////////////////////////////////////////////// + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include <time.h> +#include "vec.h" + +//////////////////////////////////////////////////////////////////////// +///                         PARAMETERS                               /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +///                         BASIC TYPES                              /// +//////////////////////////////////////////////////////////////////////// + +typedef struct Kit_Sop_t_ Kit_Sop_t; +struct Kit_Sop_t_ +{ +    int               nCubes;         // the number of cubes +    unsigned *        pCubes;         // the storage for cubes +}; + +typedef struct Kit_Edge_t_ Kit_Edge_t; +struct Kit_Edge_t_ +{ +    unsigned          fCompl   :  1;   // the complemented bit +    unsigned          Node     : 30;   // the decomposition node pointed by the edge +}; + +typedef struct Kit_Node_t_ Kit_Node_t; +struct Kit_Node_t_ +{ +    Kit_Edge_t        eEdge0;          // the left child of the node +    Kit_Edge_t        eEdge1;          // the right child of the node +    // other info +    void *            pFunc;           // the function of the node (BDD or AIG) +    unsigned          Level    : 14;   // the level of this node in the global AIG +    // printing info  +    unsigned          fNodeOr  :  1;   // marks the original OR node +    unsigned          fCompl0  :  1;   // marks the original complemented edge +    unsigned          fCompl1  :  1;   // marks the original complemented edge +    // latch info +    unsigned          nLat0    :  5;   // the number of latches on the first edge +    unsigned          nLat1    :  5;   // the number of latches on the second edge +    unsigned          nLat2    :  5;   // the number of latches on the output edge +}; + +typedef struct Kit_Graph_t_ Kit_Graph_t; +struct Kit_Graph_t_ +{ +    int               fConst;          // marks the constant 1 graph +    int               nLeaves;         // the number of leaves +    int               nSize;           // the number of nodes (including the leaves)  +    int               nCap;            // the number of allocated nodes +    Kit_Node_t *      pNodes;          // the array of leaves and internal nodes +    Kit_Edge_t        eRoot;           // the pointer to the topmost node +}; + +//////////////////////////////////////////////////////////////////////// +///                      MACRO DEFINITIONS                           /// +//////////////////////////////////////////////////////////////////////// + +#ifndef ALLOC +#define ALLOC(type, num)     ((type *) malloc(sizeof(type) * (num))) +#endif + +#ifndef FREE +#define FREE(obj)             ((obj) ? (free((char *) (obj)), (obj) = 0) : 0) +#endif + +#ifndef REALLOC +#define REALLOC(type, obj, num)    \ +        ((obj) ? ((type *) realloc((char *)(obj), sizeof(type) * (num))) : \ +         ((type *) malloc(sizeof(type) * (num)))) +#endif + +static inline int          Kit_CubeHasLit( unsigned uCube, int i )                        { return(uCube &  (unsigned)(1<<i)) > 0;  } +static inline unsigned     Kit_CubeSetLit( unsigned uCube, int i )                        { return uCube |  (unsigned)(1<<i);       } +static inline unsigned     Kit_CubeXorLit( unsigned uCube, int i )                        { return uCube ^  (unsigned)(1<<i);       } +static inline unsigned     Kit_CubeRemLit( unsigned uCube, int i )                        { return uCube & ~(unsigned)(1<<i);       } + +static inline int          Kit_CubeContains( unsigned uLarge, unsigned uSmall )           { return (uLarge & uSmall) == uSmall;     } +static inline unsigned     Kit_CubeSharp( unsigned uCube, unsigned uMask )                { return uCube & ~uMask;                  } +static inline unsigned     Kit_CubeMask( int nVar )                                       { return (~(unsigned)0) >> (32-nVar);     } + +static inline int          Kit_CubeIsMarked( unsigned uCube )                             { return Kit_CubeHasLit( uCube, 31 );     } +static inline unsigned     Kit_CubeMark( unsigned uCube )                                 { return Kit_CubeSetLit( uCube, 31 );     } +static inline unsigned     Kit_CubeUnmark( unsigned uCube )                               { return Kit_CubeRemLit( uCube, 31 );     } + +static inline int          Kit_SopCubeNum( Kit_Sop_t * cSop )                             { return cSop->nCubes;                    } +static inline unsigned     Kit_SopCube( Kit_Sop_t * cSop, int i )                         { return cSop->pCubes[i];                 } +static inline void         Kit_SopShrink( Kit_Sop_t * cSop, int nCubesNew )               { cSop->nCubes = nCubesNew;               } +static inline void         Kit_SopPushCube( Kit_Sop_t * cSop, unsigned uCube )            { cSop->pCubes[cSop->nCubes++] = uCube;   } +static inline void         Kit_SopWriteCube( Kit_Sop_t * cSop, unsigned uCube, int i )    { cSop->pCubes[i] = uCube;                } + +static inline Kit_Edge_t   Kit_EdgeCreate( int Node, int fCompl )                         { Kit_Edge_t eEdge = { fCompl, Node }; return eEdge;  } +static inline unsigned     Kit_EdgeToInt( Kit_Edge_t eEdge )                              { return (eEdge.Node << 1) | eEdge.fCompl;            } +static inline Kit_Edge_t   Kit_IntToEdge( unsigned Edge )                                 { return Kit_EdgeCreate( Edge >> 1, Edge & 1 );       } +static inline unsigned     Kit_EdgeToInt_( Kit_Edge_t eEdge )                             { return *(unsigned *)&eEdge;                         } +static inline Kit_Edge_t   Kit_IntToEdge_( unsigned Edge )                                { return *(Kit_Edge_t *)&Edge;                        } + +static inline int          Kit_GraphIsConst( Kit_Graph_t * pGraph )                       { return pGraph->fConst;                              } +static inline int          Kit_GraphIsConst0( Kit_Graph_t * pGraph )                      { return pGraph->fConst && pGraph->eRoot.fCompl;      } +static inline int          Kit_GraphIsConst1( Kit_Graph_t * pGraph )                      { return pGraph->fConst && !pGraph->eRoot.fCompl;     } +static inline int          Kit_GraphIsComplement( Kit_Graph_t * pGraph )                  { return pGraph->eRoot.fCompl;                        } +static inline int          Kit_GraphIsVar( Kit_Graph_t * pGraph )                         { return pGraph->eRoot.Node < (unsigned)pGraph->nLeaves; } +static inline void         Kit_GraphComplement( Kit_Graph_t * pGraph )                    { pGraph->eRoot.fCompl ^= 1;                          } +static inline void         Kit_GraphSetRoot( Kit_Graph_t * pGraph, Kit_Edge_t eRoot )     { pGraph->eRoot = eRoot;                              } +static inline int          Kit_GraphLeaveNum( Kit_Graph_t * pGraph )                      { return pGraph->nLeaves;                             } +static inline int          Kit_GraphNodeNum( Kit_Graph_t * pGraph )                       { return pGraph->nSize - pGraph->nLeaves;             } +static inline Kit_Node_t * Kit_GraphNode( Kit_Graph_t * pGraph, int i )                   { return pGraph->pNodes + i;                          } +static inline Kit_Node_t * Kit_GraphNodeLast( Kit_Graph_t * pGraph )                      { return pGraph->pNodes + pGraph->nSize - 1;          } +static inline int          Kit_GraphNodeInt( Kit_Graph_t * pGraph, Kit_Node_t * pNode )   { return pNode - pGraph->pNodes;                      } +static inline int          Kit_GraphNodeIsVar( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return Kit_GraphNodeInt(pGraph,pNode) < pGraph->nLeaves; } +static inline Kit_Node_t * Kit_GraphVar( Kit_Graph_t * pGraph )                           { assert( Kit_GraphIsVar( pGraph ) );    return Kit_GraphNode( pGraph, pGraph->eRoot.Node ); } +static inline int          Kit_GraphVarInt( Kit_Graph_t * pGraph )                        { assert( Kit_GraphIsVar( pGraph ) );    return Kit_GraphNodeInt( pGraph, Kit_GraphVar(pGraph) );} + +static inline int          Kit_Float2Int( float Val )     { return *((int *)&Val);               } +static inline float        Kit_Int2Float( int Num )       { return *((float *)&Num);             } +static inline int          Kit_BitWordNum( int nBits )    { return nBits/(8*sizeof(unsigned)) + ((nBits%(8*sizeof(unsigned))) > 0);  } +static inline int          Kit_TruthWordNum( int nVars )  { return nVars <= 5 ? 1 : (1 << (nVars - 5)); } + +static inline void         Kit_TruthSetBit( unsigned * p, int Bit )   { p[Bit>>5] |= (1<<(Bit & 31));               } +static inline void         Kit_TruthXorBit( unsigned * p, int Bit )   { p[Bit>>5] ^= (1<<(Bit & 31));               } +static inline int          Kit_TruthHasBit( unsigned * p, int Bit )   { return (p[Bit>>5] & (1<<(Bit & 31))) > 0;   } + +static inline int Kit_WordCountOnes( unsigned uWord ) +{ +    uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555); +    uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333); +    uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F); +    uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF); +    return  (uWord & 0x0000FFFF) + (uWord>>16); +} +static inline int Kit_TruthCountOnes( unsigned * pIn, int nVars ) +{ +    int w, Counter = 0; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        Counter += Kit_WordCountOnes(pIn[w]); +    return Counter; +} +static inline int Kit_TruthIsEqual( unsigned * pIn0, unsigned * pIn1, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        if ( pIn0[w] != pIn1[w] ) +            return 0; +    return 1; +} +static inline int Kit_TruthIsConst0( unsigned * pIn, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        if ( pIn[w] ) +            return 0; +    return 1; +} +static inline int Kit_TruthIsConst1( unsigned * pIn, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        if ( pIn[w] != ~(unsigned)0 ) +            return 0; +    return 1; +} +static inline int Kit_TruthIsImply( unsigned * pIn1, unsigned * pIn2, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        if ( pIn1[w] & ~pIn2[w] ) +            return 0; +    return 1; +} +static inline void Kit_TruthCopy( unsigned * pOut, unsigned * pIn, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = pIn[w]; +} +static inline void Kit_TruthClear( unsigned * pOut, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = 0; +} +static inline void Kit_TruthFill( unsigned * pOut, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = ~(unsigned)0; +} +static inline void Kit_TruthNot( unsigned * pOut, unsigned * pIn, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = ~pIn[w]; +} +static inline void Kit_TruthAnd( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = pIn0[w] & pIn1[w]; +} +static inline void Kit_TruthOr( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = pIn0[w] | pIn1[w]; +} +static inline void Kit_TruthSharp( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = pIn0[w] & ~pIn1[w]; +} +static inline void Kit_TruthNand( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ +    int w; +    for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) +        pOut[w] = ~(pIn0[w] & pIn1[w]); +} + +//////////////////////////////////////////////////////////////////////// +///                           ITERATORS                              /// +//////////////////////////////////////////////////////////////////////// + +#define Kit_SopForEachCube( cSop, uCube, i )                                      \ +    for ( i = 0; (i < Kit_SopCubeNum(cSop)) && ((uCube) = Kit_SopCube(cSop, i)); i++ ) +#define Kit_CubeForEachLiteral( uCube, Lit, nLits, i )                            \ +    for ( i = 0; (i < (nLits)) && ((Lit) = Kit_CubeHasLit(uCube, i)); i++ ) + +#define Kit_GraphForEachLeaf( pGraph, pLeaf, i )                                              \ +    for ( i = 0; (i < (pGraph)->nLeaves) && (((pLeaf) = Kit_GraphNode(pGraph, i)), 1); i++ ) +#define Kit_GraphForEachNode( pGraph, pAnd, i )                                               \ +    for ( i = (pGraph)->nLeaves; (i < (pGraph)->nSize) && (((pAnd) = Kit_GraphNode(pGraph, i)), 1); i++ ) + +//////////////////////////////////////////////////////////////////////// +///                    FUNCTION DECLARATIONS                         /// +//////////////////////////////////////////////////////////////////////// + +/*=== kitBdd.c ==========================================================*/ +extern DdNode *        Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ); +extern DdNode *        Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ); +extern DdNode *        Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ); +/*=== kitFactor.c ==========================================================*/ +extern Kit_Graph_t *   Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ); +/*=== kitGraph.c ==========================================================*/ +extern Kit_Graph_t *   Kit_GraphCreate( int nLeaves );    +extern Kit_Graph_t *   Kit_GraphCreateConst0();    +extern Kit_Graph_t *   Kit_GraphCreateConst1();    +extern Kit_Graph_t *   Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl );    +extern void            Kit_GraphFree( Kit_Graph_t * pGraph );    +extern Kit_Node_t *    Kit_GraphAppendNode( Kit_Graph_t * pGraph );    +extern Kit_Edge_t      Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); +extern Kit_Edge_t      Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); +extern Kit_Edge_t      Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ); +extern Kit_Edge_t      Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ); +extern unsigned        Kit_GraphToTruth( Kit_Graph_t * pGraph ); +extern Kit_Graph_t *   Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ); +/*=== kitHop.c ==========================================================*/ +/*=== kitIsop.c ==========================================================*/ +extern int             Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth ); +/*=== kitSop.c ==========================================================*/ +extern void            Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); +extern void            Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); +extern void            Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); +extern void            Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ); +extern void            Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); +extern void            Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); +extern void            Kit_SopMakeCubeFree( Kit_Sop_t * cSop ); +extern int             Kit_SopIsCubeFree( Kit_Sop_t * cSop ); +extern void            Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); +extern int             Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ); +extern int             Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); +extern void            Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ); +/*=== kitTruth.c ==========================================================*/ +extern void            Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int Start ); +extern void            Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ); +extern void            Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ); +extern int             Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ); +extern int             Kit_TruthSupportSize( unsigned * pTruth, int nVars ); +extern int             Kit_TruthSupport( unsigned * pTruth, int nVars ); +extern void            Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ); +extern void            Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ); +extern void            Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ); +extern void            Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ); +extern void            Kit_TruthMux( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ); +extern void            Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ); +extern int             Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ); +extern void            Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ); +extern unsigned        Kit_TruthHash( unsigned * pIn, int nWords ); +extern unsigned        Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ); + +#ifdef __cplusplus +} +#endif + +#endif + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/opt/kit/kitBdd.c b/src/opt/kit/kitBdd.c new file mode 100644 index 00000000..ed978740 --- /dev/null +++ b/src/opt/kit/kitBdd.c @@ -0,0 +1,231 @@ +/**CFile**************************************************************** + +  FileName    [kitBdd.c] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [Procedures involving BDDs.] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kitBdd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" +#include "extra.h" + +//////////////////////////////////////////////////////////////////////// +///                        DECLARATIONS                              /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +///                     FUNCTION DEFINITIONS                         /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + +  Synopsis    [Derives the BDD for the given SOP.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ) +{ +    DdNode * bSum, * bCube, * bTemp, * bVar; +    unsigned uCube; +    int Value, i, v; +    assert( nVars < 16 ); +    // start the cover +    bSum = Cudd_ReadLogicZero(dd);   Cudd_Ref( bSum ); +   // check the logic function of the node +    Kit_SopForEachCube( cSop, uCube, i ) +    { +        bCube = Cudd_ReadOne(dd);   Cudd_Ref( bCube ); +        for ( v = 0; v < nVars; v++ ) +        { +            Value = ((uCube >> 2*v) & 3); +            if ( Value == 1 ) +                bVar = Cudd_Not( Cudd_bddIthVar( dd, v ) ); +            else if ( Value == 2 ) +                bVar = Cudd_bddIthVar( dd, v ); +            else +                continue; +            bCube  = Cudd_bddAnd( dd, bTemp = bCube, bVar );   Cudd_Ref( bCube ); +            Cudd_RecursiveDeref( dd, bTemp ); +        } +        bSum = Cudd_bddOr( dd, bTemp = bSum, bCube );    +        Cudd_Ref( bSum ); +        Cudd_RecursiveDeref( dd, bTemp ); +        Cudd_RecursiveDeref( dd, bCube ); +    } +    // complement the result if necessary +    Cudd_Deref( bSum ); +    return bSum; +} + +/**Function************************************************************* + +  Synopsis    [Converts graph to BDD.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ) +{ +    DdNode * bFunc, * bFunc0, * bFunc1; +    Kit_Node_t * pNode; +    int i; + +    // sanity checks +    assert( Kit_GraphLeaveNum(pGraph) >= 0 ); +    assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); + +    // check for constant function +    if ( Kit_GraphIsConst(pGraph) ) +        return Cudd_NotCond( b1, Kit_GraphIsComplement(pGraph) ); +    // check for a literal +    if ( Kit_GraphIsVar(pGraph) ) +        return Cudd_NotCond( Cudd_bddIthVar(dd, Kit_GraphVarInt(pGraph)), Kit_GraphIsComplement(pGraph) ); + +    // assign the elementary variables +    Kit_GraphForEachLeaf( pGraph, pNode, i ) +        pNode->pFunc = Cudd_bddIthVar( dd, i ); + +    // compute the function for each internal node +    Kit_GraphForEachNode( pGraph, pNode, i ) +    { +        bFunc0 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl );  +        bFunc1 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl );  +        pNode->pFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 );   Cudd_Ref( pNode->pFunc ); +    } + +    // deref the intermediate results +    bFunc = pNode->pFunc;   Cudd_Ref( bFunc ); +    Kit_GraphForEachNode( pGraph, pNode, i ) +        Cudd_RecursiveDeref( dd, pNode->pFunc ); +    Cudd_Deref( bFunc ); + +    // complement the result if necessary +    return Cudd_NotCond( bFunc, Kit_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + +  Synopsis    [] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +DdNode * Kit_TruthToBdd_rec( DdManager * dd, unsigned * pTruth, int iBit, int nVars, int nVarsTotal ) +{ +    DdNode * bF0, * bF1, * bF; +    if ( nVars == 0 ) +    { +        if ( pTruth[iBit>>5] & (1 << iBit&31) ) +            return b1; +        return b0; +    } +    if ( nVars == 5 ) +    { +        if ( pTruth[iBit>>5] == 0xFFFFFFFF ) +            return b1; +        if ( pTruth[iBit>>5] == 0 ) +            return b0; +    } +    // other special cases can be added +    bF0 = Kit_TruthToBdd_rec( dd, pTruth, iBit,                nVars-1, nVarsTotal );  Cudd_Ref( bF0 ); +    bF1 = Kit_TruthToBdd_rec( dd, pTruth, iBit+(1<<(nVars-1)), nVars-1, nVarsTotal );  Cudd_Ref( bF1 ); +    bF  = Cudd_bddIte( dd, dd->vars[nVarsTotal-nVars], bF1, bF0 );                     Cudd_Ref( bF ); +    Cudd_RecursiveDeref( dd, bF0 ); +    Cudd_RecursiveDeref( dd, bF1 ); +    Cudd_Deref( bF ); +    return bF; +} + +/**Function************************************************************* + +  Synopsis    [Compute BDD corresponding to the truth table.] + +  Description [If truth table has N vars, the BDD depends on N topmost +  variables of the BDD manager. The most significant variable of the table +  is encoded by the topmost variable of the manager. BDD construction is  +  efficient in this case because BDD is constructed one node at a time,  +  by simply adding BDD nodes on top of existent BDD nodes.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ) +{ +    return Kit_TruthToBdd_rec( dd, pTruth, 0, nVars, nVars ); +} + +/**Function************************************************************* + +  Synopsis    [Verifies that the factoring is correct.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_SopFactorVerify( Vec_Int_t * vCover, Kit_Graph_t * pFForm, int nVars ) +{ +    static DdManager * dd = NULL; +    Kit_Sop_t Sop, * cSop = &Sop; +    DdNode * bFunc1, * bFunc2; +    Vec_Int_t * vMemory; +    int RetValue; +    // get the manager +    if ( dd == NULL ) +        dd = Cudd_Init( 16, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); +    // derive SOP +    vMemory = Vec_IntAlloc( Vec_IntSize(vCover) ); +    Kit_SopCreate( cSop, vCover, nVars, vMemory ); +    // get the functions +    bFunc1 = Kit_SopToBdd( dd, cSop, nVars );      Cudd_Ref( bFunc1 ); +    bFunc2 = Kit_GraphToBdd( dd, pFForm );         Cudd_Ref( bFunc2 ); +//Extra_bddPrint( dd, bFunc1 ); printf("\n"); +//Extra_bddPrint( dd, bFunc2 ); printf("\n"); +    RetValue = (bFunc1 == bFunc2); +    if ( bFunc1 != bFunc2 ) +    { +        int s; +        Extra_bddPrint( dd, bFunc1 ); printf("\n"); +        Extra_bddPrint( dd, bFunc2 ); printf("\n"); +        s  = 0; +    } +    Cudd_RecursiveDeref( dd, bFunc1 ); +    Cudd_RecursiveDeref( dd, bFunc2 ); +    Vec_IntFree( vMemory ); +    return RetValue; +} + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kitFactor.c b/src/opt/kit/kitFactor.c new file mode 100644 index 00000000..618a4272 --- /dev/null +++ b/src/opt/kit/kitFactor.c @@ -0,0 +1,337 @@ +/**CFile**************************************************************** + +  FileName    [kitFactor.c] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [Algebraic factoring.] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kitFactor.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +///                        DECLARATIONS                              /// +//////////////////////////////////////////////////////////////////////// + +// factoring fails if intermediate memory usage exceed this limit +#define KIT_FACTOR_MEM_LIMIT  (1<<16) + +static Kit_Edge_t  Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); +static Kit_Edge_t  Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ); +static Kit_Edge_t  Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ); +static Kit_Edge_t  Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ); + +extern int         Kit_SopFactorVerify( Vec_Int_t * cSop, Kit_Graph_t * pFForm, int nVars ); + +//////////////////////////////////////////////////////////////////////// +///                     FUNCTION DEFINITIONS                         /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + +  Synopsis    [Factors the cover.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ) +{ +    Kit_Sop_t Sop, Res; +    Kit_Sop_t * cSop = &Sop, * cRes = &Res; +    Kit_Graph_t * pFForm; +    Kit_Edge_t eRoot; +    int nCubes = Vec_IntSize(vCover); + +    // works for up to 15 variables because divisin procedure +    // used the last bit for marking the cubes going to the remainder +    assert( nVars < 16 ); + +    // check for trivial functions +    if ( Vec_IntSize(vCover) == 0 ) +        return Kit_GraphCreateConst0(); +    if ( Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover, 0) == (int)Kit_CubeMask(nVars) ) +        return Kit_GraphCreateConst1(); + +    // prepare memory manager +//    Vec_IntClear( vMemory ); +    Vec_IntGrow( vMemory, KIT_FACTOR_MEM_LIMIT ); + +    // perform CST +    Kit_SopCreateInverse( cSop, vCover, 2 * nVars, vMemory ); // CST + +    // start the factored form +    pFForm = Kit_GraphCreate( nVars ); +    // factor the cover +    eRoot = Kit_SopFactor_rec( pFForm, cSop, 2 * nVars, vMemory ); +    // finalize the factored form +    Kit_GraphSetRoot( pFForm, eRoot ); +    if ( fCompl ) +        Kit_GraphComplement( pFForm ); + +    // verify the factored form +//    Vec_IntShrink( vCover, nCubes ); +//    if ( !Kit_SopFactorVerify( vCover, pFForm, nVars ) ) +//        printf( "Verification has failed.