diff options
author | Alan Mishchenko <alanmi@berkeley.edu> | 2006-12-06 08:01:00 -0800 |
---|---|---|
committer | Alan Mishchenko <alanmi@berkeley.edu> | 2006-12-06 08:01:00 -0800 |
commit | 4cf99cae95c629b31d6d89c5dcea2eeb17654c85 (patch) | |
tree | dd5984cdf1b9332b800921fd89cf190aa2c4d8d9 /src | |
parent | 38254947a57b9899909d8fbabfbf784690ed5a68 (diff) | |
download | abc-4cf99cae95c629b31d6d89c5dcea2eeb17654c85.tar.gz abc-4cf99cae95c629b31d6d89c5dcea2eeb17654c85.tar.bz2 abc-4cf99cae95c629b31d6d89c5dcea2eeb17654c85.zip |
Version abc61206
Diffstat (limited to 'src')
-rw-r--r-- | src/aig/ivy/ivy.h | 2 | ||||
-rw-r--r-- | src/aig/ivy/ivyFactor.c | 783 | ||||
-rw-r--r-- | src/aig/ivy/ivyFpga.c | 378 | ||||
-rw-r--r-- | src/aig/ivy/module.make | 1 | ||||
-rw-r--r-- | src/base/abc/abcSop.c | 4 | ||||
-rw-r--r-- | src/base/abci/abc.c | 46 | ||||
-rw-r--r-- | src/base/abci/abcIf.c | 29 | ||||
-rw-r--r-- | src/base/abci/abcRenode.c | 68 | ||||
-rw-r--r-- | src/map/if/if.h | 1 | ||||
-rw-r--r-- | src/map/if/ifMan.c | 9 | ||||
-rw-r--r-- | src/map/if/ifTruth.c | 5 | ||||
-rw-r--r-- | src/misc/extra/extra.h | 1 | ||||
-rw-r--r-- | src/misc/extra/extraUtilTruth.c | 58 | ||||
-rw-r--r-- | src/misc/vec/vecInt.h | 3 | ||||
-rw-r--r-- | src/opt/kit/kit.h | 334 | ||||
-rw-r--r-- | src/opt/kit/kitBdd.c | 231 | ||||
-rw-r--r-- | src/opt/kit/kitFactor.c | 337 | ||||
-rw-r--r-- | src/opt/kit/kitGraph.c | 367 | ||||
-rw-r--r-- | src/opt/kit/kitHop.c | 115 | ||||
-rw-r--r-- | src/opt/kit/kitIsop.c (renamed from src/aig/ivy/ivyIsop.c) | 86 | ||||
-rw-r--r-- | src/opt/kit/kitSop.c | 570 | ||||
-rw-r--r-- | src/opt/kit/kitTruth.c | 1088 | ||||
-rw-r--r-- | src/opt/kit/kit_.c | 48 | ||||
-rw-r--r-- | src/opt/kit/module.make | 7 | ||||
-rw-r--r-- | src/sat/bsat/satSolver.c | 14 |
25 files changed, 3271 insertions, 1314 deletions
diff --git a/src/aig/ivy/ivy.h b/src/aig/ivy/ivy.h index 91d4d767..f48466ef 100644 --- a/src/aig/ivy/ivy.h +++ b/src/aig/ivy/ivy.h @@ -466,8 +466,6 @@ extern void Ivy_ManHaigPostprocess( Ivy_Man_t * p, int fVerbose ); extern void Ivy_ManHaigCreateObj( Ivy_Man_t * p, Ivy_Obj_t * pObj ); extern void Ivy_ManHaigCreateChoice( Ivy_Man_t * p, Ivy_Obj_t * pObjOld, Ivy_Obj_t * pObjNew ); extern void Ivy_ManHaigSimulate( Ivy_Man_t * p ); -/*=== ivyIsop.c ==========================================================*/ -extern int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBoth ); /*=== ivyMan.c ==========================================================*/ extern Ivy_Man_t * Ivy_ManStart(); extern Ivy_Man_t * Ivy_ManStartFrom( Ivy_Man_t * p ); diff --git a/src/aig/ivy/ivyFactor.c b/src/aig/ivy/ivyFactor.c deleted file mode 100644 index 19a40b3f..00000000 --- a/src/aig/ivy/ivyFactor.c +++ /dev/null @@ -1,783 +0,0 @@ -/**CFile**************************************************************** - - FileName [ivyFactor.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [And-Inverter Graph package.] - - Synopsis [Factoring the cover up to 16 inputs.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - May 11, 2006.] - - Revision [$Id: ivyFactor.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "ivy.h" -#include "dec.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -// ISOP computation fails if intermediate memory usage exceed this limit -#define IVY_FACTOR_MEM_LIMIT 16*4096 - -// intermediate ISOP representation -typedef struct Ivy_Sop_t_ Ivy_Sop_t; -struct Ivy_Sop_t_ -{ - unsigned * uCubes; - int nCubes; -}; - -static inline int Ivy_CubeHasLit( unsigned uCube, int i ) { return (uCube & (unsigned)(1<<i)) > 0;} -static inline unsigned Ivy_CubeSetLit( unsigned uCube, int i ) { return uCube | (unsigned)(1<<i); } -static inline unsigned Ivy_CubeXorLit( unsigned uCube, int i ) { return uCube ^ (unsigned)(1<<i); } -static inline unsigned Ivy_CubeRemLit( unsigned uCube, int i ) { return uCube & ~(unsigned)(1<<i); } - -static inline int Ivy_CubeContains( unsigned uLarge, unsigned uSmall ) { return (uLarge & uSmall) == uSmall; } -static inline unsigned Ivy_CubeSharp( unsigned uCube, unsigned uPart ) { return uCube & ~uPart; } -static inline unsigned Ivy_CubeMask( int nVar ) { return (~(unsigned)0) >> (32-nVar); } - -static inline int Ivy_CubeIsMarked( unsigned uCube ) { return Ivy_CubeHasLit( uCube, 31 ); } -static inline void Ivy_CubeMark( unsigned uCube ) { Ivy_CubeSetLit( uCube, 31 ); } -static inline void Ivy_CubeUnmark( unsigned uCube ) { Ivy_CubeRemLit( uCube, 31 ); } - -static inline int Ivy_SopCubeNum( Ivy_Sop_t * cSop ) { return cSop->nCubes; } -static inline unsigned Ivy_SopCube( Ivy_Sop_t * cSop, int i ) { return cSop->uCubes[i]; } -static inline void Ivy_SopAddCube( Ivy_Sop_t * cSop, unsigned uCube ) { cSop->uCubes[cSop->nCubes++] = uCube; } -static inline void Ivy_SopSetCube( Ivy_Sop_t * cSop, unsigned uCube, int i ) { cSop->uCubes[i] = uCube; } -static inline void Ivy_SopShrink( Ivy_Sop_t * cSop, int nCubesNew ) { cSop->nCubes = nCubesNew; } - -// iterators -#define Ivy_SopForEachCube( cSop, uCube, i ) \ - for ( i = 0; (i < Ivy_SopCubeNum(cSop)) && ((uCube) = Ivy_SopCube(cSop, i)); i++ ) -#define Ivy_CubeForEachLiteral( uCube, Lit, nLits, i ) \ - for ( i = 0; (i < (nLits)) && ((Lit) = Ivy_CubeHasLit(uCube, i)); i++ ) - -/**Function************************************************************* - - Synopsis [Divides cover by one cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopDivideByCube( Vec_Int_t * vStore, int nVars, Ivy_Sop_t * cSop, Ivy_Sop_t * cDiv, Ivy_Sop_t * vQuo, Ivy_Sop_t * vRem ) -{ - unsigned uCube, uDiv; - int i; - // get the only cube - assert( Ivy_SopCubeNum(cDiv) == 1 ); - uDiv = Ivy_SopCube(cDiv, 0); - // allocate covers - vQuo->nCubes = 0; - vQuo->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) ); - vRem->nCubes = 0; - vRem->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) ); - // sort the cubes - Ivy_SopForEachCube( cSop, uCube, i ) - { - if ( Ivy_CubeContains( uCube, uDiv ) ) - Ivy_SopAddCube( vQuo, Ivy_CubeSharp(uCube, uDiv) ); - else - Ivy_SopAddCube( vRem, uCube ); - } -} - -/**Function************************************************************* - - Synopsis [Divides cover by one cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopDivideInternal( Vec_Int_t * vStore, int nVars, Ivy_Sop_t * cSop, Ivy_Sop_t * cDiv, Ivy_Sop_t * vQuo, Ivy_Sop_t * vRem ) -{ - unsigned uCube, uCube2, uDiv, uDiv2, uQuo; - int i, i2, k, k2; - assert( Ivy_SopCubeNum(cSop) >= Ivy_SopCubeNum(cDiv) ); - if ( Ivy_SopCubeNum(cDiv) == 1 ) - { - Ivy_SopDivideByCube( cSop, cDiv, vQuo, vRem ); - return; - } - // allocate quotient - vQuo->nCubes = 0; - vQuo->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) / Ivy_SopCubeNum(cDiv) ); - // for each cube of the cover - // it either belongs to the quotient or to the remainder - Ivy_SopForEachCube( cSop, uCube, i ) - { - // skip taken cubes - if ( Ivy_CubeIsMarked(uCube) ) - continue; - // mark the cube - Ivy_SopSetCube( cSop, Ivy_CubeMark(uCube), i ); - // find a matching cube in the divisor - Ivy_SopForEachCube( cDiv, uDiv, k ) - if ( Ivy_CubeContains( uCube, uDiv ) ) - break; - // the case when the cube is not found - // (later we will add marked cubes to the remainder) - if ( k == Ivy_SopCubeNum(cDiv) ) - continue; - // if the quotient cube exist, it will be - uQuo = Ivy_CubeSharp( uCube, uDiv ); - // try to find other cubes of the divisor - Ivy_SopForEachCube( cDiv, uDiv2, k2 ) - { - if ( k2 == k ) - continue; - // find a matching cube - Ivy_SopForEachCube( cSop, uCube2, i2 ) - { - // skip taken cubes - if ( Ivy_CubeIsMarked(uCube2) ) - continue; - // check if the cube can be used - if ( Ivy_CubeContains( uCube2, uDiv2 ) && uQuo == Ivy_CubeSharp( uCube2, uDiv2 ) ) - break; - } - // the case when the cube is not found - if ( i2 == Ivy_SopCubeNum(cSop) ) - break; - // the case when the cube is found - mark it and keep going - Ivy_SopSetCube( cSop, Ivy_CubeMark(uCube2), i2 ); - } - // if we did not find some cube, continue - // (later we will add marked cubes to the remainder) - if ( k2 != Ivy_SopCubeNum(cDiv) ) - continue; - // we found all cubes - add the quotient cube - Ivy_SopAddCube( vQuo, uQuo ); - } - // allocate remainder - vRem->nCubes = 0; - vRem->uCubes = Vec_IntFetch( vStore, Ivy_SopCubeNum(cSop) - Ivy_SopCubeNum(vQuo) * Ivy_SopCubeNum(cDiv) ); - // finally add the remaining cubes to the remainder - // and clean the marked cubes in the cover - Ivy_SopForEachCube( cSop, uCube, i ) - { - if ( !Ivy_CubeIsMarked(uCube) ) - continue; - Ivy_SopSetCube( cSop, Ivy_CubeUnmark(uCube), i ); - Ivy_SopAddCube( vRem, Ivy_CubeUnmark(uCube) ); - } -} - -/**Function************************************************************* - - Synopsis [Derives the quotient of division by literal.] - - Description [Reduces the cover to be the equal to the result of - division of the given cover by the literal.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopDivideByLiteralQuo( Ivy_Sop_t * cSop, int iLit ) -{ - unsigned uCube; - int i, k = 0; - Ivy_SopForEachCube( cSop, uCube, i ) - { - if ( Ivy_CubeHasLit(uCube, iLit) ) - Ivy_SopSetCube( cSop, Ivy_CubeRemLit(uCube, iLit), k++ ); - } - Ivy_SopShrink( cSop, k ); -} - -/**Function************************************************************* - - Synopsis [] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopCommonCubeCover( Ivy_Sop_t * cSop, Ivy_Sop_t * vCommon, Vec_Int_t * vStore ) -{ - unsigned uTemp, uCube; - int i; - uCube = ~(unsigned)0; - Ivy_SopForEachCube( cSop, uTemp, i ) - uCube &= uTemp; - vCommon->nCubes = 0; - vCommon->uCubes = Vec_IntFetch( vStore, 1 ); - Ivy_SopPush( vCommon, uCube ); -} - -/**Function************************************************************* - - Synopsis [] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopCreateInverse( Ivy_Sop_t * cSop, Vec_Int_t * vInput, int nVars, Vec_Int_t * vStore ) -{ - unsigned uCube, uMask; - int i; - // start the cover - cSop->nCubes = 0; - cSop->uCubes = Vec_IntFetch( vStore, Vec_IntSize(vInput) ); - // add the cubes - uMask = Ivy_CubeMask( nVars ); - Vec_IntForEachEntry( vInput, uCube, i ) - Vec_IntPush( cSop, Ivy_CubeSharp(uMask, uCube) ); -} - -/**Function************************************************************* - - Synopsis [] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopDup( Ivy_Sop_t * cSop, Ivy_Sop_t * vCopy, Vec_Int_t * vStore ) -{ - unsigned uCube; - int i; - // start the cover - vCopy->nCubes = 0; - vCopy->uCubes = Vec_IntFetch( vStore, Vec_IntSize(cSop) ); - // add the cubes - Ivy_SopForEachCube( cSop, uTemp, i ) - Ivy_SopPush( vCopy, uTemp ); -} - - -/**Function************************************************************* - - Synopsis [Find the least often occurring literal.] - - Description [Find the least often occurring literal among those - that occur more than once.