\n" ); +    return pFForm; +} + +/**Function************************************************************* + +  Synopsis    [Recursive factoring procedure.] + +  Description [For the pseudo-code, see Hachtel/Somenzi,  +  Logic synthesis and verification algorithms, Kluwer, 1996, p. 432.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) +{ +    Kit_Sop_t Div, Quo, Rem, Com; +    Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem, * cCom = &Com; +    Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; + +    // make sure the cover contains some cubes +    assert( Kit_SopCubeNum(cSop) > 0 ); + +    // get the divisor +    if ( !Kit_SopDivisor(cDiv, cSop, nLits, vMemory) ) +        return Kit_SopFactorTrivial( pFForm, cSop, nLits ); + +    // divide the cover by the divisor +    Kit_SopDivideInternal( cSop, cDiv, cQuo, cRem, vMemory ); + +    // check the trivial case +    assert( Kit_SopCubeNum(cQuo) > 0 ); +    if ( Kit_SopCubeNum(cQuo) == 1 ) +        return Kit_SopFactorLF_rec( pFForm, cSop, cQuo, nLits, vMemory ); + +    // make the quotient cube free +    Kit_SopMakeCubeFree( cQuo ); + +    // divide the cover by the quotient +    Kit_SopDivideInternal( cSop, cQuo, cDiv, cRem, vMemory ); + +    // check the trivial case +    if ( Kit_SopIsCubeFree( cDiv ) ) +    { +        eNodeDiv = Kit_SopFactor_rec( pFForm, cDiv, nLits, vMemory ); +        eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); +        eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); +        if ( Kit_SopCubeNum(cRem) == 0 ) +            return eNodeAnd; +        eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); +        return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); +    } + +    // get the common cube +    Kit_SopCommonCubeCover( cCom, cDiv, vMemory ); + +    // solve the simple problem +    return Kit_SopFactorLF_rec( pFForm, cSop, cCom, nLits, vMemory ); +} + + +/**Function************************************************************* + +  Synopsis    [Internal recursive factoring procedure for the leaf case.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ) +{ +    Kit_Sop_t Div, Quo, Rem; +    Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem; +    Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; +    assert( Kit_SopCubeNum(cSimple) == 1 ); +    // get the most often occurring literal +    Kit_SopBestLiteralCover( cDiv, cSop, Kit_SopCube(cSimple, 0), nLits, vMemory ); +    // divide the cover by the literal +    Kit_SopDivideByCube( cSop, cDiv, cQuo, cRem, vMemory ); +    // get the node pointer for the literal +    eNodeDiv = Kit_SopFactorTrivialCube( pFForm, Kit_SopCube(cDiv, 0), nLits ); +    // factor the quotient and remainder +    eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); +    eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); +    if ( Kit_SopCubeNum(cRem) == 0 ) +        return eNodeAnd; +    eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); +    return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); +} + + +/**Function************************************************************* + +  Synopsis    [Factoring cube.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivialCube_rec( Kit_Graph_t * pFForm, unsigned uCube, int nStart, int nFinish ) +{ +    Kit_Edge_t eNode1, eNode2; +    int i, iLit, nLits, nLits1, nLits2; +    // count the number of literals in this interval +    nLits = 0; +    for ( i = nStart; i < nFinish; i++ ) +        if ( Kit_CubeHasLit(uCube, i) ) +        { +            iLit = i; +            nLits++; +        } +    // quit if there is only one literal         +    if ( nLits == 1 ) +        return Kit_EdgeCreate( iLit/2, iLit%2 ); // CST +    // split the literals into two parts +    nLits1 = nLits/2; +    nLits2 = nLits - nLits1; +//    nLits2 = nLits/2; +//    nLits1 = nLits - nLits2; +    // find the splitting point +    nLits = 0; +    for ( i = nStart; i < nFinish; i++ ) +        if ( Kit_CubeHasLit(uCube, i) ) +        { +            if ( nLits == nLits1 ) +                break; +            nLits++; +        } +    // recursively construct the tree for the parts +    eNode1 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, nStart, i  ); +    eNode2 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, i, nFinish ); +    return Kit_GraphAddNodeAnd( pFForm, eNode1, eNode2 ); +} + +/**Function************************************************************* + +  Synopsis    [Factoring cube.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ) +{ +    return Kit_SopFactorTrivialCube_rec( pFForm, uCube, 0, nLits ); +} + +/**Function************************************************************* + +  Synopsis    [Factoring SOP.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivial_rec( Kit_Graph_t * pFForm, unsigned * pCubes, int nCubes, int nLits ) +{ +    Kit_Edge_t eNode1, eNode2; +    int nCubes1, nCubes2; +    if ( nCubes == 1 ) +        return Kit_SopFactorTrivialCube_rec( pFForm, pCubes[0], 0, nLits ); +    // split the cubes into two parts +    nCubes1 = nCubes/2; +    nCubes2 = nCubes - nCubes1; +//    nCubes2 = nCubes/2; +//    nCubes1 = nCubes - nCubes2; +    // recursively construct the tree for the parts +    eNode1 = Kit_SopFactorTrivial_rec( pFForm, pCubes,           nCubes1, nLits ); +    eNode2 = Kit_SopFactorTrivial_rec( pFForm, pCubes + nCubes1, nCubes2, nLits ); +    return Kit_GraphAddNodeOr( pFForm, eNode1, eNode2 ); +} + +/**Function************************************************************* + +  Synopsis    [Factoring the cover, which has no algebraic divisors.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ) +{ +    return Kit_SopFactorTrivial_rec( pFForm, cSop->pCubes, cSop->nCubes, nLits ); +} + + +/**Function************************************************************* + +  Synopsis    [Testing procedure for the factoring code.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_FactorTest( unsigned * pTruth, int nVars ) +{ +    Vec_Int_t * vCover, * vMemory; +    Kit_Graph_t * pGraph; +//    unsigned uTruthRes; +    int RetValue; + +    // derive SOP +    vCover = Vec_IntAlloc( 0 ); +    RetValue = Kit_TruthIsop( pTruth, nVars, vCover, 0 ); +    assert( RetValue == 0 ); + +    // derive factored form +    vMemory = Vec_IntAlloc( 0 ); +    pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); +/* +    // derive truth table +    assert( nVars <= 5 ); +    uTruthRes = Kit_GraphToTruth( pGraph ); +    if ( uTruthRes != pTruth[0] ) +        printf( "Verification failed!" ); +*/ +    printf( "Vars = %2d. Cubes = %3d. FFNodes = %3d. FF_memory = %3d.\n", +        nVars, Vec_IntSize(vCover), Kit_GraphNodeNum(pGraph), Vec_IntSize(vMemory) ); + +    Vec_IntFree( vMemory ); +    Vec_IntFree( vCover ); +    Kit_GraphFree( pGraph ); +} + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kitGraph.c b/src/opt/kit/kitGraph.c new file mode 100644 index 00000000..e2172ca3 --- /dev/null +++ b/src/opt/kit/kitGraph.c @@ -0,0 +1,367 @@ +/**CFile**************************************************************** + +  FileName    [kitGraph.c] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [Decomposition graph representation.] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kitGraph.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +///                        DECLARATIONS                              /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +///                     FUNCTION DEFINITIONS                         /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + +  Synopsis    [Creates a graph with the given number of leaves.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreate( int nLeaves )    +{ +    Kit_Graph_t * pGraph; +    pGraph = ALLOC( Kit_Graph_t, 1 ); +    memset( pGraph, 0, sizeof(Kit_Graph_t) ); +    pGraph->nLeaves = nLeaves; +    pGraph->nSize = nLeaves; +    pGraph->nCap = 2 * nLeaves + 50; +    pGraph->pNodes = ALLOC( Kit_Node_t, pGraph->nCap ); +    memset( pGraph->pNodes, 0, sizeof(Kit_Node_t) * pGraph->nSize ); +    return pGraph; +} + +/**Function************************************************************* + +  Synopsis    [Creates constant 0 graph.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateConst0()    +{ +    Kit_Graph_t * pGraph; +    pGraph = ALLOC( Kit_Graph_t, 1 ); +    memset( pGraph, 0, sizeof(Kit_Graph_t) ); +    pGraph->fConst = 1; +    pGraph->eRoot.fCompl = 1; +    return pGraph; +} + +/**Function************************************************************* + +  Synopsis    [Creates constant 1 graph.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateConst1()    +{ +    Kit_Graph_t * pGraph; +    pGraph = ALLOC( Kit_Graph_t, 1 ); +    memset( pGraph, 0, sizeof(Kit_Graph_t) ); +    pGraph->fConst = 1; +    return pGraph; +} + +/**Function************************************************************* + +  Synopsis    [Creates the literal graph.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl )    +{ +    Kit_Graph_t * pGraph; +    assert( 0 <= iLeaf && iLeaf < nLeaves ); +    pGraph = Kit_GraphCreate( nLeaves ); +    pGraph->eRoot.Node   = iLeaf; +    pGraph->eRoot.fCompl = fCompl; +    return pGraph; +} + +/**Function************************************************************* + +  Synopsis    [Creates a graph with the given number of leaves.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_GraphFree( Kit_Graph_t * pGraph )    +{ +    FREE( pGraph->pNodes ); +    free( pGraph ); +} + +/**Function************************************************************* + +  Synopsis    [Appends a new node to the graph.] + +  Description [This procedure is meant for internal use.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph )    +{ +    Kit_Node_t * pNode; +    if ( pGraph->nSize == pGraph->nCap ) +    { +        pGraph->pNodes = REALLOC( Kit_Node_t, pGraph->pNodes, 2 * pGraph->nCap );  +        pGraph->nCap   = 2 * pGraph->nCap; +    } +    pNode = pGraph->pNodes + pGraph->nSize++; +    memset( pNode, 0, sizeof(Kit_Node_t) ); +    return pNode; +} + +/**Function************************************************************* + +  Synopsis    [Creates an AND node.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) +{ +    Kit_Node_t * pNode; +    // get the new node +    pNode = Kit_GraphAppendNode( pGraph ); +    // set the inputs and other info +    pNode->eEdge0 = eEdge0; +    pNode->eEdge1 = eEdge1; +    pNode->fCompl0 = eEdge0.fCompl; +    pNode->fCompl1 = eEdge1.fCompl; +    return Kit_EdgeCreate( pGraph->nSize - 1, 0 ); +} + +/**Function************************************************************* + +  Synopsis    [Creates an OR node.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) +{ +    Kit_Node_t * pNode; +    // get the new node +    pNode = Kit_GraphAppendNode( pGraph ); +    // set the inputs and other info +    pNode->eEdge0 = eEdge0; +    pNode->eEdge1 = eEdge1; +    pNode->fCompl0 = eEdge0.fCompl; +    pNode->fCompl1 = eEdge1.fCompl; +    // make adjustments for the OR gate +    pNode->fNodeOr = 1; +    pNode->eEdge0.fCompl = !pNode->eEdge0.fCompl; +    pNode->eEdge1.fCompl = !pNode->eEdge1.fCompl; +    return Kit_EdgeCreate( pGraph->nSize - 1, 1 ); +} + +/**Function************************************************************* + +  Synopsis    [Creates an XOR node.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ) +{ +    Kit_Edge_t eNode0, eNode1, eNode; +    if ( Type == 0 ) +    { +        // derive the first AND +        eEdge0.fCompl ^= 1; +        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); +        eEdge0.fCompl ^= 1; +        // derive the second AND +        eEdge1.fCompl ^= 1; +        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); +        // derive the final OR +        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); +    } +    else +    { +        // derive the first AND +        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); +        // derive the second AND +        eEdge0.fCompl ^= 1; +        eEdge1.fCompl ^= 1; +        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); +        // derive the final OR +        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); +        eNode.fCompl ^= 1; +    } +    return eNode; +} + +/**Function************************************************************* + +  Synopsis    [Creates an XOR node.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ) +{ +    Kit_Edge_t eNode0, eNode1, eNode; +    if ( Type == 0 ) +    { +        // derive the first AND +        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); +        // derive the second AND +        eEdgeC.fCompl ^= 1; +        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); +        // derive the final OR +        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); +    } +    else +    { +        // complement the arguments +        eEdgeT.fCompl ^= 1; +        eEdgeE.fCompl ^= 1; +        // derive the first AND +        eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); +        // derive the second AND +        eEdgeC.fCompl ^= 1; +        eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); +        // derive the final OR +        eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); +        eNode.fCompl ^= 1; +    } +    return eNode; +} + +/**Function************************************************************* + +  Synopsis    [Derives the truth table.