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Ivy_SopWorstLiteral( Ivy_Sop_t * cSop, int nLits ) -{ - unsigned uCube; - int nWord, nBit; - int i, k, iMin, nLitsMin, nLitsCur; - int fUseFirst = 1; - - // go through each literal - iMin = -1; - nLitsMin = 1000000; - for ( i = 0; i < nLits; i++ ) - { - // go through all the cubes - nLitsCur = 0; - Ivy_SopForEachCube( cSop, uCube, k ) - if ( Ivy_CubeHasLit(uCube, i) ) - nLitsCur++; - // skip the literal that does not occur or occurs once - if ( nLitsCur < 2 ) - continue; - // check if this is the best literal - if ( fUseFirst ) - { - if ( nLitsMin > nLitsCur ) - { - nLitsMin = nLitsCur; - iMin = i; - } - } - else - { - if ( nLitsMin >= nLitsCur ) - { - nLitsMin = nLitsCur; - iMin = i; - } - } - } - if ( nLitsMin < 1000000 ) - return iMin; - return -1; -} - -/**Function************************************************************* - - Synopsis [Computes a level-zero kernel.] - - Description [Modifies the cover to contain one level-zero kernel.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopMakeCubeFree( Ivy_Sop_t * cSop ) -{ - unsigned uMask; - int i; - assert( Ivy_SopCubeNum(cSop) > 0 ); - // find the common cube - uMask = ~(unsigned)0; - Ivy_SopForEachCube( cSop, uCube, i ) - uMask &= uCube; - if ( uMask == 0 ) - return; - // remove the common cube - Ivy_SopForEachCube( cSop, uCube, i ) - Ivy_SopSetCube( cSop, Ivy_CubeSharp(uCube, uMask), i ); -} - -/**Function************************************************************* - - Synopsis [Computes a level-zero kernel.] - - Description [Modifies the cover to contain one level-zero kernel.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_SopDivisorZeroKernel_rec( Ivy_Sop_t * cSop, int nLits ) -{ - int iLit; - // find any literal that occurs at least two times - iLit = Ivy_SopWorstLiteral( cSop, nLits ); - if ( iLit == -1 ) - return; - // derive the cube-free quotient - Ivy_SopDivideByLiteralQuo( cSop, iLit ); // the same cover - Ivy_SopMakeCubeFree( cSop ); // the same cover - // call recursively - Ivy_SopDivisorZeroKernel_rec( cSop ); // the same cover -} - -/**Function************************************************************* - - Synopsis [Returns the quick divisor of the cover.] - - Description [Returns NULL, if there is not divisor other than - trivial.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Ivy_SopDivisor( Ivy_Sop_t * cSop, int nLits, Ivy_Sop_t * cDiv, Vec_Int_t * vStore ) -{ - if ( Ivy_SopCubeNum(cSop) <= 1 ) - return 0; - if ( Ivy_SopWorstLiteral( cSop, nLits ) == -1 ) - return 0; - // duplicate the cover - Ivy_SopDup( cSop, cDiv, vStore ); - // perform the kerneling - Ivy_SopDivisorZeroKernel_rec( cDiv, int nLits ); - assert( Ivy_SopCubeNum(cDiv) > 0 ); - return 1; -} - - - - - -extern Dec_Edge_t Dec_Factor32_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars ); -extern Dec_Edge_t Dec_Factor32LF_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars, Vec_Int_t * vSimple ); -extern Dec_Edge_t Dec_Factor32Trivial( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars ); -extern Dec_Edge_t Dec_Factor32TrivialCube( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nVars, unsigned uCube, Vec_Int_t * vEdgeLits ); -extern Dec_Edge_t Dec_Factor32TrivialTree_rec( Dec_Graph_t * pFForm, Dec_Edge_t * peNodes, int nNodes, int fNodeOr ); -extern int Dec_Factor32Verify( Vec_Int_t * cSop, Dec_Graph_t * pFForm ) - - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Factors the cover.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Dec_Graph_t * Dec_Factor32( Vec_Int_t * cSop, int nVars, Vec_Int_t * vStore ) -{ - Ivy_Sop_t cSop, cRes; - Ivy_Sop_t * pcSop = &cSop, * pcRes = &cRes; - Dec_Graph_t * pFForm; - Dec_Edge_t eRoot; - - assert( nVars < 16 ); - - // check for trivial functions - if ( Vec_IntSize(cSop) == 0 ) - return Dec_GraphCreateConst0(); - if ( Vec_IntSize(cSop) == 1 && Vec_IntEntry(cSop, 0) == Ivy_CubeMask(nVars) ) - return Dec_GraphCreateConst1(); - - // prepare memory manager - Vec_IntClear( vStore ); - Vec_IntGrow( vStore, IVY_FACTOR_MEM_LIMIT ); - - // perform CST - Ivy_SopCreateInverse( cSop, pcSop, nVars, vStore ); // CST - - // start the factored form - pFForm = Dec_GraphCreate( nVars ); - // factor the cover - eRoot = Dec_Factor32_rec( pFForm, cSop, 2 * nVars ); - // finalize the factored form - Dec_GraphSetRoot( pFForm, eRoot ); - - // verify the factored form - if ( !Dec_Factor32Verify( pSop, pFForm, nVars ) ) - printf( "Verification has failed.\n" ); - return pFForm; -} - -/**Function************************************************************* - - Synopsis [Internal recursive factoring procedure.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nLits ) -{ - Vec_Int_t * cDiv, * vQuo, * vRem, * vCom; - Dec_Edge_t eNodeDiv, eNodeQuo, eNodeRem; - Dec_Edge_t eNodeAnd, eNode; - - // make sure the cover contains some cubes - assert( Vec_IntSize(cSop) ); - - // get the divisor - cDiv = Ivy_SopDivisor( cSop, nLits ); - if ( cDiv == NULL ) - return Dec_Factor32Trivial( pFForm, cSop, nLits ); - - // divide the cover by the divisor - Ivy_SopDivideInternal( cSop, nLits, cDiv, &vQuo, &vRem ); - assert( Vec_IntSize(vQuo) ); - - Vec_IntFree( cDiv ); - Vec_IntFree( vRem ); - - // check the trivial case - if ( Vec_IntSize(vQuo) == 1 ) - { - eNode = Dec_Factor32LF_rec( pFForm, cSop, nLits, vQuo ); - Vec_IntFree( vQuo ); - return eNode; - } - - // make the quotient cube free - Ivy_SopMakeCubeFree( vQuo ); - - // divide the cover by the quotient - Ivy_SopDivideInternal( cSop, nLits, vQuo, &cDiv, &vRem ); - - // check the trivial case - if ( Ivy_SopIsCubeFree( cDiv ) ) - { - eNodeDiv = Dec_Factor32_rec( pFForm, cDiv ); - eNodeQuo = Dec_Factor32_rec( pFForm, vQuo ); - Vec_IntFree( cDiv ); - Vec_IntFree( vQuo ); - eNodeAnd = Dec_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); - if ( Vec_IntSize(vRem) == 0 ) - { - Vec_IntFree( vRem ); - return eNodeAnd; - } - else - { - eNodeRem = Dec_Factor32_rec( pFForm, vRem ); - Vec_IntFree( vRem ); - return Dec_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); - } - } - - // get the common cube - vCom = Ivy_SopCommonCubeCover( cDiv ); - Vec_IntFree( cDiv ); - Vec_IntFree( vQuo ); - Vec_IntFree( vRem ); - - // solve the simple problem - eNode = Dec_Factor32LF_rec( pFForm, cSop, nLits, vCom ); - Vec_IntFree( vCom ); - return eNode; -} - - -/**Function************************************************************* - - Synopsis [Internal recursive factoring procedure for the leaf case.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32LF_rec( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nLits, Vec_Int_t * vSimple ) -{ - Dec_Man_t * pManDec = Abc_FrameReadManDec(); - Vec_Int_t * vEdgeLits = pManDec->vLits; - Vec_Int_t * cDiv, * vQuo, * vRem; - Dec_Edge_t eNodeDiv, eNodeQuo, eNodeRem; - Dec_Edge_t eNodeAnd; - - // get the most often occurring literal - cDiv = Ivy_SopBestLiteralCover( cSop, nLits, vSimple ); - // divide the cover by the literal - Ivy_SopDivideByLiteral( cSop, nLits, cDiv, &vQuo, &vRem ); - // get the node pointer for the literal - eNodeDiv = Dec_Factor32TrivialCube( pFForm, cDiv, Ivy_SopReadCubeHead(cDiv), vEdgeLits ); - Vec_IntFree( cDiv ); - // factor the quotient and remainder - eNodeQuo = Dec_Factor32_rec( pFForm, vQuo ); - Vec_IntFree( vQuo ); - eNodeAnd = Dec_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); - if ( Vec_IntSize(vRem) == 0 ) - { - Vec_IntFree( vRem ); - return eNodeAnd; - } - else - { - eNodeRem = Dec_Factor32_rec( pFForm, vRem ); - Vec_IntFree( vRem ); - return Dec_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); - } -} - - - -/**Function************************************************************* - - Synopsis [Factoring the cover, which has no algebraic divisors.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32Trivial( Dec_Graph_t * pFForm, Vec_Int_t * cSop, int nLits ) -{ - Dec_Man_t * pManDec = Abc_FrameReadManDec(); - Vec_Int_t * vEdgeCubes = pManDec->vCubes; - Vec_Int_t * vEdgeLits = pManDec->vLits; - Mvc_Manager_t * pMem = pManDec->pMvcMem; - Dec_Edge_t eNode; - unsigned uCube; - int i; - // create the factored form for each cube - Vec_IntClear( vEdgeCubes ); - Ivy_SopForEachCube( cSop, uCube ) - { - eNode = Dec_Factor32TrivialCube( pFForm, cSop, nLits, uCube, vEdgeLits ); - Vec_IntPush( vEdgeCubes, Dec_EdgeToInt_(eNode) ); - } - // balance the factored forms - return Dec_Factor32TrivialTree_rec( pFForm, (Dec_Edge_t *)vEdgeCubes->pArray, vEdgeCubes->nSize, 1 ); -} - -/**Function************************************************************* - - Synopsis [Factoring the cube.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32TrivialCube( Dec_Graph_t * pFForm, Vec_Int_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vEdgeLits ) -{ - Dec_Edge_t eNode; - int iBit, Value; - // create the factored form for each literal - Vec_IntClear( vEdgeLits ); - Mvc_CubeForEachLit( cSop, uCube, iBit, Value ) - if ( Value ) - { - eNode = Dec_EdgeCreate( iBit/2, iBit%2 ); // CST - Vec_IntPush( vEdgeLits, Dec_EdgeToInt_(eNode) ); - } - // balance the factored forms - return Dec_Factor32TrivialTree_rec( pFForm, (Dec_Edge_t *)vEdgeLits->pArray, vEdgeLits->nSize, 0 ); -} - -/**Function************************************************************* - - Synopsis [Create the well-balanced tree of nodes.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Dec_Edge_t Dec_Factor32TrivialTree_rec( Dec_Graph_t * pFForm, Dec_Edge_t * peNodes, int nNodes, int fNodeOr ) -{ - Dec_Edge_t eNode1, eNode2; - int nNodes1, nNodes2; - - if ( nNodes == 1 ) - return peNodes[0]; - - // split the nodes into two parts - nNodes1 = nNodes/2; - nNodes2 = nNodes - nNodes1; -// nNodes2 = nNodes/2; -// nNodes1 = nNodes - nNodes2; - - // recursively construct the tree for the parts - eNode1 = Dec_Factor32TrivialTree_rec( pFForm, peNodes, nNodes1, fNodeOr ); - eNode2 = Dec_Factor32TrivialTree_rec( pFForm, peNodes + nNodes1, nNodes2, fNodeOr ); - - if ( fNodeOr ) - return Dec_GraphAddNodeOr( pFForm, eNode1, eNode2 ); - else - return Dec_GraphAddNodeAnd( pFForm, eNode1, eNode2 ); -} - - - - -// verification using temporary BDD package -#include "cuddInt.h" - -/**Function************************************************************* - - Synopsis [Verifies that the factoring is correct.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -DdNode * Ivy_SopCoverToBdd( DdManager * dd, Vec_Int_t * cSop, int nVars ) -{ - DdNode * bSum, * bCube, * bTemp, * bVar; - unsigned uCube; - int Value, v; - assert( nVars < 16 ); - // start the cover - bSum = Cudd_ReadLogicZero(dd); Cudd_Ref( bSum ); - // check the logic function of the node - Vec_IntForEachEntry( cSop, uCube, i ) - { - bCube = Cudd_ReadOne(dd); Cudd_Ref( bCube ); - for ( v = 0; v < nVars; v++ ) - { - Value = ((uCube >> 2*v) & 3); - if ( Value == 1 ) - bVar = Cudd_Not( Cudd_bddIthVar( dd, v ) ); - else if ( Value == 2 ) - bVar = Cudd_bddIthVar( dd, v ); - else - continue; - bCube = Cudd_bddAnd( dd, bTemp = bCube, bVar ); Cudd_Ref( bCube ); - Cudd_RecursiveDeref( dd, bTemp ); - } - bSum = Cudd_bddOr( dd, bTemp = bSum, bCube ); - Cudd_Ref( bSum ); - Cudd_RecursiveDeref( dd, bTemp ); - Cudd_RecursiveDeref( dd, bCube ); - } - // complement the result if necessary - Cudd_Deref( bSum ); - return bSum; -} - -/**Function************************************************************* - - Synopsis [Verifies that the factoring is correct.