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph ) +{ +    unsigned uTruths[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; +    unsigned uTruth, uTruth0, uTruth1; +    Kit_Node_t * pNode; +    int i; + +    // sanity checks +    assert( Kit_GraphLeaveNum(pGraph) >= 0 ); +    assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); +    assert( Kit_GraphLeaveNum(pGraph) <= 5 ); + +    // check for constant function +    if ( Kit_GraphIsConst(pGraph) ) +        return Kit_GraphIsComplement(pGraph)? 0 : ~((unsigned)0); +    // check for a literal +    if ( Kit_GraphIsVar(pGraph) ) +        return Kit_GraphIsComplement(pGraph)? ~uTruths[Kit_GraphVarInt(pGraph)] : uTruths[Kit_GraphVarInt(pGraph)]; + +    // assign the elementary variables +    Kit_GraphForEachLeaf( pGraph, pNode, i ) +        pNode->pFunc = (void *)uTruths[i]; + +    // compute the function for each internal node +    Kit_GraphForEachNode( pGraph, pNode, i ) +    { +        uTruth0 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc; +        uTruth1 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc; +        uTruth0 = pNode->eEdge0.fCompl? ~uTruth0 : uTruth0; +        uTruth1 = pNode->eEdge1.fCompl? ~uTruth1 : uTruth1; +        uTruth = uTruth0 & uTruth1; +        pNode->pFunc = (void *)uTruth; +    } + +    // complement the result if necessary +    return Kit_GraphIsComplement(pGraph)? ~uTruth : uTruth; +} + +/**Function************************************************************* + +  Synopsis    [Derives the factored form from the truth table.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) +{ +    Kit_Graph_t * pGraph; +    int RetValue; +    // derive SOP +    RetValue = Kit_TruthIsop( pTruth, nVars, vMemory, 0 ); +    assert( RetValue == 0 ); +    // derive factored form +    pGraph = Kit_SopFactor( vMemory, 0, nVars, vMemory ); +    return pGraph; +} + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/opt/kit/kitHop.c b/src/opt/kit/kitHop.c new file mode 100644 index 00000000..95461c4e --- /dev/null +++ b/src/opt/kit/kitHop.c @@ -0,0 +1,115 @@ +/**CFile**************************************************************** + +  FileName    [kitHop.c] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [Procedures involving AIGs.] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kitHop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" +#include "hop.h" + +//////////////////////////////////////////////////////////////////////// +///                        DECLARATIONS                              /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +///                     FUNCTION DEFINITIONS                         /// +//////////////////////////////////////////////////////////////////////// + + +/**Function************************************************************* + +  Synopsis    [Transforms the decomposition graph into the AIG.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Hop_Obj_t * Kit_GraphToHopInternal( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) +{ +    Kit_Node_t * pNode; +    Hop_Obj_t * pAnd0, * pAnd1; +    int i; +    // check for constant function +    if ( Kit_GraphIsConst(pGraph) ) +        return Hop_NotCond( Hop_ManConst1(pMan), Kit_GraphIsComplement(pGraph) ); +    // check for a literal +    if ( Kit_GraphIsVar(pGraph) ) +        return Hop_NotCond( Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) ); +    // build the AIG nodes corresponding to the AND gates of the graph +    Kit_GraphForEachNode( pGraph, pNode, i ) +    { +        pAnd0 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl );  +        pAnd1 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl );  +        pNode->pFunc = Hop_And( pMan, pAnd0, pAnd1 ); +    } +    // complement the result if necessary +    return Hop_NotCond( pNode->pFunc, Kit_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + +  Synopsis    [Strashes one logic node using its SOP.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) +{ +    Kit_Node_t * pNode; +    int i; +    // collect the fanins +    Kit_GraphForEachLeaf( pGraph, pNode, i ) +        pNode->pFunc = Hop_IthVar( pMan, i ); +    // perform strashing +    return Kit_GraphToHopInternal( pMan, pGraph ); +} + +/**Function************************************************************* + +  Synopsis    [Strashes one logic node using its SOP.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory ) +{ +    Kit_Graph_t * pGraph; +    Hop_Obj_t * pFunc; +    // perform factoring +    pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); +    // convert graph to the AIG +    pFunc = Kit_GraphToHop( pMan, pGraph ); +    Kit_GraphFree( pGraph ); +    return pFunc; +} + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyIsop.c b/src/opt/kit/kitIsop.c index ae48ca34..420cb16f 100644 --- a/src/aig/ivy/ivyIsop.c +++ b/src/opt/kit/kitIsop.c @@ -1,43 +1,35 @@  /**CFile**************************************************************** -  FileName    [ivyIsop.c] +  FileName    [kitIsop.c]    SystemName  [ABC: Logic synthesis and verification system.] -  PackageName [And-Inverter Graph package.] +  PackageName [Computation kit.] -  Synopsis    [Computing irredundant SOP using truth table.] +  Synopsis    [ISOP computation based on Morreale's algorithm.]    Author      [Alan Mishchenko]    Affiliation [UC Berkeley] -  Date        [Ver. 1.0. Started - May 11, 2006.] +  Date        [Ver. 1.0. Started - Dec 6, 2006.] -  Revision    [$Id: ivyIsop.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] +  Revision    [$Id: kitIsop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $]  ***********************************************************************/ -#include "ivy.h" +#include "kit.h"  ////////////////////////////////////////////////////////////////////////  ///                        DECLARATIONS                              ///  ////////////////////////////////////////////////////////////////////////  // ISOP computation fails if intermediate memory usage exceed this limit -#define IVY_ISOP_MEM_LIMIT  16*4096 - -// intermediate ISOP representation -typedef struct Ivy_Sop_t_ Ivy_Sop_t; -struct Ivy_Sop_t_ -{ -    unsigned * pCubes; -    int        nCubes; -}; +#define KIT_ISOP_MEM_LIMIT  (1<<16)  // static procedures to compute ISOP -static unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ); -static unsigned   Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ); +static unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ); +static unsigned   Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore );  ////////////////////////////////////////////////////////////////////////  ///                     FUNCTION DEFINITIONS                         /// @@ -47,9 +39,9 @@ static unsigned   Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, I    Synopsis    [Computes ISOP from TT.] -  Description [Returns the cover in vCover. Uses the rest of array in vCover +  Description [Returns the cover in vMemory. Uses the rest of array in vMemory    as an intermediate memory storage. Returns the cover with -1 cubes, if the -  the computation exceeded the memory limit (IVY_ISOP_MEM_LIMIT words of +  the computation exceeded the memory limit (KIT_ISOP_MEM_LIMIT words of    intermediate data).]    SideEffects [] @@ -57,10 +49,10 @@ static unsigned   Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, I    SeeAlso     []  ***********************************************************************/ -int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBoth ) +int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth )  { -    Ivy_Sop_t cRes, * pcRes = &cRes; -    Ivy_Sop_t cRes2, * pcRes2 = &cRes2; +    Kit_Sop_t cRes, * pcRes = &cRes; +    Kit_Sop_t cRes2, * pcRes2 = &cRes2;      unsigned * pResult;      int RetValue = 0;      assert( nVars >= 0 && nVars < 16 ); @@ -68,13 +60,13 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo  //    for ( i = nVars; i < 5; i++ )  //        assert( !Extra_TruthVarInSupport(puTruth, 5, i) );      // prepare memory manager -    Vec_IntClear( vCover ); -    Vec_IntGrow( vCover, IVY_ISOP_MEM_LIMIT ); +    Vec_IntClear( vMemory ); +    Vec_IntGrow( vMemory, KIT_ISOP_MEM_LIMIT );      // compute ISOP for the direct polarity -    pResult = Ivy_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vCover ); +    pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vMemory );      if ( pcRes->nCubes == -1 )      { -        vCover->nSize = -1; +        vMemory->nSize = -1;          return 0;      }      assert( Extra_TruthIsEqual( puTruth, pResult, nVars ) ); @@ -82,7 +74,7 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo      {          // compute ISOP for the complemented polarity          Extra_TruthNot( puTruth, puTruth, nVars ); -        pResult = Ivy_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vCover ); +        pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vMemory );          if ( pcRes2->nCubes >= 0 )          {              assert( Extra_TruthIsEqual( puTruth, pResult, nVars ) ); @@ -94,10 +86,10 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo          }          Extra_TruthNot( puTruth, puTruth, nVars );      } -//    printf( "%d ", vCover->nSize ); +//    printf( "%d ", vMemory->nSize );      // move the cover representation to the beginning of the memory buffer -    memmove( vCover->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) ); -    Vec_IntShrink( vCover, pcRes->nCubes ); +    memmove( vMemory->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) ); +    Vec_IntShrink( vMemory, pcRes->nCubes );      return RetValue;  } @@ -112,10 +104,10 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo    SeeAlso     []  ***********************************************************************/ -unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ) +unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore )  { -    Ivy_Sop_t cRes0, cRes1, cRes2; -    Ivy_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; +    Kit_Sop_t cRes0, cRes1, cRes2; +    Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2;      unsigned * puRes0, * puRes1, * puRes2;      unsigned * puOn0, * puOn1, * puOnDc0, * puOnDc1, * pTemp, * pTemp0, * pTemp1;      int i, k, Var, nWords, nWordsAll; @@ -159,7 +151,7 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy      // consider a simple case when one-word computation can be used      if ( Var < 5 )      { -        unsigned uRes = Ivy_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore ); +        unsigned uRes = Kit_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore );          for ( i = 0; i < nWordsAll; i++ )              pTemp[i] = uRes;          return pTemp; @@ -172,14 +164,14 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy      pTemp0  = pTemp;   pTemp1  = pTemp + nWords;      // solve for cofactors      Extra_TruthSharp( pTemp0, puOn0, puOnDc1, Var ); -    puRes0 = Ivy_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore ); +    puRes0 = Kit_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore );      if ( pcRes0->nCubes == -1 )      {          pcRes->nCubes = -1;          return NULL;      }      Extra_TruthSharp( pTemp1, puOn1, puOnDc0, Var ); -    puRes1 = Ivy_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore ); +    puRes1 = Kit_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore );      if ( pcRes1->nCubes == -1 )      {          pcRes->nCubes = -1; @@ -189,7 +181,7 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy      Extra_TruthSharp( pTemp1, puOn1, puRes1, Var );      Extra_TruthOr( pTemp0, pTemp0, pTemp1, Var );      Extra_TruthAnd( pTemp1, puOnDc0, puOnDc1, Var ); -    puRes2 = Ivy_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore ); +    puRes2 = Kit_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore );      if ( pcRes2->nCubes == -1 )      {          pcRes->nCubes = -1; @@ -205,9 +197,9 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy      }      k = 0;      for ( i = 0; i < pcRes0->nCubes; i++ ) -        pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+1)); +        pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0));      for ( i = 0; i < pcRes1->nCubes; i++ ) -        pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+0)); +        pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1));      for ( i = 0; i < pcRes2->nCubes; i++ )          pcRes->pCubes[k++] = pcRes2->pCubes[i];      assert( k == pcRes->nCubes ); @@ -236,11 +228,11 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy    SeeAlso     []  ***********************************************************************/ -unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ) +unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore )  {      unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; -    Ivy_Sop_t cRes0, cRes1, cRes2; -    Ivy_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; +    Kit_Sop_t cRes0, cRes1, cRes2; +    Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2;      unsigned uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2;      int i, k, Var;      assert( nVars <= 5 ); @@ -278,19 +270,19 @@ unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t      Extra_TruthCofactor0( &uOnDc0, Var + 1, Var );      Extra_TruthCofactor1( &uOnDc1, Var + 1, Var );      // solve for cofactors -    uRes0 = Ivy_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore ); +    uRes0 = Kit_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore );      if ( pcRes0->nCubes == -1 )      {          pcRes->nCubes = -1;          return 0;      } -    uRes1 = Ivy_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore ); +    uRes1 = Kit_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore );      if ( pcRes1->nCubes == -1 )      {          pcRes->nCubes = -1;          return 0;      } -    uRes2 = Ivy_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore ); +    uRes2 = Kit_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore );      if ( pcRes2->nCubes == -1 )      {          pcRes->nCubes = -1; @@ -306,9 +298,9 @@ unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t      }      k = 0;      for ( i = 0; i < pcRes0->nCubes; i++ ) -        pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+1)); +        pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0));      for ( i = 0; i < pcRes1->nCubes; i++ ) -        pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+0)); +        pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1));      for ( i = 0; i < pcRes2->nCubes; i++ )          pcRes->pCubes[k++] = pcRes2->pCubes[i];      assert( k == pcRes->nCubes ); diff --git a/src/opt/kit/kitSop.c b/src/opt/kit/kitSop.c new file mode 100644 index 00000000..3fa81351 --- /dev/null +++ b/src/opt/kit/kitSop.c @@ -0,0 +1,570 @@ +/**CFile**************************************************************** + +  FileName    [kitSop.c] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [Procedures involving SOPs.] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kitSop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +///                        DECLARATIONS                              /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +///                     FUNCTION DEFINITIONS                         /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + +  Synopsis    [Creates SOP from the cube array.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ) +{ +    unsigned uCube; +    int i; +    // start the cover +    cResult->nCubes = 0; +    cResult->pCubes = Vec_IntFetch( vMemory, Vec_IntSize(vInput) ); +    // add the cubes +    Vec_IntForEachEntry( vInput, uCube, i ) +        Kit_SopPushCube( cResult, uCube ); +} + +/**Function************************************************************* + +  Synopsis    [Creates SOP from the cube array.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nLits, Vec_Int_t * vMemory ) +{ +    unsigned uCube, uMask = 0; +    int i, nCubes = Vec_IntSize(vInput); +    // start the cover +    cResult->nCubes = 0; +    cResult->pCubes = Vec_IntFetch( vMemory, nCubes ); +    // add the cubes +//    Vec_IntForEachEntry( vInput, uCube, i ) +    for ( i = 0; i < nCubes; i++ ) +    { +        uCube = Vec_IntEntry( vInput, i ); +        uMask = ((uCube | (uCube >> 1)) & 0x55555555); +        uMask |= (uMask << 1); +        Kit_SopPushCube( cResult, uCube ^ uMask ); +    } +} + +/**Function************************************************************* + +  Synopsis    [Duplicates SOP.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) +{ +    unsigned uCube; +    int i; +    // start the cover +    cResult->nCubes = 0; +    cResult->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); +    // add the cubes +    Kit_SopForEachCube( cSop, uCube, i ) +        Kit_SopPushCube( cResult, uCube ); +} + +/**Function************************************************************* + +  Synopsis    [Derives the quotient of division by literal.] + +  Description [Reduces the cover to be equal to the result of +  division of the given cover by the literal.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ) +{ +    unsigned uCube; +    int i, k = 0; +    Kit_SopForEachCube( cSop, uCube, i ) +    { +        if ( Kit_CubeHasLit(uCube, iLit) ) +            Kit_SopWriteCube( cSop, Kit_CubeRemLit(uCube, iLit), k++ ); +    } +    Kit_SopShrink( cSop, k ); +} + + +/**Function************************************************************* + +  Synopsis    [Divides cover by one cube.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) +{ +    unsigned uCube, uDiv; +    int i; +    // get the only cube +    assert( Kit_SopCubeNum(cDiv) == 1 ); +    uDiv = Kit_SopCube(cDiv, 0); +    // allocate covers +    vQuo->nCubes = 0; +    vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); +    vRem->nCubes = 0; +    vRem->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); +    // sort the cubes +    Kit_SopForEachCube( cSop, uCube, i ) +    { +        if ( Kit_CubeContains( uCube, uDiv ) ) +            Kit_SopPushCube( vQuo, Kit_CubeSharp(uCube, uDiv) ); +        else +            Kit_SopPushCube( vRem, uCube ); +    } +} + +/**Function************************************************************* + +  Synopsis    [Divides cover by one cube.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) +{ +    unsigned uCube, uDiv, uCube2, uDiv2, uQuo; +    int i, i2, k, k2, nCubesRem; +    assert( Kit_SopCubeNum(cSop) >= Kit_SopCubeNum(cDiv) ); +    // consider special case +    if ( Kit_SopCubeNum(cDiv) == 1 ) +    { +        Kit_SopDivideByCube( cSop, cDiv, vQuo, vRem, vMemory ); +        return; +    } +    // allocate quotient +    vQuo->nCubes = 0; +    vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) / Kit_SopCubeNum(cDiv) ); +    // for each cube of the cover +    // it either belongs to the quotient or to the remainder +    Kit_SopForEachCube( cSop, uCube, i ) +    { +        // skip taken cubes +        if ( Kit_CubeIsMarked(uCube) ) +            continue; +        // find a matching cube in the divisor +        Kit_SopForEachCube( cDiv, uDiv, k ) +            if ( Kit_CubeContains( uCube, uDiv ) ) +                break; +        // the cube is not found  +        if ( k == Kit_SopCubeNum(cDiv) ) +            continue; +        // the quotient cube exists +        uQuo = Kit_CubeSharp( uCube, uDiv ); +        // find corresponding cubes for other cubes of the divisor +        Kit_SopForEachCube( cDiv, uDiv2, k2 ) +        { +            if ( k2 == k ) +                continue; +            // find a matching cube +            Kit_SopForEachCube( cSop, uCube2, i2 ) +            { +                // skip taken cubes +                if ( Kit_CubeIsMarked(uCube2) ) +                    continue; +                // check if the cube can be used +                if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) +                    break; +            } +            // the case when the cube is not found +            if ( i2 == Kit_SopCubeNum(cSop) ) +                break; +        } +        // we did not find some cubes - continue looking at other cubes +        if ( k2 != Kit_SopCubeNum(cDiv) ) +            continue; +        // we found all cubes - add the quotient cube +        Kit_SopPushCube( vQuo, uQuo ); + +        // mark the first cube +        Kit_SopWriteCube( cSop, Kit_CubeMark(uCube), i ); +        // mark other cubes that have this quotient +        Kit_SopForEachCube( cDiv, uDiv2, k2 ) +        { +            if ( k2 == k ) +                continue; +            // find a matching cube +            Kit_SopForEachCube( cSop, uCube2, i2 ) +            { +                // skip taken cubes +                if ( Kit_CubeIsMarked(uCube2) ) +                    continue; +                // check if the cube can be used +                if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) +                    break; +            } +            assert( i2 < Kit_SopCubeNum(cSop) ); +            // the cube is found, mark it  +            // (later we will add all unmarked cubes to the remainder) +            Kit_SopWriteCube( cSop, Kit_CubeMark(uCube2), i2 ); +        } +    } +    // determine the number of cubes in the remainder +    nCubesRem = Kit_SopCubeNum(cSop) - Kit_SopCubeNum(vQuo) * Kit_SopCubeNum(cDiv); +    // allocate remainder +    vRem->nCubes = 0; +    vRem->pCubes = Vec_IntFetch( vMemory, nCubesRem ); +    // finally add the remaining unmarked cubes to the remainder  +    // and clean the marked cubes in the cover +    Kit_SopForEachCube( cSop, uCube, i ) +    { +        if ( !Kit_CubeIsMarked(uCube) ) +        { +            Kit_SopPushCube( vRem, uCube ); +            continue; +        } +        Kit_SopWriteCube( cSop, Kit_CubeUnmark(uCube), i ); +    } +    assert( nCubesRem == Kit_SopCubeNum(vRem) ); +} + +/**Function************************************************************* + +  Synopsis    [Returns the common cube.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +static inline unsigned Kit_SopCommonCube( Kit_Sop_t * cSop ) +{ +    unsigned uMask, uCube; +    int i; +    uMask = ~(unsigned)0; +    Kit_SopForEachCube( cSop, uCube, i ) +        uMask &= uCube; +    return uMask; +} + +/**Function************************************************************* + +  Synopsis    [Makes the cover cube-free.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopMakeCubeFree( Kit_Sop_t * cSop ) +{ +    unsigned uMask, uCube; +    int i; +    uMask = Kit_SopCommonCube( cSop ); +    if ( uMask == 0 ) +        return; +    // remove the common cube +    Kit_SopForEachCube( cSop, uCube, i ) +        Kit_SopWriteCube( cSop, Kit_CubeSharp(uCube, uMask), i ); +} + +/**Function************************************************************* + +  Synopsis    [Checks if the cover is cube-free.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_SopIsCubeFree( Kit_Sop_t * cSop ) +{ +    return Kit_SopCommonCube( cSop ) == 0; +} + +/**Function************************************************************* + +  Synopsis    [Creates SOP composes of the common cube of the given SOP.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) +{ +    assert( Kit_SopCubeNum(cSop) > 0 ); +    cResult->nCubes = 0; +    cResult->pCubes = Vec_IntFetch( vMemory, 1 ); +    Kit_SopPushCube( cResult, Kit_SopCommonCube(cSop) ); +} + + +/**Function************************************************************* + +  Synopsis    [Find any literal that occurs more than once.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ) +{ +    unsigned uCube; +    int i, k, nLitsCur; +    // go through each literal +    for ( i = 0; i < nLits; i++ ) +    { +        // go through all the cubes +        nLitsCur = 0; +        Kit_SopForEachCube( cSop, uCube, k ) +            if ( Kit_CubeHasLit(uCube, i) ) +                nLitsCur++; +        if ( nLitsCur > 1 ) +            return i; +    } +    return -1; +} + +/**Function************************************************************* + +  Synopsis    [Find the least often occurring literal.] + +  Description [Find the least often occurring literal among those +  that occur more than once.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_SopWorstLiteral( Kit_Sop_t * cSop, int nLits ) +{ +    unsigned uCube; +    int i, k, iMin, nLitsMin, nLitsCur; +    int fUseFirst = 1; + +    // go through each literal +    iMin = -1; +    nLitsMin = 1000000; +    for ( i = 0; i < nLits; i++ ) +    { +        // go through all the cubes +        nLitsCur = 0; +        Kit_SopForEachCube( cSop, uCube, k ) +            if ( Kit_CubeHasLit(uCube, i) ) +                nLitsCur++; +        // skip the literal that does not occur or occurs once +        if ( nLitsCur < 2 ) +            continue; +        // check if this is the best literal +        if ( fUseFirst ) +        { +            if ( nLitsMin > nLitsCur ) +            { +                nLitsMin = nLitsCur; +                iMin = i; +            } +        } +        else +        { +            if ( nLitsMin >= nLitsCur ) +            { +                nLitsMin = nLitsCur; +                iMin = i; +            } +        } +    } +    if ( nLitsMin < 1000000 ) +        return iMin; +    return -1; +} + +/**Function************************************************************* + +  Synopsis    [Find the least often occurring literal.] + +  Description [Find the least often occurring literal among those +  that occur more than once.