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Dec_Factor32Verify( Vec_Int_t * cSop, Dec_Graph_t * pFForm, int nVars ) -{ - static DdManager * dd = NULL; - DdNode * bFunc1, * bFunc2; - int RetValue; - // get the manager - if ( dd == NULL ) - dd = Cudd_Init( 16, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); - // get the functions - bFunc1 = Ivy_SopCoverToBdd( dd, cSop, nVars ); Cudd_Ref( bFunc1 ); - bFunc2 = Dec_GraphDeriveBdd( dd, pFForm ); Cudd_Ref( bFunc2 ); -//Extra_bddPrint( dd, bFunc1 ); printf("\n"); -//Extra_bddPrint( dd, bFunc2 ); printf("\n"); - RetValue = (bFunc1 == bFunc2); - if ( bFunc1 != bFunc2 ) - { - int s; - Extra_bddPrint( dd, bFunc1 ); printf("\n"); - Extra_bddPrint( dd, bFunc2 ); printf("\n"); - s = 0; - } - Cudd_RecursiveDeref( dd, bFunc1 ); - Cudd_RecursiveDeref( dd, bFunc2 ); - return RetValue; -} - - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/ivy/ivyFpga.c b/src/aig/ivy/ivyFpga.c deleted file mode 100644 index 122cc0e2..00000000 --- a/src/aig/ivy/ivyFpga.c +++ /dev/null @@ -1,378 +0,0 @@ -/**CFile**************************************************************** - - FileName [ivyFpga.c] - - SystemName [ABC: Logic synthesis and verification system.] - - PackageName [And-Inverter Graph package.] - - Synopsis [Prepares the AIG package to work as an FPGA mapper.] - - Author [Alan Mishchenko] - - Affiliation [UC Berkeley] - - Date [Ver. 1.0. Started - May 11, 2006.] - - Revision [$Id: ivyFpga.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] - -***********************************************************************/ - -#include "ivy.h" -#include "attr.h" - -//////////////////////////////////////////////////////////////////////// -/// DECLARATIONS /// -//////////////////////////////////////////////////////////////////////// - -typedef struct Ivy_FpgaMan_t_ Ivy_FpgaMan_t; -typedef struct Ivy_FpgaObj_t_ Ivy_FpgaObj_t; -typedef struct Ivy_FpgaCut_t_ Ivy_FpgaCut_t; - -// manager -struct Ivy_FpgaMan_t_ -{ - Ivy_Man_t * pManIvy; // the AIG manager - Attr_Man_t * pManAttr; // the attribute manager - int nLutSize; // the LUT size - int nCutsMax; // the max number of cuts - int nEntrySize; // the size of the entry - int nEntryBase; // the size of the entry minus cut leaf arrays - int fVerbose; // the verbosity flag - // temporary cut storage - Ivy_FpgaCut_t * pCutStore; // the temporary cuts -}; - -// priority cut -struct Ivy_FpgaCut_t_ -{ - float Delay; // the delay of the cut - float AreaFlow; // the area flow of the cut - float Area; // the area of the cut - int nLeaves; // the number of leaves - int * pLeaves; // the array of fanins -}; - -// node extension -struct Ivy_FpgaObj_t_ -{ - unsigned Type : 4; // type - unsigned nCuts : 28; // the number of cuts - int Id; // integer ID - int nRefs; // the number of references - Ivy_FpgaObj_t * pFanin0; // the first fanin - Ivy_FpgaObj_t * pFanin1; // the second fanin - float Required; // required time of the onde - Ivy_FpgaCut_t * pCut; // the best cut - Ivy_FpgaCut_t Cuts[0]; // the cuts of the node -}; - - -static Ivy_FpgaMan_t * Ivy_ManFpgaPrepare( Ivy_Man_t * p, int nLutSize, int nCutsMax, int fVerbose ); -static void Ivy_ManFpgaUndo( Ivy_FpgaMan_t * pFpga ); -static void Ivy_ObjFpgaCreate( Ivy_FpgaMan_t * pFpga, int ObjId ); -static void Ivy_ManFpgaDelay( Ivy_FpgaMan_t * pFpga ); - -//////////////////////////////////////////////////////////////////////// -/// FUNCTION DEFINITIONS /// -//////////////////////////////////////////////////////////////////////// - -/**Function************************************************************* - - Synopsis [Performs FPGA mapping.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_ManFpga( Ivy_Man_t * p, int nLutSize, int nCutsMax, int fVerbose ) -{ - Ivy_FpgaMan_t * pFpga; - pFpga = Ivy_ManFpgaPrepare( p, nLutSize, nCutsMax, fVerbose ); - Ivy_ManFpgaDelay( pFpga ); - Ivy_ManFpgaUndo( pFpga ); -} - -/**Function************************************************************* - - Synopsis [Prepares manager for FPGA mapping.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -Ivy_FpgaMan_t * Ivy_ManFpgaPrepare( Ivy_Man_t * p, int nLutSize, int nCutsMax, int fVerbose ) -{ - Ivy_FpgaMan_t * pFpga; - Ivy_Obj_t * pObj; - int i; - pFpga = ALLOC( Ivy_FpgaMan_t, 1 ); - memset( pFpga, 0, sizeof(Ivy_FpgaMan_t) ); - // compute the size of the node - pFpga->pManIvy = p; - pFpga->nLutSize = nLutSize; - pFpga->nCutsMax = nCutsMax; - pFpga->fVerbose = fVerbose; - pFpga->nEntrySize = sizeof(Ivy_FpgaObj_t) + (nCutsMax + 1) * (sizeof(Ivy_FpgaCut_t) + sizeof(int) * nLutSize); - pFpga->nEntryBase = sizeof(Ivy_FpgaObj_t) + (nCutsMax + 1) * (sizeof(Ivy_FpgaCut_t)); - pFpga->pManAttr = Attr_ManStartPtrMem( Ivy_ManObjIdMax(p) + 1, pFpga->nEntrySize ); - if ( fVerbose ) - printf( "Entry size = %d. Total memory = %5.2f Mb.\n", pFpga->nEntrySize, - 1.0 * pFpga->nEntrySize * (Ivy_ManObjIdMax(p) + 1) / (1<<20) ); - // connect memory for cuts - Ivy_ManForEachObj( p, pObj, i ) - Ivy_ObjFpgaCreate( pFpga, pObj->Id ); - // create temporary cuts - pFpga->pCutStore = (Ivy_FpgaCut_t *)ALLOC( char, pFpga->nEntrySize * (nCutsMax + 1) * (nCutsMax + 1) ); - memset( pFpga->pCutStore, 0, pFpga->nEntrySize * (nCutsMax + 1) * (nCutsMax + 1) ); - { - int i, * pArrays; - pArrays = (int *)((char *)pFpga->pCutStore + sizeof(Ivy_FpgaCut_t) * (nCutsMax + 1) * (nCutsMax + 1)); - for ( i = 0; i < (nCutsMax + 1) * (nCutsMax + 1); i++ ) - pFpga->pCutStore[i].pLeaves = pArrays + i * pFpga->nLutSize; - } - return pFpga; -} - -/**Function************************************************************* - - Synopsis [Quits the manager for FPGA mapping.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_ManFpgaUndo( Ivy_FpgaMan_t * pFpga ) -{ - Attr_ManStop( pFpga->pManAttr ); - free( pFpga ); -} - - -/**Function************************************************************* - - Synopsis [Prepares the object for FPGA mapping.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_ObjFpgaCreate( Ivy_FpgaMan_t * pFpga, int ObjId ) -{ - Ivy_FpgaObj_t * pObjFpga; - int i, * pArrays; - pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, ObjId ); - pArrays = (int *)((char *)pObjFpga + pFpga->nEntryBase); - for ( i = 0; i <= pFpga->nCutsMax; i++ ) - pObjFpga->Cuts[i].pLeaves = pArrays + i * pFpga->nLutSize; -} - - -/**Function************************************************************* - - Synopsis [Prepares the object for FPGA mapping.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Ivy_ObjFpgaMerge( Ivy_FpgaCut_t * pC0, Ivy_FpgaCut_t * pC1, Ivy_FpgaCut_t * pC, int nLimit ) -{ - int i, k, c; - assert( pC0->nLeaves >= pC1->nLeaves ); - // the case of the largest cut sizes - if ( pC0->nLeaves == nLimit && pC1->nLeaves == nLimit ) - { - for ( i = 0; i < pC0->nLeaves; i++ ) - if ( pC0->pLeaves[i] != pC1->pLeaves[i] ) - return 0; - for ( i = 0; i < pC0->nLeaves; i++ ) - pC->pLeaves[i] = pC0->pLeaves[i]; - pC->nLeaves = pC0->nLeaves; - pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); - return 1; - } - // the case when one of the cuts is the largest - if ( pC0->nLeaves == nLimit ) - { - for ( i = 0; i < pC1->nLeaves; i++ ) - { - for ( k = pC0->nLeaves - 1; k >= 0; k-- ) - if ( pC0->pLeaves[k] == pC1->pLeaves[i] ) - break; - if ( k == -1 ) // did not find - return 0; - } - for ( i = 0; i < pC0->nLeaves; i++ ) - pC->pLeaves[i] = pC0->pLeaves[i]; - pC->nLeaves = pC0->nLeaves; - pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); - return 1; - } - - // compare two cuts with different numbers - i = k = 0; - for ( c = 0; c < nLimit; c++ ) - { - if ( k == pC1->nLeaves ) - { - if ( i == pC0->nLeaves ) - { - pC->nLeaves = c; - pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); - return 1; - } - pC->pLeaves[c] = pC0->pLeaves[i++]; - continue; - } - if ( i == pC0->nLeaves ) - { - if ( k == pC1->nLeaves ) - { - pC->nLeaves = c; - pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); - return 1; - } - pC->pLeaves[c] = pC1->pLeaves[k++]; - continue; - } - if ( pC0->pLeaves[i] < pC1->pLeaves[k] ) - { - pC->pLeaves[c] = pC0->pLeaves[i++]; - continue; - } - if ( pC0->pLeaves[i] > pC1->pLeaves[k] ) - { - pC->pLeaves[c] = pC1->pLeaves[k++]; - continue; - } - pC->pLeaves[c] = pC0->pLeaves[i++]; - k++; - } - if ( i < pC0->nLeaves || k < pC1->nLeaves ) - return 0; - pC->nLeaves = c; - pC->Delay = 1 + IVY_MAX( pC0->Delay, pC1->Delay ); - return 1; -} - -/**Function************************************************************* - - Synopsis [Prepares the object for FPGA mapping.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -int Ivy_FpgaCutCompare( Ivy_FpgaCut_t * pC0, Ivy_FpgaCut_t * pC1 ) -{ - if ( pC0->Delay < pC1->Delay ) - return -1; - if ( pC0->Delay > pC1->Delay ) - return 1; - if ( pC0->nLeaves < pC1->nLeaves ) - return -1; - if ( pC0->nLeaves > pC1->nLeaves ) - return 1; - return 0; -} - -/**Function************************************************************* - - Synopsis [Prepares the object for FPGA mapping.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_ObjFpgaDelay( Ivy_FpgaMan_t * pFpga, int ObjId, int Fan0Id, int Fan1Id ) -{ - Ivy_FpgaObj_t * pObjFpga, * pObjFpga0, * pObjFpga1; - int nCuts, i, k; - pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, ObjId ); - pObjFpga0 = Attr_ManReadAttrPtr( pFpga->pManAttr, Fan0Id ); - pObjFpga1 = Attr_ManReadAttrPtr( pFpga->pManAttr, Fan1Id ); - // create cross-product of the cuts - nCuts = 0; - for ( i = 0; pObjFpga0->Cuts[i].nLeaves > 0 && i < pFpga->nCutsMax; i++ ) - for ( k = 0; pObjFpga1->Cuts[k].nLeaves > 0 && k < pFpga->nCutsMax; k++ ) - if ( Ivy_ObjFpgaMerge( pObjFpga0->Cuts + i, pObjFpga1->Cuts + k, pFpga->pCutStore + nCuts, pFpga->nLutSize ) ) - nCuts++; - // sort the cuts - qsort( pFpga->pCutStore, nCuts, sizeof(Ivy_FpgaCut_t), (int (*)(const void *, const void *))Ivy_FpgaCutCompare ); - // take the first - pObjFpga->Cuts[0].nLeaves = 1; - pObjFpga->Cuts[0].pLeaves[0] = ObjId; - pObjFpga->Cuts[0].Delay = pFpga->pCutStore[0].Delay; - pObjFpga->Cuts[1] = pFpga->pCutStore[0]; -} - -/**Function************************************************************* - - Synopsis [Maps the nodes for delay.] - - Description [] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -void Ivy_ManFpgaDelay( Ivy_FpgaMan_t * pFpga ) -{ - Ivy_FpgaObj_t * pObjFpga; - Ivy_Obj_t * pObj; - int i, DelayBest; - int clk = clock(); - // set arrival times and trivial cuts at const 1 and PIs - pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, 0 ); - pObjFpga->Cuts[0].nLeaves = 1; - Ivy_ManForEachPi( pFpga->pManIvy, pObj, i ) - { - pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, pObj->Id ); - pObjFpga->Cuts[0].nLeaves = 1; - pObjFpga->Cuts[0].pLeaves[0] = pObj->Id; - } - // map the internal nodes - Ivy_ManForEachNode( pFpga->pManIvy, pObj, i ) - { - Ivy_ObjFpgaDelay( pFpga, pObj->Id, Ivy_ObjFaninId0(pObj), Ivy_ObjFaninId1(pObj) ); - } - // get the best arrival time of the POs - DelayBest = 0; - Ivy_ManForEachPo( pFpga->pManIvy, pObj, i ) - { - pObjFpga = Attr_ManReadAttrPtr( pFpga->pManAttr, Ivy_ObjFanin0(pObj)->Id ); - if ( DelayBest < (int)pObjFpga->Cuts[1].Delay ) - DelayBest = (int)pObjFpga->Cuts[1].Delay; - } - printf( "Best delay = %d. ", DelayBest ); - PRT( "Time", clock() - clk ); -} - -//////////////////////////////////////////////////////////////////////// -/// END OF FILE /// -//////////////////////////////////////////////////////////////////////// - - diff --git a/src/aig/ivy/module.make b/src/aig/ivy/module.make index c1f7d1b8..daef43df 100644 --- a/src/aig/ivy/module.make +++ b/src/aig/ivy/module.make @@ -9,7 +9,6 @@ SRC += src/aig/ivy/ivyBalance.c \ src/aig/ivy/ivyFastMap.c \ src/aig/ivy/ivyFraig.c \ src/aig/ivy/ivyHaig.c \ - src/aig/ivy/ivyIsop.c \ src/aig/ivy/ivyMan.c \ src/aig/ivy/ivyMem.c \ src/aig/ivy/ivyMulti.c \ diff --git a/src/base/abc/abcSop.c b/src/base/abc/abcSop.c index 81d91499..3578139b 100644 --- a/src/base/abc/abcSop.c +++ b/src/base/abc/abcSop.c @@ -427,9 +427,9 @@ char * Abc_SopCreateFromIsop( Extra_MmFlex_t * pMan, int nVars, Vec_Int_t * vCov { Literal = 3 & (Entry >> (k << 1)); if ( Literal == 1 ) - pCube[k] = '1'; - else if ( Literal == 2 ) pCube[k] = '0'; + else if ( Literal == 2 ) + pCube[k] = '1'; else if ( Literal != 0 ) assert( 0 ); } diff --git a/src/base/abci/abc.c b/src/base/abci/abc.c index 77ae4d5a..901e1df4 100644 --- a/src/base/abci/abc.c +++ b/src/base/abci/abc.c @@ -2034,25 +2034,28 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv ) { FILE * pOut, * pErr; Abc_Ntk_t * pNtk, * pNtkRes; - int nFaninMax, c; + int nFaninMax, nCubeMax, c; int fUseBdds; + int fUseSops; int fVerbose; - extern Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fVerbose ); + extern Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int nCubeMax, int fUseBdds, int fUseSops, int fVerbose ); pNtk = Abc_FrameReadNtk(pAbc); pOut = Abc_FrameReadOut(pAbc); pErr = Abc_FrameReadErr(pAbc); // set defaults - nFaninMax = 8; + nFaninMax = 5; + nCubeMax = 5; fUseBdds = 0; + fUseSops = 0; fVerbose = 0; Extra_UtilGetoptReset(); - while ( ( c = Extra_UtilGetopt( argc, argv, "Fbvh" ) ) != EOF ) + while ( ( c = Extra_UtilGetopt( argc, argv, "KCbsvh" ) ) != EOF ) { switch ( c ) { - case 'F': + case 'K': if ( globalUtilOptind >= argc ) { fprintf( pErr, "Command line switch \"-F\" should be followed by an integer.\n" ); @@ -2063,9 +2066,23 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv ) if ( nFaninMax < 0 ) goto usage; break; + case 'C': + if ( globalUtilOptind >= argc ) + { + fprintf( pErr, "Command line switch \"-C\" should be followed by an integer.\n" ); + goto usage; + } + nCubeMax = atoi(argv[globalUtilOptind]); + globalUtilOptind++; + if ( nCubeMax < 0 ) + goto usage; + break; case 'b': fUseBdds ^= 1; break; + case 's': + fUseSops ^= 1; + break; case 'v': fVerbose ^= 1; break; @@ -2076,6 +2093,12 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv ) } } + if ( fUseBdds && fUseSops ) + { + fprintf( pErr, "Cannot optimize both BDDs and SOPs at the same time.\n" ); + goto usage; + } + if ( pNtk == NULL ) { fprintf( pErr, "Empty network.\n" ); @@ -2088,7 +2111,7 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv ) } // get the new network - pNtkRes = Abc_NtkRenode( pNtk, nFaninMax, fUseBdds, fVerbose ); + pNtkRes = Abc_NtkRenode( pNtk, nFaninMax, nCubeMax, fUseBdds, fUseSops, fVerbose ); if ( pNtkRes == NULL ) { fprintf( pErr, "Renoding has failed.\n" ); @@ -2099,10 +2122,13 @@ int Abc_CommandRenode( Abc_Frame_t * pAbc, int argc, char ** argv ) return 0; usage: - fprintf( pErr, "usage: renode [-F num] [-bv]\n" ); - fprintf( pErr, "\t transforms an AIG into a logic network by creating larger nodes\n" ); - fprintf( pErr, "\t-F num : the maximum fanin size after renoding [default = %d]\n", nFaninMax ); - fprintf( pErr, "\t-b : toggles cost function (BDD nodes or FF literals) [default = %s]\n", fUseBdds? "BDD nodes": "FF literals" ); + fprintf( pErr, "usage: renode [-K num] [-C num] [-bsv]\n" ); + fprintf( pErr, "\t transforms the AIG into a logic network with larger nodes\n" ); + fprintf( pErr, "\t while minimizing the number of FF literals of the node SOPs\n" ); + fprintf( pErr, "\t-K num : the maximum fanin size after renoding [default = %d]\n", nFaninMax ); + fprintf( pErr, "\t-C num : the maximum number of cubes used at a node [default = %d]\n", nCubeMax ); + fprintf( pErr, "\t-b : toggles minimizing the number of BDD nodes [default = %s]\n", fUseBdds? "yes": "no" ); + fprintf( pErr, "\t-s : toggles minimizing the number of SOP cubes [default = %s]\n", fUseSops? "yes": "no" ); fprintf( pErr, "\t-v : print verbose information [default = %s]\n", fVerbose? "yes": "no" ); fprintf( pErr, "\t-h : print the command usage\n"); return 1; diff --git a/src/base/abci/abcIf.c b/src/base/abci/abcIf.c index b76385f8..948a1d77 100644 --- a/src/base/abci/abcIf.c +++ b/src/base/abci/abcIf.c @@ -20,6 +20,7 @@ #include "abc.h" #include "if.h" +#include "kit.h" //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// @@ -164,6 +165,8 @@ Abc_Ntk_t * Abc_NtkFromIf( If_Man_t * pIfMan, Abc_Ntk_t * pNtk ) // create the new network if ( pIfMan->pPars->fUseBdds ) pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_BDD ); + else if ( pIfMan->pPars->fUseSops ) + pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_SOP ); else pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_LOGIC, ABC_FUNC_AIG ); // prepare the mapping manager @@ -223,7 +226,6 @@ Abc_Obj_t * Abc_NodeFromIf_rec( Abc_Ntk_t * pNtkNew, If_Man_t * pIfMan, If_Obj_t If_CutForEachLeaf( pIfMan, pCutBest, pIfLeaf, i ) Abc_ObjAddFanin( pNodeNew, Abc_NodeFromIf_rec(pNtkNew, pIfMan, pIfLeaf) ); // derive the function of this node - if ( pIfMan->pPars->fTruth ) { if ( pIfMan->pPars->fUseBdds ) @@ -235,20 +237,29 @@ Abc_Obj_t * Abc_NodeFromIf_rec( Abc_Ntk_t * pNtkNew, If_Man_t * pIfMan, If_Obj_t // reorder the fanins to minimize the BDD size Abc_NodeBddReorder( pIfMan->pPars->pReoMan, pNodeNew ); } - else + else if ( pIfMan->pPars->fUseSops ) { - typedef int Kit_Graph_t; - extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars ); - extern Hop_Obj_t * Dec_GraphToNetworkAig( Hop_Man_t * pMan, Kit_Graph_t * pGraph ); - // transform truth table into the decomposition tree - Kit_Graph_t * pGraph = Kit_TruthToGraph( If_CutTruth(pCutBest), pCutBest->nLimit ); + Vec_Int_t * vCover = Vec_IntAlloc( 1 << 16 ); + // transform truth table into the SOP + int RetValue = Kit_TruthIsop( If_CutTruth(pCutBest), pCutBest->nLimit, vCover, 0 ); + assert( RetValue == 0 ); // derive the AIG for that tree - pNodeNew->pData = Dec_GraphToNetworkAig( pNtkNew->pManFunc, pGraph ); + pNodeNew->pData = Abc_SopCreateFromIsop( pNtkNew->pManFunc, pCutBest->nLimit, vCover ); + Vec_IntFree( vCover ); + } + else + { + extern Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ); + Vec_Int_t * vMemory = Vec_IntAlloc( 1 << 16 ); + // transform truth table into the decomposition tree + Kit_Graph_t * pGraph = Kit_TruthToGraph( If_CutTruth(pCutBest), pCutBest->nLimit, vMemory ); + // derive the AIG for the decomposition tree + pNodeNew->pData = Kit_GraphToHop( pNtkNew->pManFunc, pGraph ); Kit_GraphFree( pGraph ); + Vec_IntFree( vMemory ); } } else - pNodeNew->pData = Abc_NodeIfToHop( pNtkNew->pManFunc, pIfMan, pIfObj ); If_ObjSetCopy( pIfObj, pNodeNew ); return pNodeNew; diff --git a/src/base/abci/abcRenode.c b/src/base/abci/abcRenode.c index a3360953..4f3003a6 100644 --- a/src/base/abci/abcRenode.c +++ b/src/base/abci/abcRenode.c @@ -21,6 +21,7 @@ #include "abc.h" #include "reo.h" #include "if.h" +#include "kit.h" //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// @@ -28,13 +29,11 @@ static int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars ); static int Abc_NtkRenodeEvalSop( unsigned * pTruth, int nVars ); +static int Abc_NtkRenodeEvalAig( unsigned * pTruth, int nVars ); -static reo_man * s_pReo = NULL; -static DdManager * s_pDd = NULL; - -typedef int Kit_Graph_t; -extern DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ); -extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars ); +static reo_man * s_pReo = NULL; +static DdManager * s_pDd = NULL; +static Vec_Int_t * s_vMemory = NULL; //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// @@ -51,7 +50,7 @@ extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars ); SeeAlso [] ***********************************************************************/ -Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fVerbose ) +Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int nCubeMax, int fUseBdds, int fUseSops, int fVerbose ) { extern Abc_Ntk_t * Abc_NtkIf( Abc_Ntk_t * pNtk, If_Par_t * pPars ); If_Par_t Pars, * pPars = &Pars; @@ -77,7 +76,14 @@ Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fV pPars->pLutLib = NULL; // Abc_FrameReadLibLut(); pPars->pTimesArr = NULL; pPars->pTimesArr = NULL; - pPars->pFuncCost = fUseBdds? Abc_NtkRenodeEvalBdd : Abc_NtkRenodeEvalSop; + pPars->fUseBdds = fUseBdds; + pPars->fUseSops = fUseSops; + if ( fUseBdds ) + pPars->pFuncCost = Abc_NtkRenodeEvalBdd; + else if ( fUseSops ) + pPars->pFuncCost = Abc_NtkRenodeEvalSop; + else + pPars->pFuncCost = Abc_NtkRenodeEvalAig; // start the manager if ( fUseBdds ) @@ -85,9 +91,13 @@ Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fV assert( s_pReo == NULL ); s_pDd = Cudd_Init( nFaninMax, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); s_pReo = Extra_ReorderInit( nFaninMax, 100 ); - pPars->fUseBdds = 1; pPars->pReoMan = s_pReo; } + else + { + assert( s_vMemory == NULL ); + s_vMemory = Vec_IntAlloc( 1 << 16 ); + } // perform mapping/renoding pNtkNew = Abc_NtkIf( pNtk, pPars ); @@ -98,14 +108,20 @@ Abc_Ntk_t * Abc_NtkRenode( Abc_Ntk_t * pNtk, int nFaninMax, int fUseBdds, int fV Extra_StopManager( s_pDd ); Extra_ReorderQuit( s_pReo ); s_pReo = NULL; - s_pDd = NULL; + s_pDd = NULL; + } + else + { + Vec_IntFree( s_vMemory ); + s_vMemory = NULL; } + return pNtkNew; } /**Function************************************************************* - Synopsis [Derives the BDD after reordering.] + Synopsis [Computes the cost based on the BDD size after reordering.] Description [] @@ -120,7 +136,8 @@ int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars ) int nNodes, nSupport; bFunc = Kit_TruthToBdd( s_pDd, pTruth, nVars ); Cudd_Ref( bFunc ); bFuncNew = Extra_Reorder( s_pReo, s_pDd, bFunc, NULL ); Cudd_Ref( bFuncNew ); - nSupport = Cudd_SupportSize( s_pDd, bFuncNew ); +// nSupport = Cudd_SupportSize( s_pDd, bFuncNew ); + nSupport = 1; nNodes = Cudd_DagSize( bFuncNew ); Cudd_RecursiveDeref( s_pDd, bFuncNew ); Cudd_RecursiveDeref( s_pDd, bFunc ); @@ -129,7 +146,7 @@ int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars ) /**Function************************************************************* - Synopsis [Derives the BDD after reordering.] + Synopsis [Computes the cost based on ISOP.] Description [] @@ -140,11 +157,32 @@ int Abc_NtkRenodeEvalBdd( unsigned * pTruth, int nVars ) ***********************************************************************/ int Abc_NtkRenodeEvalSop( unsigned * pTruth, int nVars ) { + int nCubes, RetValue; + RetValue = Kit_TruthIsop( pTruth, nVars, s_vMemory, 0 ); + assert( RetValue == 0 ); + nCubes = Vec_IntSize( s_vMemory ); + return (1 << 16) | nCubes; +} + +/**Function************************************************************* + + Synopsis [Computes the cost based on the factored form.