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_SopBestLiteral( Kit_Sop_t * cSop, int nLits, unsigned uMask ) +{ +    unsigned uCube; +    int i, k, iMax, nLitsMax, nLitsCur; +    int fUseFirst = 1; + +    // go through each literal +    iMax = -1; +    nLitsMax = -1; +    for ( i = 0; i < nLits; i++ ) +    { +        if ( !Kit_CubeHasLit(uMask, i) ) +            continue; +        // go through all the cubes +        nLitsCur = 0; +        Kit_SopForEachCube( cSop, uCube, k ) +            if ( Kit_CubeHasLit(uCube, i) ) +                nLitsCur++; +        // skip the literal that does not occur or occurs once +        if ( nLitsCur < 2 ) +            continue; +        // check if this is the best literal +        if ( fUseFirst ) +        { +            if ( nLitsMax < nLitsCur ) +            { +                nLitsMax = nLitsCur; +                iMax = i; +            } +        } +        else +        { +            if ( nLitsMax <= nLitsCur ) +            { +                nLitsMax = nLitsCur; +                iMax = i; +            } +        } +    } +    if ( nLitsMax >= 0 ) +        return iMax; +    return -1; +} + +/**Function************************************************************* + +  Synopsis    [Computes a level-zero kernel.] + +  Description [Modifies the cover to contain one level-zero kernel.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopDivisorZeroKernel_rec( Kit_Sop_t * cSop, int nLits ) +{ +    int iLit; +    // find any literal that occurs at least two times +    iLit = Kit_SopWorstLiteral( cSop, nLits ); +    if ( iLit == -1 ) +        return; +    // derive the cube-free quotient +    Kit_SopDivideByLiteralQuo( cSop, iLit ); // the same cover +    Kit_SopMakeCubeFree( cSop );             // the same cover +    // call recursively +    Kit_SopDivisorZeroKernel_rec( cSop, nLits );    // the same cover +} + +/**Function************************************************************* + +  Synopsis    [Computes the quick divisor of the cover.] + +  Description [Returns 0, if there is no divisor other than trivial.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) +{ +    if ( Kit_SopCubeNum(cSop) <= 1 ) +        return 0; +    if ( Kit_SopAnyLiteral( cSop, nLits ) == -1 ) +        return 0; +    // duplicate the cover +    Kit_SopDup( cResult, cSop, vMemory ); +    // perform the kerneling +    Kit_SopDivisorZeroKernel_rec( cResult, nLits ); +    assert( Kit_SopCubeNum(cResult) > 0 ); +    return 1; +} + + +/**Function************************************************************* + +  Synopsis    [Create the one-literal cover with the best literal from cSop.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ) +{ +    int iLitBest; +    // get the best literal +    iLitBest = Kit_SopBestLiteral( cSop, nLits, uCube ); +    // start the cover +    cResult->nCubes = 0; +    cResult->pCubes = Vec_IntFetch( vMemory, 1 ); +    // set the cube +    Kit_SopPushCube( cResult, Kit_CubeSetLit(0, iLitBest) ); +} + + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kitTruth.c b/src/opt/kit/kitTruth.c new file mode 100644 index 00000000..5df10d63 --- /dev/null +++ b/src/opt/kit/kitTruth.c @@ -0,0 +1,1088 @@ +/**CFile**************************************************************** + +  FileName    [kitTruth.c] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [Procedures involving truth tables.] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kitTruth.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +///                        DECLARATIONS                              /// +//////////////////////////////////////////////////////////////////////// + +static unsigned s_VarMasks[5][2] = { +    { 0x33333333, 0xAAAAAAAA }, +    { 0x55555555, 0xCCCCCCCC }, +    { 0x0F0F0F0F, 0xF0F0F0F0 }, +    { 0x00FF00FF, 0xFF00FF00 }, +    { 0x0000FFFF, 0xFFFF0000 } +}; + +//////////////////////////////////////////////////////////////////////// +///                     FUNCTION DEFINITIONS                         /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + +  Synopsis    [Swaps two adjacent variables in the truth table.] + +  Description [Swaps var number Start and var number Start+1 (0-based numbers). +  The input truth table is pIn. The output truth table is pOut.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) +{ +    static unsigned PMasks[4][3] = { +        { 0x99999999, 0x22222222, 0x44444444 }, +        { 0xC3C3C3C3, 0x0C0C0C0C, 0x30303030 }, +        { 0xF00FF00F, 0x00F000F0, 0x0F000F00 }, +        { 0xFF0000FF, 0x0000FF00, 0x00FF0000 } +    }; +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step, Shift; + +    assert( iVar < nVars - 1 ); +    if ( iVar < 4 ) +    { +        Shift = (1 << iVar); +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift); +    } +    else if ( iVar > 4 ) +    { +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 4*Step ) +        { +            for ( i = 0; i < Step; i++ ) +                pOut[i] = pIn[i]; +            for ( i = 0; i < Step; i++ ) +                pOut[Step+i] = pIn[2*Step+i]; +            for ( i = 0; i < Step; i++ ) +                pOut[2*Step+i] = pIn[Step+i]; +            for ( i = 0; i < Step; i++ ) +                pOut[3*Step+i] = pIn[3*Step+i]; +            pIn  += 4*Step; +            pOut += 4*Step; +        } +    } +    else // if ( iVar == 4 ) +    { +        for ( i = 0; i < nWords; i += 2 ) +        { +            pOut[i]   = (pIn[i]   & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); +            pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i]   & 0xFFFF0000) >> 16); +        } +    } +} + +/**Function************************************************************* + +  Synopsis    [Swaps two adjacent variables in the truth table.] + +  Description [Swaps var number Start and var number Start+1 (0-based numbers). +  The input truth table is pIn. The output truth table is pOut.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthSwapAdjacentVars2( unsigned * pIn, unsigned * pOut, int nVars, int Start ) +{ +    int nWords = (nVars <= 5)? 1 : (1 << (nVars-5)); +    int i, k, Step; + +    assert( Start < nVars - 1 ); +    switch ( Start ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pIn[i] & 0x99999999) | ((pIn[i] & 0x22222222) << 1) | ((pIn[i] & 0x44444444) >> 1); +        return; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pIn[i] & 0xC3C3C3C3) | ((pIn[i] & 0x0C0C0C0C) << 2) | ((pIn[i] & 0x30303030) >> 2); +        return; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pIn[i] & 0xF00FF00F) | ((pIn[i] & 0x00F000F0) << 4) | ((pIn[i] & 0x0F000F00) >> 4); +        return; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pIn[i] & 0xFF0000FF) | ((pIn[i] & 0x0000FF00) << 8) | ((pIn[i] & 0x00FF0000) >> 8); +        return; +    case 4: +        for ( i = 0; i < nWords; i += 2 ) +        { +            pOut[i]   = (pIn[i]   & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); +            pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i]   & 0xFFFF0000) >> 16); +        } +        return; +    default: +        Step = (1 << (Start - 5)); +        for ( k = 0; k < nWords; k += 4*Step ) +        { +            for ( i = 0; i < Step; i++ ) +                pOut[i] = pIn[i]; +            for ( i = 0; i < Step; i++ ) +                pOut[Step+i] = pIn[2*Step+i]; +            for ( i = 0; i < Step; i++ ) +                pOut[2*Step+i] = pIn[Step+i]; +            for ( i = 0; i < Step; i++ ) +                pOut[3*Step+i] = pIn[3*Step+i]; +            pIn  += 4*Step; +            pOut += 4*Step; +        } +        return; +    } +} + +/**Function************************************************************* + +  Synopsis    [Expands the truth table according to the phase.] + +  Description [The input and output truth tables are in pIn/pOut. The current number +  of variables is nVars. The total number of variables in nVarsAll. The last argument +  (Phase) contains shows where the variables should go.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ) +{ +    unsigned * pTemp; +    int i, k, Var = nVars - 1, Counter = 0; +    for ( i = nVarsAll - 1; i >= 0; i-- ) +        if ( Phase & (1 << i) ) +        { +            for ( k = Var; k < i; k++ ) +            { +                Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); +                pTemp = pIn; pIn = pOut; pOut = pTemp; +                Counter++; +            } +            Var--; +        } +    assert( Var == -1 ); +    // swap if it was moved an even number of times +    if ( !(Counter & 1) ) +        Kit_TruthCopy( pOut, pIn, nVarsAll ); +} + +/**Function************************************************************* + +  Synopsis    [Shrinks the truth table according to the phase.] + +  Description [The input and output truth tables are in pIn/pOut. The current number +  of variables is nVars. The total number of variables in nVarsAll. The last argument +  (Phase) contains shows what variables should remain.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ) +{ +    unsigned * pTemp; +    int i, k, Var = 0, Counter = 0; +    for ( i = 0; i < nVarsAll; i++ ) +        if ( Phase & (1 << i) ) +        { +            for ( k = i-1; k >= Var; k-- ) +            { +                Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); +                pTemp = pIn; pIn = pOut; pOut = pTemp; +                Counter++; +            } +            Var++; +        } +    assert( Var == nVars ); +    // swap if it was moved an even number of times +    if ( !(Counter & 1) ) +        Kit_TruthCopy( pOut, pIn, nVarsAll ); +} + + +/**Function************************************************************* + +  Synopsis    [Returns 1 if TT depends on the given variable.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step; + +    assert( iVar < nVars ); +    switch ( iVar ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            if ( (pTruth[i] & 0x55555555) != ((pTruth[i] & 0xAAAAAAAA) >> 1) ) +                return 1; +        return 0; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            if ( (pTruth[i] & 0x33333333) != ((pTruth[i] & 0xCCCCCCCC) >> 2) ) +                return 1; +        return 0; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            if ( (pTruth[i] & 0x0F0F0F0F) != ((pTruth[i] & 0xF0F0F0F0) >> 4) ) +                return 1; +        return 0; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            if ( (pTruth[i] & 0x00FF00FF) != ((pTruth[i] & 0xFF00FF00) >> 8) ) +                return 1; +        return 0; +    case 4: +        for ( i = 0; i < nWords; i++ ) +            if ( (pTruth[i] & 0x0000FFFF) != ((pTruth[i] & 0xFFFF0000) >> 16) ) +                return 1; +        return 0; +    default: +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 2*Step ) +        { +            for ( i = 0; i < Step; i++ ) +                if ( pTruth[i] != pTruth[Step+i] ) +                    return 1; +            pTruth += 2*Step; +        } +        return 0; +    } +} + +/**Function************************************************************* + +  Synopsis    [Returns the number of support vars.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_TruthSupportSize( unsigned * pTruth, int nVars ) +{ +    int i, Counter = 0; +    for ( i = 0; i < nVars; i++ ) +        Counter += Kit_TruthVarInSupport( pTruth, nVars, i ); +    return Counter; +} + +/**Function************************************************************* + +  Synopsis    [Returns support of the function.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_TruthSupport( unsigned * pTruth, int nVars ) +{ +    int i, Support = 0; +    for ( i = 0; i < nVars; i++ ) +        if ( Kit_TruthVarInSupport( pTruth, nVars, i ) ) +            Support |= (1 << i); +    return Support; +} + + + +/**Function************************************************************* + +  Synopsis    [Computes positive cofactor of the function.