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Abc_NtkRenodeEvalAig( unsigned * pTruth, int nVars ) +{ Kit_Graph_t * pGraph; int nNodes, nDepth; - pGraph = Kit_TruthToGraph( pTruth, nVars ); + pGraph = Kit_TruthToGraph( pTruth, nVars, s_vMemory ); nNodes = Kit_GraphNodeNum( pGraph ); - nDepth = Kit_GraphLevelNum( pGraph ); +// nDepth = Kit_GraphLevelNum( pGraph ); + nDepth = 1; Kit_GraphFree( pGraph ); return (nDepth << 16) | nNodes; } diff --git a/src/map/if/if.h b/src/map/if/if.h index 32bb07f8..12769eb6 100644 --- a/src/map/if/if.h +++ b/src/map/if/if.h @@ -85,6 +85,7 @@ struct If_Par_t_ // internal parameters int fTruth; // truth table computation enabled int fUseBdds; // sets local BDDs at the nodes + int fUseSops; // sets local SOPs at the nodes int nLatches; // the number of latches in seq mapping If_Lib_t * pLutLib; // the LUT library float * pTimesArr; // arrival times diff --git a/src/map/if/ifMan.c b/src/map/if/ifMan.c index 9e3d8e88..46ca1b5b 100644 --- a/src/map/if/ifMan.c +++ b/src/map/if/ifMan.c @@ -205,7 +205,7 @@ If_Obj_t * If_ManSetupObj( If_Man_t * p ) { If_Cut_t * pCut; If_Obj_t * pObj; - int i, * pArrays; + int i, * pArrays, nTruthWords; // get memory for the object pObj = (If_Obj_t *)Mem_FixedEntryFetch( p->pMem ); memset( pObj, 0, p->nEntryBase ); @@ -230,6 +230,13 @@ If_Obj_t * If_ManSetupObj( If_Man_t * p ) pObj->nCuts = 1; // set the required times pObj->Required = IF_FLOAT_LARGE; + // set up elementary truth table of the unit cut + if ( p->pPars->fTruth ) + { + nTruthWords = Extra_TruthWordNum( pCut->nLimit ); + for ( i = 0; i < nTruthWords; i++ ) + If_CutTruth(pCut)[i] = 0xAAAAAAAA; + } return pObj; } diff --git a/src/map/if/ifTruth.c b/src/map/if/ifTruth.c index 68affc4a..3f9f9f14 100644 --- a/src/map/if/ifTruth.c +++ b/src/map/if/ifTruth.c @@ -69,6 +69,8 @@ static inline unsigned Cut_TruthPhase( If_Cut_t * pCut, If_Cut_t * pCut1 ) ***********************************************************************/ void If_CutComputeTruth( If_Man_t * p, If_Cut_t * pCut, If_Cut_t * pCut0, If_Cut_t * pCut1, int fCompl0, int fCompl1 ) { + extern void Kit_FactorTest( unsigned * pTruth, int nVars ); + // permute the first table if ( fCompl0 ) Extra_TruthNot( p->puTemp[0], If_CutTruth(pCut0), pCut->nLimit ); @@ -86,6 +88,9 @@ void If_CutComputeTruth( If_Man_t * p, If_Cut_t * pCut, If_Cut_t * pCut0, If_Cut Extra_TruthNand( If_CutTruth(pCut), p->puTemp[2], p->puTemp[3], pCut->nLimit ); else Extra_TruthAnd( If_CutTruth(pCut), p->puTemp[2], p->puTemp[3], pCut->nLimit ); + + // perform +// Kit_FactorTest( If_CutTruth(pCut), pCut->nLimit ); } //////////////////////////////////////////////////////////////////////// diff --git a/src/misc/extra/extra.h b/src/misc/extra/extra.h index 8f08eaff..585a5561 100644 --- a/src/misc/extra/extra.h +++ b/src/misc/extra/extra.h @@ -511,7 +511,6 @@ static inline void Extra_TruthNand( unsigned * pOut, unsigned * pIn0, unsigned * extern void Extra_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int Start ); extern void Extra_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ); extern void Extra_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ); -extern DdNode * Extra_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ); extern int Extra_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ); extern int Extra_TruthSupportSize( unsigned * pTruth, int nVars ); extern int Extra_TruthSupport( unsigned * pTruth, int nVars ); diff --git a/src/misc/extra/extraUtilTruth.c b/src/misc/extra/extraUtilTruth.c index ab476f6f..7a22545b 100644 --- a/src/misc/extra/extraUtilTruth.c +++ b/src/misc/extra/extraUtilTruth.c @@ -250,64 +250,6 @@ void Extra_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll /**Function************************************************************* - Synopsis [Performs truth table computation.] - - Description [Note the caching makes no sense for this procedure.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -DdNode * Extra_TruthToBdd_rec( DdManager * dd, unsigned * pTruth, int iBit, int nVars, int nVarsTotal ) -{ - DdNode * bF0, * bF1, * bF; - if ( nVars == 0 ) - { - if ( pTruth[iBit>>5] & (1 << iBit&31) ) - return b1; - return b0; - } - if ( nVars == 5 ) - { - if ( pTruth[iBit>>5] == 0xFFFFFFFF ) - return b1; - if ( pTruth[iBit>>5] == 0 ) - return b0; - } - // other special cases can be added - bF0 = Extra_TruthToBdd_rec( dd, pTruth, iBit, nVars-1, nVarsTotal ); Cudd_Ref( bF0 ); - bF1 = Extra_TruthToBdd_rec( dd, pTruth, iBit+(1<<(nVars-1)), nVars-1, nVarsTotal ); Cudd_Ref( bF1 ); - bF = Cudd_bddIte( dd, dd->vars[nVarsTotal-nVars], bF1, bF0 ); Cudd_Ref( bF ); - Cudd_RecursiveDeref( dd, bF0 ); - Cudd_RecursiveDeref( dd, bF1 ); - Cudd_Deref( bF ); - return bF; -} - -/**Function************************************************************* - - Synopsis [Compute BDD corresponding to the truth table.] - - Description [If truth table has N vars, the BDD depends on N topmost - variables of the BDD manager. The most significant variable of the table - is encoded by the topmost variable of the manager. BDD construction is - very efficient in this case because BDD is constructed one node at a time, - by simply adding BDD nodes on top of existent BDD nodes.] - - SideEffects [] - - SeeAlso [] - -***********************************************************************/ -DdNode * Extra_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ) -{ - return Extra_TruthToBdd_rec( dd, pTruth, 0, nVars, nVars ); -} - - -/**Function************************************************************* - Synopsis [Returns 1 if TT depends on the given variable.] Description [] diff --git a/src/misc/vec/vecInt.h b/src/misc/vec/vecInt.h index 1973bd46..10918156 100644 --- a/src/misc/vec/vecInt.h +++ b/src/misc/vec/vecInt.h @@ -598,6 +598,9 @@ static inline int Vec_IntPushUnique( Vec_Int_t * p, int Entry ) ***********************************************************************/ static inline unsigned * Vec_IntFetch( Vec_Int_t * p, int nWords ) { + if ( nWords == 0 ) + return NULL; + assert( nWords > 0 ); p->nSize += nWords; if ( p->nSize > p->nCap ) { diff --git a/src/opt/kit/kit.h b/src/opt/kit/kit.h new file mode 100644 index 00000000..d97fca58 --- /dev/null +++ b/src/opt/kit/kit.h @@ -0,0 +1,334 @@ +/**CFile**************************************************************** + + FileName [kit.h] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [External declarations.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kit.h,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#ifndef __KIT_H__ +#define __KIT_H__ + +#ifdef __cplusplus +extern "C" { +#endif + +//////////////////////////////////////////////////////////////////////// +/// INCLUDES /// +//////////////////////////////////////////////////////////////////////// + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include <time.h> +#include "vec.h" + +//////////////////////////////////////////////////////////////////////// +/// PARAMETERS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// BASIC TYPES /// +//////////////////////////////////////////////////////////////////////// + +typedef struct Kit_Sop_t_ Kit_Sop_t; +struct Kit_Sop_t_ +{ + int nCubes; // the number of cubes + unsigned * pCubes; // the storage for cubes +}; + +typedef struct Kit_Edge_t_ Kit_Edge_t; +struct Kit_Edge_t_ +{ + unsigned fCompl : 1; // the complemented bit + unsigned Node : 30; // the decomposition node pointed by the edge +}; + +typedef struct Kit_Node_t_ Kit_Node_t; +struct Kit_Node_t_ +{ + Kit_Edge_t eEdge0; // the left child of the node + Kit_Edge_t eEdge1; // the right child of the node + // other info + void * pFunc; // the function of the node (BDD or AIG) + unsigned Level : 14; // the level of this node in the global AIG + // printing info + unsigned fNodeOr : 1; // marks the original OR node + unsigned fCompl0 : 1; // marks the original complemented edge + unsigned fCompl1 : 1; // marks the original complemented edge + // latch info + unsigned nLat0 : 5; // the number of latches on the first edge + unsigned nLat1 : 5; // the number of latches on the second edge + unsigned nLat2 : 5; // the number of latches on the output edge +}; + +typedef struct Kit_Graph_t_ Kit_Graph_t; +struct Kit_Graph_t_ +{ + int fConst; // marks the constant 1 graph + int nLeaves; // the number of leaves + int nSize; // the number of nodes (including the leaves) + int nCap; // the number of allocated nodes + Kit_Node_t * pNodes; // the array of leaves and internal nodes + Kit_Edge_t eRoot; // the pointer to the topmost node +}; + +//////////////////////////////////////////////////////////////////////// +/// MACRO DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +#ifndef ALLOC +#define ALLOC(type, num) ((type *) malloc(sizeof(type) * (num))) +#endif + +#ifndef FREE +#define FREE(obj) ((obj) ? (free((char *) (obj)), (obj) = 0) : 0) +#endif + +#ifndef REALLOC +#define REALLOC(type, obj, num) \ + ((obj) ? ((type *) realloc((char *)(obj), sizeof(type) * (num))) : \ + ((type *) malloc(sizeof(type) * (num)))) +#endif + +static inline int Kit_CubeHasLit( unsigned uCube, int i ) { return(uCube & (unsigned)(1<<i)) > 0; } +static inline unsigned Kit_CubeSetLit( unsigned uCube, int i ) { return uCube | (unsigned)(1<<i); } +static inline unsigned Kit_CubeXorLit( unsigned uCube, int i ) { return uCube ^ (unsigned)(1<<i); } +static inline unsigned Kit_CubeRemLit( unsigned uCube, int i ) { return uCube & ~(unsigned)(1<<i); } + +static inline int Kit_CubeContains( unsigned uLarge, unsigned uSmall ) { return (uLarge & uSmall) == uSmall; } +static inline unsigned Kit_CubeSharp( unsigned uCube, unsigned uMask ) { return uCube & ~uMask; } +static inline unsigned Kit_CubeMask( int nVar ) { return (~(unsigned)0) >> (32-nVar); } + +static inline int Kit_CubeIsMarked( unsigned uCube ) { return Kit_CubeHasLit( uCube, 31 ); } +static inline unsigned Kit_CubeMark( unsigned uCube ) { return Kit_CubeSetLit( uCube, 31 ); } +static inline unsigned Kit_CubeUnmark( unsigned uCube ) { return Kit_CubeRemLit( uCube, 31 ); } + +static inline int Kit_SopCubeNum( Kit_Sop_t * cSop ) { return cSop->nCubes; } +static inline unsigned Kit_SopCube( Kit_Sop_t * cSop, int i ) { return cSop->pCubes[i]; } +static inline void Kit_SopShrink( Kit_Sop_t * cSop, int nCubesNew ) { cSop->nCubes = nCubesNew; } +static inline void Kit_SopPushCube( Kit_Sop_t * cSop, unsigned uCube ) { cSop->pCubes[cSop->nCubes++] = uCube; } +static inline void Kit_SopWriteCube( Kit_Sop_t * cSop, unsigned uCube, int i ) { cSop->pCubes[i] = uCube; } + +static inline Kit_Edge_t Kit_EdgeCreate( int Node, int fCompl ) { Kit_Edge_t eEdge = { fCompl, Node }; return eEdge; } +static inline unsigned Kit_EdgeToInt( Kit_Edge_t eEdge ) { return (eEdge.Node << 1) | eEdge.fCompl; } +static inline Kit_Edge_t Kit_IntToEdge( unsigned Edge ) { return Kit_EdgeCreate( Edge >> 1, Edge & 1 ); } +static inline unsigned Kit_EdgeToInt_( Kit_Edge_t eEdge ) { return *(unsigned *)&eEdge; } +static inline Kit_Edge_t Kit_IntToEdge_( unsigned Edge ) { return *(Kit_Edge_t *)&Edge; } + +static inline int Kit_GraphIsConst( Kit_Graph_t * pGraph ) { return pGraph->fConst; } +static inline int Kit_GraphIsConst0( Kit_Graph_t * pGraph ) { return pGraph->fConst && pGraph->eRoot.fCompl; } +static inline int Kit_GraphIsConst1( Kit_Graph_t * pGraph ) { return pGraph->fConst && !pGraph->eRoot.fCompl; } +static inline int Kit_GraphIsComplement( Kit_Graph_t * pGraph ) { return pGraph->eRoot.fCompl; } +static inline int Kit_GraphIsVar( Kit_Graph_t * pGraph ) { return pGraph->eRoot.Node < (unsigned)pGraph->nLeaves; } +static inline void Kit_GraphComplement( Kit_Graph_t * pGraph ) { pGraph->eRoot.fCompl ^= 1; } +static inline void Kit_GraphSetRoot( Kit_Graph_t * pGraph, Kit_Edge_t eRoot ) { pGraph->eRoot = eRoot; } +static inline int Kit_GraphLeaveNum( Kit_Graph_t * pGraph ) { return pGraph->nLeaves; } +static inline int Kit_GraphNodeNum( Kit_Graph_t * pGraph ) { return pGraph->nSize - pGraph->nLeaves; } +static inline Kit_Node_t * Kit_GraphNode( Kit_Graph_t * pGraph, int i ) { return pGraph->pNodes + i; } +static inline Kit_Node_t * Kit_GraphNodeLast( Kit_Graph_t * pGraph ) { return pGraph->pNodes + pGraph->nSize - 1; } +static inline int Kit_GraphNodeInt( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return pNode - pGraph->pNodes; } +static inline int Kit_GraphNodeIsVar( Kit_Graph_t * pGraph, Kit_Node_t * pNode ) { return Kit_GraphNodeInt(pGraph,pNode) < pGraph->nLeaves; } +static inline Kit_Node_t * Kit_GraphVar( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNode( pGraph, pGraph->eRoot.Node ); } +static inline int Kit_GraphVarInt( Kit_Graph_t * pGraph ) { assert( Kit_GraphIsVar( pGraph ) ); return Kit_GraphNodeInt( pGraph, Kit_GraphVar(pGraph) );} + +static inline int Kit_Float2Int( float Val ) { return *((int *)&Val); } +static inline float Kit_Int2Float( int Num ) { return *((float *)&Num); } +static inline int Kit_BitWordNum( int nBits ) { return nBits/(8*sizeof(unsigned)) + ((nBits%(8*sizeof(unsigned))) > 0); } +static inline int Kit_TruthWordNum( int nVars ) { return nVars <= 5 ? 1 : (1 << (nVars - 5)); } + +static inline void Kit_TruthSetBit( unsigned * p, int Bit ) { p[Bit>>5] |= (1<<(Bit & 31)); } +static inline void Kit_TruthXorBit( unsigned * p, int Bit ) { p[Bit>>5] ^= (1<<(Bit & 31)); } +static inline int Kit_TruthHasBit( unsigned * p, int Bit ) { return (p[Bit>>5] & (1<<(Bit & 31))) > 0; } + +static inline int Kit_WordCountOnes( unsigned uWord ) +{ + uWord = (uWord & 0x55555555) + ((uWord>>1) & 0x55555555); + uWord = (uWord & 0x33333333) + ((uWord>>2) & 0x33333333); + uWord = (uWord & 0x0F0F0F0F) + ((uWord>>4) & 0x0F0F0F0F); + uWord = (uWord & 0x00FF00FF) + ((uWord>>8) & 0x00FF00FF); + return (uWord & 0x0000FFFF) + (uWord>>16); +} +static inline int Kit_TruthCountOnes( unsigned * pIn, int nVars ) +{ + int w, Counter = 0; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + Counter += Kit_WordCountOnes(pIn[w]); + return Counter; +} +static inline int Kit_TruthIsEqual( unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn0[w] != pIn1[w] ) + return 0; + return 1; +} +static inline int Kit_TruthIsConst0( unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn[w] ) + return 0; + return 1; +} +static inline int Kit_TruthIsConst1( unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn[w] != ~(unsigned)0 ) + return 0; + return 1; +} +static inline int Kit_TruthIsImply( unsigned * pIn1, unsigned * pIn2, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + if ( pIn1[w] & ~pIn2[w] ) + return 0; + return 1; +} +static inline void Kit_TruthCopy( unsigned * pOut, unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn[w]; +} +static inline void Kit_TruthClear( unsigned * pOut, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = 0; +} +static inline void Kit_TruthFill( unsigned * pOut, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~(unsigned)0; +} +static inline void Kit_TruthNot( unsigned * pOut, unsigned * pIn, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~pIn[w]; +} +static inline void Kit_TruthAnd( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] & pIn1[w]; +} +static inline void Kit_TruthOr( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] | pIn1[w]; +} +static inline void Kit_TruthSharp( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = pIn0[w] & ~pIn1[w]; +} +static inline void Kit_TruthNand( unsigned * pOut, unsigned * pIn0, unsigned * pIn1, int nVars ) +{ + int w; + for ( w = Kit_TruthWordNum(nVars)-1; w >= 0; w-- ) + pOut[w] = ~(pIn0[w] & pIn1[w]); +} + +//////////////////////////////////////////////////////////////////////// +/// ITERATORS /// +//////////////////////////////////////////////////////////////////////// + +#define Kit_SopForEachCube( cSop, uCube, i ) \ + for ( i = 0; (i < Kit_SopCubeNum(cSop)) && ((uCube) = Kit_SopCube(cSop, i)); i++ ) +#define Kit_CubeForEachLiteral( uCube, Lit, nLits, i ) \ + for ( i = 0; (i < (nLits)) && ((Lit) = Kit_CubeHasLit(uCube, i)); i++ ) + +#define Kit_GraphForEachLeaf( pGraph, pLeaf, i ) \ + for ( i = 0; (i < (pGraph)->nLeaves) && (((pLeaf) = Kit_GraphNode(pGraph, i)), 1); i++ ) +#define Kit_GraphForEachNode( pGraph, pAnd, i ) \ + for ( i = (pGraph)->nLeaves; (i < (pGraph)->nSize) && (((pAnd) = Kit_GraphNode(pGraph, i)), 1); i++ ) + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +/*=== kitBdd.c ==========================================================*/ +extern DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ); +extern DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ); +extern DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ); +/*=== kitFactor.c ==========================================================*/ +extern Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ); +/*=== kitGraph.c ==========================================================*/ +extern Kit_Graph_t * Kit_GraphCreate( int nLeaves ); +extern Kit_Graph_t * Kit_GraphCreateConst0(); +extern Kit_Graph_t * Kit_GraphCreateConst1(); +extern Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl ); +extern void Kit_GraphFree( Kit_Graph_t * pGraph ); +extern Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph ); +extern Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); +extern Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ); +extern Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ); +extern Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ); +extern unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph ); +extern Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ); +/*=== kitHop.c ==========================================================*/ +/*=== kitIsop.c ==========================================================*/ +extern int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth ); +/*=== kitSop.c ==========================================================*/ +extern void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); +extern void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ); +extern void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); +extern void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ); +extern void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); +extern void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ); +extern void Kit_SopMakeCubeFree( Kit_Sop_t * cSop ); +extern int Kit_SopIsCubeFree( Kit_Sop_t * cSop ); +extern void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ); +extern int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ); +extern int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); +extern void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ); +/*=== kitTruth.c ==========================================================*/ +extern void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int Start ); +extern void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ); +extern void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ); +extern int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ); +extern int Kit_TruthSupportSize( unsigned * pTruth, int nVars ); +extern int Kit_TruthSupport( unsigned * pTruth, int nVars ); +extern void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ); +extern void Kit_TruthMux( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ); +extern void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ); +extern int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ); +extern void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ); +extern unsigned Kit_TruthHash( unsigned * pIn, int nWords ); +extern unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ); + +#ifdef __cplusplus +} +#endif + +#endif + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/opt/kit/kitBdd.c b/src/opt/kit/kitBdd.c new file mode 100644 index 00000000..ed978740 --- /dev/null +++ b/src/opt/kit/kitBdd.c @@ -0,0 +1,231 @@ +/**CFile**************************************************************** + + FileName [kitBdd.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving BDDs.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitBdd.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" +#include "extra.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Derives the BDD for the given SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_SopToBdd( DdManager * dd, Kit_Sop_t * cSop, int nVars ) +{ + DdNode * bSum, * bCube, * bTemp, * bVar; + unsigned uCube; + int Value, i, v; + assert( nVars < 16 ); + // start the cover + bSum = Cudd_ReadLogicZero(dd); Cudd_Ref( bSum ); + // check the logic function of the node + Kit_SopForEachCube( cSop, uCube, i ) + { + bCube = Cudd_ReadOne(dd); Cudd_Ref( bCube ); + for ( v = 0; v < nVars; v++ ) + { + Value = ((uCube >> 2*v) & 3); + if ( Value == 1 ) + bVar = Cudd_Not( Cudd_bddIthVar( dd, v ) ); + else if ( Value == 2 ) + bVar = Cudd_bddIthVar( dd, v ); + else + continue; + bCube = Cudd_bddAnd( dd, bTemp = bCube, bVar ); Cudd_Ref( bCube ); + Cudd_RecursiveDeref( dd, bTemp ); + } + bSum = Cudd_bddOr( dd, bTemp = bSum, bCube ); + Cudd_Ref( bSum ); + Cudd_RecursiveDeref( dd, bTemp ); + Cudd_RecursiveDeref( dd, bCube ); + } + // complement the result if necessary + Cudd_Deref( bSum ); + return bSum; +} + +/**Function************************************************************* + + Synopsis [Converts graph to BDD.