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step; + +    assert( iVar < nVars ); +    switch ( iVar ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0xAAAAAAAA) | ((pTruth[i] & 0xAAAAAAAA) >> 1); +        return; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0xCCCCCCCC) | ((pTruth[i] & 0xCCCCCCCC) >> 2); +        return; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0xF0F0F0F0) | ((pTruth[i] & 0xF0F0F0F0) >> 4); +        return; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0xFF00FF00) | ((pTruth[i] & 0xFF00FF00) >> 8); +        return; +    case 4: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0xFFFF0000) | ((pTruth[i] & 0xFFFF0000) >> 16); +        return; +    default: +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 2*Step ) +        { +            for ( i = 0; i < Step; i++ ) +                pTruth[i] = pTruth[Step+i]; +            pTruth += 2*Step; +        } +        return; +    } +} + +/**Function************************************************************* + +  Synopsis    [Computes negative cofactor of the function.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step; + +    assert( iVar < nVars ); +    switch ( iVar ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0x55555555) | ((pTruth[i] & 0x55555555) << 1); +        return; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0x33333333) | ((pTruth[i] & 0x33333333) << 2); +        return; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0x0F0F0F0F) | ((pTruth[i] & 0x0F0F0F0F) << 4); +        return; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0x00FF00FF) | ((pTruth[i] & 0x00FF00FF) << 8); +        return; +    case 4: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = (pTruth[i] & 0x0000FFFF) | ((pTruth[i] & 0x0000FFFF) << 16); +        return; +    default: +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 2*Step ) +        { +            for ( i = 0; i < Step; i++ ) +                pTruth[Step+i] = pTruth[i]; +            pTruth += 2*Step; +        } +        return; +    } +} + + +/**Function************************************************************* + +  Synopsis    [Existentially quantifies the variable.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step; + +    assert( iVar < nVars ); +    switch ( iVar ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] |=  ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); +        return; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] |=  ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); +        return; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] |=  ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); +        return; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] |=  ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); +        return; +    case 4: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] |=  ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); +        return; +    default: +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 2*Step ) +        { +            for ( i = 0; i < Step; i++ ) +            { +                pTruth[i]     |= pTruth[Step+i]; +                pTruth[Step+i] = pTruth[i]; +            } +            pTruth += 2*Step; +        } +        return; +    } +} + +/**Function************************************************************* + +  Synopsis    [Existentially quantifies the variable.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step; + +    assert( iVar < nVars ); +    switch ( iVar ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] &=  ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); +        return; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] &=  ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); +        return; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] &=  ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); +        return; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] &=  ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); +        return; +    case 4: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] &=  ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); +        return; +    default: +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 2*Step ) +        { +            for ( i = 0; i < Step; i++ ) +            { +                pTruth[i]     &= pTruth[Step+i]; +                pTruth[Step+i] = pTruth[i]; +            } +            pTruth += 2*Step; +        } +        return; +    } +} + + +/**Function************************************************************* + +  Synopsis    [Computes negative cofactor of the function.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthMux( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step; + +    assert( iVar < nVars ); +    switch ( iVar ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); +        return; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); +        return; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); +        return; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); +        return; +    case 4: +        for ( i = 0; i < nWords; i++ ) +            pOut[i] = (pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); +        return; +    default: +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 2*Step ) +        { +            for ( i = 0; i < Step; i++ ) +            { +                pOut[i]      = pCof0[i]; +                pOut[Step+i] = pCof1[Step+i]; +            } +            pOut += 2*Step; +        } +        return; +    } +} + +/**Function************************************************************* + +  Synopsis    [Checks symmetry of two variables.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) +{ +    static unsigned uTemp0[16], uTemp1[16]; +    assert( nVars <= 9 ); +    // compute Cof01 +    Kit_TruthCopy( uTemp0, pTruth, nVars ); +    Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); +    Kit_TruthCofactor1( uTemp0, nVars, iVar1 ); +    // compute Cof10 +    Kit_TruthCopy( uTemp1, pTruth, nVars ); +    Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); +    Kit_TruthCofactor0( uTemp1, nVars, iVar1 ); +    // compare +    return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); +} + +/**Function************************************************************* + +  Synopsis    [Checks antisymmetry of two variables.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) +{ +    static unsigned uTemp0[16], uTemp1[16]; +    assert( nVars <= 9 ); +    // compute Cof00 +    Kit_TruthCopy( uTemp0, pTruth, nVars ); +    Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); +    Kit_TruthCofactor0( uTemp0, nVars, iVar1 ); +    // compute Cof11 +    Kit_TruthCopy( uTemp1, pTruth, nVars ); +    Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); +    Kit_TruthCofactor1( uTemp1, nVars, iVar1 ); +    // compare +    return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); +} + +/**Function************************************************************* + +  Synopsis    [Changes phase of the function w.r.t. one variable.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Step; +    unsigned Temp; + +    assert( iVar < nVars ); +    switch ( iVar ) +    { +    case 0: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = ((pTruth[i] & 0x55555555) << 1) | ((pTruth[i] & 0xAAAAAAAA) >> 1); +        return; +    case 1: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = ((pTruth[i] & 0x33333333) << 2) | ((pTruth[i] & 0xCCCCCCCC) >> 2); +        return; +    case 2: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = ((pTruth[i] & 0x0F0F0F0F) << 4) | ((pTruth[i] & 0xF0F0F0F0) >> 4); +        return; +    case 3: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = ((pTruth[i] & 0x00FF00FF) << 8) | ((pTruth[i] & 0xFF00FF00) >> 8); +        return; +    case 4: +        for ( i = 0; i < nWords; i++ ) +            pTruth[i] = ((pTruth[i] & 0x0000FFFF) << 16) | ((pTruth[i] & 0xFFFF0000) >> 16); +        return; +    default: +        Step = (1 << (iVar - 5)); +        for ( k = 0; k < nWords; k += 2*Step ) +        { +            for ( i = 0; i < Step; i++ ) +            { +                Temp = pTruth[i]; +                pTruth[i] = pTruth[Step+i]; +                pTruth[Step+i] = Temp; +            } +            pTruth += 2*Step; +        } +        return; +    } +} + +/**Function************************************************************* + +  Synopsis    [Computes minimum overlap in supports of cofactors.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ) +{ +    static unsigned uCofactor[16]; +    int i, ValueCur, ValueMin, VarMin; +    unsigned uSupp0, uSupp1; +    int nVars0, nVars1; +    assert( nVars <= 9 ); +    ValueMin = 32; +    VarMin   = -1; +    for ( i = 0; i < nVars; i++ ) +    { +        // get negative cofactor +        Kit_TruthCopy( uCofactor, pTruth, nVars ); +        Kit_TruthCofactor0( uCofactor, nVars, i ); +        uSupp0 = Kit_TruthSupport( uCofactor, nVars ); +        nVars0 = Kit_WordCountOnes( uSupp0 ); +//Kit_PrintBinary( stdout, &uSupp0, 8 ); printf( "\n" ); +        // get positive cofactor +        Kit_TruthCopy( uCofactor, pTruth, nVars ); +        Kit_TruthCofactor1( uCofactor, nVars, i ); +        uSupp1 = Kit_TruthSupport( uCofactor, nVars ); +        nVars1 = Kit_WordCountOnes( uSupp1 ); +//Kit_PrintBinary( stdout, &uSupp1, 8 ); printf( "\n" ); +        // get the number of common vars +        ValueCur = Kit_WordCountOnes( uSupp0 & uSupp1 ); +        if ( ValueMin > ValueCur && nVars0 <= 5 && nVars1 <= 5 ) +        { +            ValueMin = ValueCur; +            VarMin = i; +        } +        if ( ValueMin == 0 ) +            break; +    } +    if ( pVarMin ) +        *pVarMin = VarMin; +    return ValueMin; +} + + +/**Function************************************************************* + +  Synopsis    [Counts the number of 1's in each cofactor.] + +  Description [The resulting numbers are stored in the array of shorts,  +  whose length is 2*nVars. The number of 1's is counted in a different +  space than the original function. For example, if the function depends  +  on k variables, the cofactors are assumed to depend on k-1 variables.] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ) +{ +    int nWords = Kit_TruthWordNum( nVars ); +    int i, k, Counter; +    memset( pStore, 0, sizeof(short) * 2 * nVars ); +    if ( nVars <= 5 ) +    { +        if ( nVars > 0 ) +        { +            pStore[2*0+0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 ); +            pStore[2*0+1] = Kit_WordCountOnes( pTruth[0] & 0xAAAAAAAA ); +        } +        if ( nVars > 1 ) +        { +            pStore[2*1+0] = Kit_WordCountOnes( pTruth[0] & 0x33333333 ); +            pStore[2*1+1] = Kit_WordCountOnes( pTruth[0] & 0xCCCCCCCC ); +        } +        if ( nVars > 2 ) +        { +            pStore[2*2+0] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F ); +            pStore[2*2+1] = Kit_WordCountOnes( pTruth[0] & 0xF0F0F0F0 ); +        } +        if ( nVars > 3 ) +        { +            pStore[2*3+0] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF ); +            pStore[2*3+1] = Kit_WordCountOnes( pTruth[0] & 0xFF00FF00 ); +        } +        if ( nVars > 4 ) +        { +            pStore[2*4+0] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF ); +            pStore[2*4+1] = Kit_WordCountOnes( pTruth[0] & 0xFFFF0000 ); +        } +        return; +    } +    // nVars >= 6 +    // count 1's for all other variables +    for ( k = 0; k < nWords; k++ ) +    { +        Counter = Kit_WordCountOnes( pTruth[k] ); +        for ( i = 5; i < nVars; i++ ) +            if ( k & (1 << (i-5)) ) +                pStore[2*i+1] += Counter; +            else +                pStore[2*i+0] += Counter; +    } +    // count 1's for the first five variables +    for ( k = 0; k < nWords/2; k++ ) +    { +        pStore[2*0+0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) <<  1) ); +        pStore[2*0+1] += Kit_WordCountOnes( (pTruth[0] & 0xAAAAAAAA) | ((pTruth[1] & 0xAAAAAAAA) >>  1) ); +        pStore[2*1+0] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) <<  2) ); +        pStore[2*1+1] += Kit_WordCountOnes( (pTruth[0] & 0xCCCCCCCC) | ((pTruth[1] & 0xCCCCCCCC) >>  2) ); +        pStore[2*2+0] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) <<  4) ); +        pStore[2*2+1] += Kit_WordCountOnes( (pTruth[0] & 0xF0F0F0F0) | ((pTruth[1] & 0xF0F0F0F0) >>  4) ); +        pStore[2*3+0] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) <<  8) ); +        pStore[2*3+1] += Kit_WordCountOnes( (pTruth[0] & 0xFF00FF00) | ((pTruth[1] & 0xFF00FF00) >>  8) ); +        pStore[2*4+0] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) ); +        pStore[2*4+1] += Kit_WordCountOnes( (pTruth[0] & 0xFFFF0000) | ((pTruth[1] & 0xFFFF0000) >> 16) ); +        pTruth += 2; +    } +} + + +/**Function************************************************************* + +  Synopsis    [Canonicize the truth table.] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +unsigned Kit_TruthHash( unsigned * pIn, int nWords ) +{ +    // The 1,024 smallest prime numbers used to compute the hash value +    // http://www.math.utah.edu/~alfeld/math/primelist.html +    static int HashPrimes[1024] = { 2, 3, 5,  +    7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,  +    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,  +    193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,  +    293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,  +    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,  +    521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,  +    641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751,  +    757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,  +    881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,  +    1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,  +    1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,  +    1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291,  +    1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423,  +    1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,  +    1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,  +    1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,  +    1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,  +    1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,  +    1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029,  +    2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137,  +    2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267,  +    2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,  +    2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459,  +    2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593,  +    2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693,  +    2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,  +    2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,  +    2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023,  +    3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167,  +    3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,  +    3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373,  +    3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511,  +    3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,  +    3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,  +    3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833,  +    3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931,  +    3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057,  +    4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,  +    4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283,  +    4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423,  +    4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547,  +    4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,  +    4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789,  +    4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931,  +    4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011,  +    5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147,  +    5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279,  +    5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413,  +    5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507,  +    5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647,  +    5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743,  +    5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857,  +    5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007,  +    6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121,  +    6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247,  +    6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343,  +    6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473,  +    6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607,  +    6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733,  +    6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857,  +    6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971,  +    6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103,  +    7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,  +    7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369,  +    7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517,  +    7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603,  +    7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723,  +    7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873,  +    7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009,  +    8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123,  +    8147, 8161 }; +    int i; +    unsigned uHashKey; +    assert( nWords <= 1024 ); +    uHashKey = 0; +    for ( i = 0; i < nWords; i++ ) +        uHashKey ^= HashPrimes[i] * pIn[i]; +    return uHashKey; +} + +  +/**Function************************************************************* + +  Synopsis    [Canonicize the truth table.] + +  Description [Returns the phase. ] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ +unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ) +{ +    unsigned * pIn = pInOut, * pOut = pAux, * pTemp; +    int nWords = Kit_TruthWordNum( nVars ); +    int i, Temp, fChange, Counter, nOnes;//, k, j, w, Limit; +    unsigned uCanonPhase; + +    // canonicize output +    uCanonPhase = 0; +    nOnes = Kit_TruthCountOnes(pIn, nVars); +    if ( (nOnes > nWords * 16) || ((nOnes == nWords * 16) && (pIn[0] & 1)) ) +    { +        uCanonPhase |= (1 << nVars); +        Kit_TruthNot( pIn, pIn, nVars ); +    } + +    // collect the minterm counts +    Kit_TruthCountOnesInCofs( pIn, nVars, pStore ); + +    // canonicize phase +    for ( i = 0; i < nVars; i++ ) +    { +        if ( pStore[2*i+0] <= pStore[2*i+1] ) +            continue; +        uCanonPhase |= (1 << i); +        Temp = pStore[2*i+0]; +        pStore[2*i+0] = pStore[2*i+1]; +        pStore[2*i+1] = Temp; +        Kit_TruthChangePhase( pIn, nVars, i ); +    } + +//    Kit_PrintHexadecimal( stdout, pIn, nVars ); +//    printf( "\n" ); + +    // permute +    Counter = 0; +    do { +        fChange = 0; +        for ( i = 0; i < nVars-1; i++ ) +        { +            if ( pStore[2*i] <= pStore[2*(i+1)] ) +                continue; +            Counter++; +            fChange = 1; + +            Temp = pCanonPerm[i]; +            pCanonPerm[i] = pCanonPerm[i+1]; +            pCanonPerm[i+1] = Temp; + +            Temp = pStore[2*i]; +            pStore[2*i] = pStore[2*(i+1)]; +            pStore[2*(i+1)] = Temp; + +            Temp = pStore[2*i+1]; +            pStore[2*i+1] = pStore[2*(i+1)+1]; +            pStore[2*(i+1)+1] = Temp; + +            Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i ); +            pTemp = pIn; pIn = pOut; pOut = pTemp; +        } +    } while ( fChange ); + +/* +    Kit_PrintBinary( stdout, &uCanonPhase, nVars+1 ); printf( " : " ); +    for ( i = 0; i < nVars; i++ ) +        printf( "%d=%d/%d  ", pCanonPerm[i], pStore[2*i], pStore[2*i+1] ); +    printf( "  C = %d\n", Counter ); +    Kit_PrintHexadecimal( stdout, pIn, nVars ); +    printf( "\n" ); +*/ + +/* +    // process symmetric variable groups +    uSymms = 0; +    for ( i = 0; i < nVars-1; i++ ) +    { +        if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric +            continue; +        if ( pStore[2*i] != pStore[2*i+1] ) +            continue; +        if ( Kit_TruthVarsSymm( pIn, nVars, i, i+1 ) ) +            continue; +        if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, i+1 ) ) +            Kit_TruthChangePhase( pIn, nVars, i+1 ); +    } +*/ + +/* +    // process symmetric variable groups +    uSymms = 0; +    for ( i = 0; i < nVars-1; i++ ) +    { +        if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric +            continue; +        // i and i+1 can be symmetric +        // find the end of this group +        for ( k = i+1; k < nVars; k++ ) +            if ( pStore[2*i] != pStore[2*k] )  +                break; +        Limit = k; +        assert( i < Limit-1 ); +        // go through the variables in this group +        for ( j = i + 1; j < Limit; j++ ) +        { +            // check symmetry +            if ( Kit_TruthVarsSymm( pIn, nVars, i, j ) ) +            { +                uSymms |= (1 << j); +                continue; +            } +            // they are phase-unknown +            if ( pStore[2*i] == pStore[2*i+1] )  +            { +                if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, j ) ) +                { +                    Kit_TruthChangePhase( pIn, nVars, j ); +                    uCanonPhase ^= (1 << j); +                    uSymms |= (1 << j); +                    continue; +                } +            } + +            // they are not symmetric - move j as far as it goes in the group +            for ( k = j; k < Limit-1; k++ ) +            { +                Counter++; + +                Temp = pCanonPerm[k]; +                pCanonPerm[k] = pCanonPerm[k+1]; +                pCanonPerm[k+1] = Temp; + +                assert( pStore[2*k] == pStore[2*(k+1)] ); +                Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, k ); +                pTemp = pIn; pIn = pOut; pOut = pTemp; +            } +            Limit--; +            j--; +        } +        i = Limit - 1; +    } +*/ + +    // swap if it was moved an even number of times +    if ( Counter & 1 ) +        Kit_TruthCopy( pOut, pIn, nVars ); +    return uCanonPhase; +} + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kit_.c b/src/opt/kit/kit_.c new file mode 100644 index 00000000..5c68ee3c --- /dev/null +++ b/src/opt/kit/kit_.c @@ -0,0 +1,48 @@ +/**CFile**************************************************************** + +  FileName    [kit_.c] + +  SystemName  [ABC: Logic synthesis and verification system.] + +  PackageName [Computation kit.] + +  Synopsis    [] + +  Author      [Alan Mishchenko] +   +  Affiliation [UC Berkeley] + +  Date        [Ver. 1.0. Started - Dec 6, 2006.] + +  Revision    [$Id: kit_.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +///                        DECLARATIONS                              /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +///                     FUNCTION DEFINITIONS                         /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + +  Synopsis    [] + +  Description [] +                +  SideEffects [] + +  SeeAlso     [] + +***********************************************************************/ + + +//////////////////////////////////////////////////////////////////////// +///                       END OF FILE                                /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/module.make b/src/opt/kit/module.make new file mode 100644 index 00000000..36beda7a --- /dev/null +++ b/src/opt/kit/module.make @@ -0,0 +1,7 @@ +SRC +=  src/opt/kit/kitBdd.c \ +    src/opt/kit/kitFactor.c \ +    src/opt/kit/kitGraph.c \ +    src/opt/kit/kitHop.c \ +    src/opt/kit/kitIsop.c \ +    src/opt/kit/kitSop.c \ +    src/opt/kit/kitTruth.c diff --git a/src/sat/bsat/satSolver.c b/src/sat/bsat/satSolver.c index 2a6c17bf..1dd40155 100644 --- a/src/sat/bsat/satSolver.c +++ b/src/sat/bsat/satSolver.c @@ -801,14 +801,14 @@ void sat_solver_reducedb(sat_solver* s)      vecp_resize(&s->learnts,j);  } -static lbool sat_solver_search(sat_solver* s, int nof_conflicts, int nof_learnts) +static lbool sat_solver_search(sat_solver* s, sint64 nof_conflicts, sint64 nof_learnts)  {      int*    levels          = s->levels;      double  var_decay       = 0.95;      double  clause_decay    = 0.999;      double  random_var_freq = 0.02; -    int     conflictC       = 0; +    sint64  conflictC       = 0;      veci    learnt_clause;      int     i; @@ -1118,8 +1118,8 @@ bool sat_solver_simplify(sat_solver* s)  int sat_solver_solve(sat_solver* s, lit* begin, lit* end, sint64 nConfLimit, sint64 nInsLimit, sint64 nConfLimitGlobal, sint64 nInsLimitGlobal)  { -    double  nof_conflicts = 100; -    double  nof_learnts   = sat_solver_nclauses(s) / 3; +    sint64  nof_conflicts = 100; +    sint64  nof_learnts   = sat_solver_nclauses(s) / 3;      lbool   status        = l_Undef;      lbool*  values        = s->assigns;      lit*    i; @@ -1178,9 +1178,9 @@ int sat_solver_solve(sat_solver* s, lit* begin, lit* end, sint64 nConfLimit, sin                  s->progress_estimate*100);              fflush(stdout);          } -        status = sat_solver_search(s,(int)nof_conflicts, (int)nof_learnts); -        nof_conflicts *= 1.5; -        nof_learnts   *= 1.1; +        status = sat_solver_search(s, nof_conflicts, nof_learnts); +        nof_conflicts = nof_conflicts * 3 / 2; //*= 1.5; +        nof_learnts   = nof_learnts * 11 / 10; //*= 1.1;          // quit the loop if reached an external limit          if ( s->nConfLimit && s->stats.conflicts > s->nConfLimit ) | 