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_GraphToBdd( DdManager * dd, Kit_Graph_t * pGraph ) +{ + DdNode * bFunc, * bFunc0, * bFunc1; + Kit_Node_t * pNode; + int i; + + // sanity checks + assert( Kit_GraphLeaveNum(pGraph) >= 0 ); + assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); + + // check for constant function + if ( Kit_GraphIsConst(pGraph) ) + return Cudd_NotCond( b1, Kit_GraphIsComplement(pGraph) ); + // check for a literal + if ( Kit_GraphIsVar(pGraph) ) + return Cudd_NotCond( Cudd_bddIthVar(dd, Kit_GraphVarInt(pGraph)), Kit_GraphIsComplement(pGraph) ); + + // assign the elementary variables + Kit_GraphForEachLeaf( pGraph, pNode, i ) + pNode->pFunc = Cudd_bddIthVar( dd, i ); + + // compute the function for each internal node + Kit_GraphForEachNode( pGraph, pNode, i ) + { + bFunc0 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); + bFunc1 = Cudd_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); + pNode->pFunc = Cudd_bddAnd( dd, bFunc0, bFunc1 ); Cudd_Ref( pNode->pFunc ); + } + + // deref the intermediate results + bFunc = pNode->pFunc; Cudd_Ref( bFunc ); + Kit_GraphForEachNode( pGraph, pNode, i ) + Cudd_RecursiveDeref( dd, pNode->pFunc ); + Cudd_Deref( bFunc ); + + // complement the result if necessary + return Cudd_NotCond( bFunc, Kit_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_TruthToBdd_rec( DdManager * dd, unsigned * pTruth, int iBit, int nVars, int nVarsTotal ) +{ + DdNode * bF0, * bF1, * bF; + if ( nVars == 0 ) + { + if ( pTruth[iBit>>5] & (1 << iBit&31) ) + return b1; + return b0; + } + if ( nVars == 5 ) + { + if ( pTruth[iBit>>5] == 0xFFFFFFFF ) + return b1; + if ( pTruth[iBit>>5] == 0 ) + return b0; + } + // other special cases can be added + bF0 = Kit_TruthToBdd_rec( dd, pTruth, iBit, nVars-1, nVarsTotal ); Cudd_Ref( bF0 ); + bF1 = Kit_TruthToBdd_rec( dd, pTruth, iBit+(1<<(nVars-1)), nVars-1, nVarsTotal ); Cudd_Ref( bF1 ); + bF = Cudd_bddIte( dd, dd->vars[nVarsTotal-nVars], bF1, bF0 ); Cudd_Ref( bF ); + Cudd_RecursiveDeref( dd, bF0 ); + Cudd_RecursiveDeref( dd, bF1 ); + Cudd_Deref( bF ); + return bF; +} + +/**Function************************************************************* + + Synopsis [Compute BDD corresponding to the truth table.] + + Description [If truth table has N vars, the BDD depends on N topmost + variables of the BDD manager. The most significant variable of the table + is encoded by the topmost variable of the manager. BDD construction is + efficient in this case because BDD is constructed one node at a time, + by simply adding BDD nodes on top of existent BDD nodes.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +DdNode * Kit_TruthToBdd( DdManager * dd, unsigned * pTruth, int nVars ) +{ + return Kit_TruthToBdd_rec( dd, pTruth, 0, nVars, nVars ); +} + +/**Function************************************************************* + + Synopsis [Verifies that the factoring is correct.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopFactorVerify( Vec_Int_t * vCover, Kit_Graph_t * pFForm, int nVars ) +{ + static DdManager * dd = NULL; + Kit_Sop_t Sop, * cSop = &Sop; + DdNode * bFunc1, * bFunc2; + Vec_Int_t * vMemory; + int RetValue; + // get the manager + if ( dd == NULL ) + dd = Cudd_Init( 16, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0 ); + // derive SOP + vMemory = Vec_IntAlloc( Vec_IntSize(vCover) ); + Kit_SopCreate( cSop, vCover, nVars, vMemory ); + // get the functions + bFunc1 = Kit_SopToBdd( dd, cSop, nVars ); Cudd_Ref( bFunc1 ); + bFunc2 = Kit_GraphToBdd( dd, pFForm ); Cudd_Ref( bFunc2 ); +//Extra_bddPrint( dd, bFunc1 ); printf("\n"); +//Extra_bddPrint( dd, bFunc2 ); printf("\n"); + RetValue = (bFunc1 == bFunc2); + if ( bFunc1 != bFunc2 ) + { + int s; + Extra_bddPrint( dd, bFunc1 ); printf("\n"); + Extra_bddPrint( dd, bFunc2 ); printf("\n"); + s = 0; + } + Cudd_RecursiveDeref( dd, bFunc1 ); + Cudd_RecursiveDeref( dd, bFunc2 ); + Vec_IntFree( vMemory ); + return RetValue; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kitFactor.c b/src/opt/kit/kitFactor.c new file mode 100644 index 00000000..618a4272 --- /dev/null +++ b/src/opt/kit/kitFactor.c @@ -0,0 +1,337 @@ +/**CFile**************************************************************** + + FileName [kitFactor.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Algebraic factoring.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitFactor.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +// factoring fails if intermediate memory usage exceed this limit +#define KIT_FACTOR_MEM_LIMIT (1<<16) + +static Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ); +static Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ); +static Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ); +static Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ); + +extern int Kit_SopFactorVerify( Vec_Int_t * cSop, Kit_Graph_t * pFForm, int nVars ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Factors the cover.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_SopFactor( Vec_Int_t * vCover, int fCompl, int nVars, Vec_Int_t * vMemory ) +{ + Kit_Sop_t Sop, Res; + Kit_Sop_t * cSop = &Sop, * cRes = &Res; + Kit_Graph_t * pFForm; + Kit_Edge_t eRoot; + int nCubes = Vec_IntSize(vCover); + + // works for up to 15 variables because divisin procedure + // used the last bit for marking the cubes going to the remainder + assert( nVars < 16 ); + + // check for trivial functions + if ( Vec_IntSize(vCover) == 0 ) + return Kit_GraphCreateConst0(); + if ( Vec_IntSize(vCover) == 1 && Vec_IntEntry(vCover, 0) == (int)Kit_CubeMask(nVars) ) + return Kit_GraphCreateConst1(); + + // prepare memory manager +// Vec_IntClear( vMemory ); + Vec_IntGrow( vMemory, KIT_FACTOR_MEM_LIMIT ); + + // perform CST + Kit_SopCreateInverse( cSop, vCover, 2 * nVars, vMemory ); // CST + + // start the factored form + pFForm = Kit_GraphCreate( nVars ); + // factor the cover + eRoot = Kit_SopFactor_rec( pFForm, cSop, 2 * nVars, vMemory ); + // finalize the factored form + Kit_GraphSetRoot( pFForm, eRoot ); + if ( fCompl ) + Kit_GraphComplement( pFForm ); + + // verify the factored form +// Vec_IntShrink( vCover, nCubes ); +// if ( !Kit_SopFactorVerify( vCover, pFForm, nVars ) ) +// printf( "Verification has failed.\n" ); + return pFForm; +} + +/**Function************************************************************* + + Synopsis [Recursive factoring procedure.] + + Description [For the pseudo-code, see Hachtel/Somenzi, + Logic synthesis and verification algorithms, Kluwer, 1996, p. 432.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactor_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) +{ + Kit_Sop_t Div, Quo, Rem, Com; + Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem, * cCom = &Com; + Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; + + // make sure the cover contains some cubes + assert( Kit_SopCubeNum(cSop) > 0 ); + + // get the divisor + if ( !Kit_SopDivisor(cDiv, cSop, nLits, vMemory) ) + return Kit_SopFactorTrivial( pFForm, cSop, nLits ); + + // divide the cover by the divisor + Kit_SopDivideInternal( cSop, cDiv, cQuo, cRem, vMemory ); + + // check the trivial case + assert( Kit_SopCubeNum(cQuo) > 0 ); + if ( Kit_SopCubeNum(cQuo) == 1 ) + return Kit_SopFactorLF_rec( pFForm, cSop, cQuo, nLits, vMemory ); + + // make the quotient cube free + Kit_SopMakeCubeFree( cQuo ); + + // divide the cover by the quotient + Kit_SopDivideInternal( cSop, cQuo, cDiv, cRem, vMemory ); + + // check the trivial case + if ( Kit_SopIsCubeFree( cDiv ) ) + { + eNodeDiv = Kit_SopFactor_rec( pFForm, cDiv, nLits, vMemory ); + eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); + eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); + if ( Kit_SopCubeNum(cRem) == 0 ) + return eNodeAnd; + eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); + return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); + } + + // get the common cube + Kit_SopCommonCubeCover( cCom, cDiv, vMemory ); + + // solve the simple problem + return Kit_SopFactorLF_rec( pFForm, cSop, cCom, nLits, vMemory ); +} + + +/**Function************************************************************* + + Synopsis [Internal recursive factoring procedure for the leaf case.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorLF_rec( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, Kit_Sop_t * cSimple, int nLits, Vec_Int_t * vMemory ) +{ + Kit_Sop_t Div, Quo, Rem; + Kit_Sop_t * cDiv = &Div, * cQuo = &Quo, * cRem = &Rem; + Kit_Edge_t eNodeDiv, eNodeQuo, eNodeRem, eNodeAnd; + assert( Kit_SopCubeNum(cSimple) == 1 ); + // get the most often occurring literal + Kit_SopBestLiteralCover( cDiv, cSop, Kit_SopCube(cSimple, 0), nLits, vMemory ); + // divide the cover by the literal + Kit_SopDivideByCube( cSop, cDiv, cQuo, cRem, vMemory ); + // get the node pointer for the literal + eNodeDiv = Kit_SopFactorTrivialCube( pFForm, Kit_SopCube(cDiv, 0), nLits ); + // factor the quotient and remainder + eNodeQuo = Kit_SopFactor_rec( pFForm, cQuo, nLits, vMemory ); + eNodeAnd = Kit_GraphAddNodeAnd( pFForm, eNodeDiv, eNodeQuo ); + if ( Kit_SopCubeNum(cRem) == 0 ) + return eNodeAnd; + eNodeRem = Kit_SopFactor_rec( pFForm, cRem, nLits, vMemory ); + return Kit_GraphAddNodeOr( pFForm, eNodeAnd, eNodeRem ); +} + + +/**Function************************************************************* + + Synopsis [Factoring cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivialCube_rec( Kit_Graph_t * pFForm, unsigned uCube, int nStart, int nFinish ) +{ + Kit_Edge_t eNode1, eNode2; + int i, iLit, nLits, nLits1, nLits2; + // count the number of literals in this interval + nLits = 0; + for ( i = nStart; i < nFinish; i++ ) + if ( Kit_CubeHasLit(uCube, i) ) + { + iLit = i; + nLits++; + } + // quit if there is only one literal + if ( nLits == 1 ) + return Kit_EdgeCreate( iLit/2, iLit%2 ); // CST + // split the literals into two parts + nLits1 = nLits/2; + nLits2 = nLits - nLits1; +// nLits2 = nLits/2; +// nLits1 = nLits - nLits2; + // find the splitting point + nLits = 0; + for ( i = nStart; i < nFinish; i++ ) + if ( Kit_CubeHasLit(uCube, i) ) + { + if ( nLits == nLits1 ) + break; + nLits++; + } + // recursively construct the tree for the parts + eNode1 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, nStart, i ); + eNode2 = Kit_SopFactorTrivialCube_rec( pFForm, uCube, i, nFinish ); + return Kit_GraphAddNodeAnd( pFForm, eNode1, eNode2 ); +} + +/**Function************************************************************* + + Synopsis [Factoring cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivialCube( Kit_Graph_t * pFForm, unsigned uCube, int nLits ) +{ + return Kit_SopFactorTrivialCube_rec( pFForm, uCube, 0, nLits ); +} + +/**Function************************************************************* + + Synopsis [Factoring SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivial_rec( Kit_Graph_t * pFForm, unsigned * pCubes, int nCubes, int nLits ) +{ + Kit_Edge_t eNode1, eNode2; + int nCubes1, nCubes2; + if ( nCubes == 1 ) + return Kit_SopFactorTrivialCube_rec( pFForm, pCubes[0], 0, nLits ); + // split the cubes into two parts + nCubes1 = nCubes/2; + nCubes2 = nCubes - nCubes1; +// nCubes2 = nCubes/2; +// nCubes1 = nCubes - nCubes2; + // recursively construct the tree for the parts + eNode1 = Kit_SopFactorTrivial_rec( pFForm, pCubes, nCubes1, nLits ); + eNode2 = Kit_SopFactorTrivial_rec( pFForm, pCubes + nCubes1, nCubes2, nLits ); + return Kit_GraphAddNodeOr( pFForm, eNode1, eNode2 ); +} + +/**Function************************************************************* + + Synopsis [Factoring the cover, which has no algebraic divisors.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_SopFactorTrivial( Kit_Graph_t * pFForm, Kit_Sop_t * cSop, int nLits ) +{ + return Kit_SopFactorTrivial_rec( pFForm, cSop->pCubes, cSop->nCubes, nLits ); +} + + +/**Function************************************************************* + + Synopsis [Testing procedure for the factoring code.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_FactorTest( unsigned * pTruth, int nVars ) +{ + Vec_Int_t * vCover, * vMemory; + Kit_Graph_t * pGraph; +// unsigned uTruthRes; + int RetValue; + + // derive SOP + vCover = Vec_IntAlloc( 0 ); + RetValue = Kit_TruthIsop( pTruth, nVars, vCover, 0 ); + assert( RetValue == 0 ); + + // derive factored form + vMemory = Vec_IntAlloc( 0 ); + pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); +/* + // derive truth table + assert( nVars <= 5 ); + uTruthRes = Kit_GraphToTruth( pGraph ); + if ( uTruthRes != pTruth[0] ) + printf( "Verification failed!" ); +*/ + printf( "Vars = %2d. Cubes = %3d. FFNodes = %3d. FF_memory = %3d.\n", + nVars, Vec_IntSize(vCover), Kit_GraphNodeNum(pGraph), Vec_IntSize(vMemory) ); + + Vec_IntFree( vMemory ); + Vec_IntFree( vCover ); + Kit_GraphFree( pGraph ); +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kitGraph.c b/src/opt/kit/kitGraph.c new file mode 100644 index 00000000..e2172ca3 --- /dev/null +++ b/src/opt/kit/kitGraph.c @@ -0,0 +1,367 @@ +/**CFile**************************************************************** + + FileName [kitGraph.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Decomposition graph representation.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitGraph.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Creates a graph with the given number of leaves.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreate( int nLeaves ) +{ + Kit_Graph_t * pGraph; + pGraph = ALLOC( Kit_Graph_t, 1 ); + memset( pGraph, 0, sizeof(Kit_Graph_t) ); + pGraph->nLeaves = nLeaves; + pGraph->nSize = nLeaves; + pGraph->nCap = 2 * nLeaves + 50; + pGraph->pNodes = ALLOC( Kit_Node_t, pGraph->nCap ); + memset( pGraph->pNodes, 0, sizeof(Kit_Node_t) * pGraph->nSize ); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates constant 0 graph.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateConst0() +{ + Kit_Graph_t * pGraph; + pGraph = ALLOC( Kit_Graph_t, 1 ); + memset( pGraph, 0, sizeof(Kit_Graph_t) ); + pGraph->fConst = 1; + pGraph->eRoot.fCompl = 1; + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates constant 1 graph.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateConst1() +{ + Kit_Graph_t * pGraph; + pGraph = ALLOC( Kit_Graph_t, 1 ); + memset( pGraph, 0, sizeof(Kit_Graph_t) ); + pGraph->fConst = 1; + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates the literal graph.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_GraphCreateLeaf( int iLeaf, int nLeaves, int fCompl ) +{ + Kit_Graph_t * pGraph; + assert( 0 <= iLeaf && iLeaf < nLeaves ); + pGraph = Kit_GraphCreate( nLeaves ); + pGraph->eRoot.Node = iLeaf; + pGraph->eRoot.fCompl = fCompl; + return pGraph; +} + +/**Function************************************************************* + + Synopsis [Creates a graph with the given number of leaves.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_GraphFree( Kit_Graph_t * pGraph ) +{ + FREE( pGraph->pNodes ); + free( pGraph ); +} + +/**Function************************************************************* + + Synopsis [Appends a new node to the graph.] + + Description [This procedure is meant for internal use.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Node_t * Kit_GraphAppendNode( Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode; + if ( pGraph->nSize == pGraph->nCap ) + { + pGraph->pNodes = REALLOC( Kit_Node_t, pGraph->pNodes, 2 * pGraph->nCap ); + pGraph->nCap = 2 * pGraph->nCap; + } + pNode = pGraph->pNodes + pGraph->nSize++; + memset( pNode, 0, sizeof(Kit_Node_t) ); + return pNode; +} + +/**Function************************************************************* + + Synopsis [Creates an AND node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeAnd( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) +{ + Kit_Node_t * pNode; + // get the new node + pNode = Kit_GraphAppendNode( pGraph ); + // set the inputs and other info + pNode->eEdge0 = eEdge0; + pNode->eEdge1 = eEdge1; + pNode->fCompl0 = eEdge0.fCompl; + pNode->fCompl1 = eEdge1.fCompl; + return Kit_EdgeCreate( pGraph->nSize - 1, 0 ); +} + +/**Function************************************************************* + + Synopsis [Creates an OR node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeOr( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1 ) +{ + Kit_Node_t * pNode; + // get the new node + pNode = Kit_GraphAppendNode( pGraph ); + // set the inputs and other info + pNode->eEdge0 = eEdge0; + pNode->eEdge1 = eEdge1; + pNode->fCompl0 = eEdge0.fCompl; + pNode->fCompl1 = eEdge1.fCompl; + // make adjustments for the OR gate + pNode->fNodeOr = 1; + pNode->eEdge0.fCompl = !pNode->eEdge0.fCompl; + pNode->eEdge1.fCompl = !pNode->eEdge1.fCompl; + return Kit_EdgeCreate( pGraph->nSize - 1, 1 ); +} + +/**Function************************************************************* + + Synopsis [Creates an XOR node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeXor( Kit_Graph_t * pGraph, Kit_Edge_t eEdge0, Kit_Edge_t eEdge1, int Type ) +{ + Kit_Edge_t eNode0, eNode1, eNode; + if ( Type == 0 ) + { + // derive the first AND + eEdge0.fCompl ^= 1; + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + eEdge0.fCompl ^= 1; + // derive the second AND + eEdge1.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + } + else + { + // derive the first AND + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + // derive the second AND + eEdge0.fCompl ^= 1; + eEdge1.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdge0, eEdge1 ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + eNode.fCompl ^= 1; + } + return eNode; +} + +/**Function************************************************************* + + Synopsis [Creates an XOR node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Edge_t Kit_GraphAddNodeMux( Kit_Graph_t * pGraph, Kit_Edge_t eEdgeC, Kit_Edge_t eEdgeT, Kit_Edge_t eEdgeE, int Type ) +{ + Kit_Edge_t eNode0, eNode1, eNode; + if ( Type == 0 ) + { + // derive the first AND + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); + // derive the second AND + eEdgeC.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + } + else + { + // complement the arguments + eEdgeT.fCompl ^= 1; + eEdgeE.fCompl ^= 1; + // derive the first AND + eNode0 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeT ); + // derive the second AND + eEdgeC.fCompl ^= 1; + eNode1 = Kit_GraphAddNodeAnd( pGraph, eEdgeC, eEdgeE ); + // derive the final OR + eNode = Kit_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + eNode.fCompl ^= 1; + } + return eNode; +} + +/**Function************************************************************* + + Synopsis [Derives the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_GraphToTruth( Kit_Graph_t * pGraph ) +{ + unsigned uTruths[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; + unsigned uTruth, uTruth0, uTruth1; + Kit_Node_t * pNode; + int i; + + // sanity checks + assert( Kit_GraphLeaveNum(pGraph) >= 0 ); + assert( Kit_GraphLeaveNum(pGraph) <= pGraph->nSize ); + assert( Kit_GraphLeaveNum(pGraph) <= 5 ); + + // check for constant function + if ( Kit_GraphIsConst(pGraph) ) + return Kit_GraphIsComplement(pGraph)? 0 : ~((unsigned)0); + // check for a literal + if ( Kit_GraphIsVar(pGraph) ) + return Kit_GraphIsComplement(pGraph)? ~uTruths[Kit_GraphVarInt(pGraph)] : uTruths[Kit_GraphVarInt(pGraph)]; + + // assign the elementary variables + Kit_GraphForEachLeaf( pGraph, pNode, i ) + pNode->pFunc = (void *)uTruths[i]; + + // compute the function for each internal node + Kit_GraphForEachNode( pGraph, pNode, i ) + { + uTruth0 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc; + uTruth1 = (unsigned)Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc; + uTruth0 = pNode->eEdge0.fCompl? ~uTruth0 : uTruth0; + uTruth1 = pNode->eEdge1.fCompl? ~uTruth1 : uTruth1; + uTruth = uTruth0 & uTruth1; + pNode->pFunc = (void *)uTruth; + } + + // complement the result if necessary + return Kit_GraphIsComplement(pGraph)? ~uTruth : uTruth; +} + +/**Function************************************************************* + + Synopsis [Derives the factored form from the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Kit_Graph_t * Kit_TruthToGraph( unsigned * pTruth, int nVars, Vec_Int_t * vMemory ) +{ + Kit_Graph_t * pGraph; + int RetValue; + // derive SOP + RetValue = Kit_TruthIsop( pTruth, nVars, vMemory, 0 ); + assert( RetValue == 0 ); + // derive factored form + pGraph = Kit_SopFactor( vMemory, 0, nVars, vMemory ); + return pGraph; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + diff --git a/src/opt/kit/kitHop.c b/src/opt/kit/kitHop.c new file mode 100644 index 00000000..95461c4e --- /dev/null +++ b/src/opt/kit/kitHop.c @@ -0,0 +1,115 @@ +/**CFile**************************************************************** + + FileName [kitHop.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving AIGs.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitHop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" +#include "hop.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + + +/**Function************************************************************* + + Synopsis [Transforms the decomposition graph into the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Hop_Obj_t * Kit_GraphToHopInternal( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode; + Hop_Obj_t * pAnd0, * pAnd1; + int i; + // check for constant function + if ( Kit_GraphIsConst(pGraph) ) + return Hop_NotCond( Hop_ManConst1(pMan), Kit_GraphIsComplement(pGraph) ); + // check for a literal + if ( Kit_GraphIsVar(pGraph) ) + return Hop_NotCond( Kit_GraphVar(pGraph)->pFunc, Kit_GraphIsComplement(pGraph) ); + // build the AIG nodes corresponding to the AND gates of the graph + Kit_GraphForEachNode( pGraph, pNode, i ) + { + pAnd0 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge0.Node)->pFunc, pNode->eEdge0.fCompl ); + pAnd1 = Hop_NotCond( Kit_GraphNode(pGraph, pNode->eEdge1.Node)->pFunc, pNode->eEdge1.fCompl ); + pNode->pFunc = Hop_And( pMan, pAnd0, pAnd1 ); + } + // complement the result if necessary + return Hop_NotCond( pNode->pFunc, Kit_GraphIsComplement(pGraph) ); +} + +/**Function************************************************************* + + Synopsis [Strashes one logic node using its SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Hop_Obj_t * Kit_GraphToHop( Hop_Man_t * pMan, Kit_Graph_t * pGraph ) +{ + Kit_Node_t * pNode; + int i; + // collect the fanins + Kit_GraphForEachLeaf( pGraph, pNode, i ) + pNode->pFunc = Hop_IthVar( pMan, i ); + // perform strashing + return Kit_GraphToHopInternal( pMan, pGraph ); +} + +/**Function************************************************************* + + Synopsis [Strashes one logic node using its SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Hop_Obj_t * Kit_CoverToHop( Hop_Man_t * pMan, Vec_Int_t * vCover, int nVars, Vec_Int_t * vMemory ) +{ + Kit_Graph_t * pGraph; + Hop_Obj_t * pFunc; + // perform factoring + pGraph = Kit_SopFactor( vCover, 0, nVars, vMemory ); + // convert graph to the AIG + pFunc = Kit_GraphToHop( pMan, pGraph ); + Kit_GraphFree( pGraph ); + return pFunc; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/aig/ivy/ivyIsop.c b/src/opt/kit/kitIsop.c index ae48ca34..420cb16f 100644 --- a/src/aig/ivy/ivyIsop.c +++ b/src/opt/kit/kitIsop.c @@ -1,43 +1,35 @@ /**CFile**************************************************************** - FileName [ivyIsop.c] + FileName [kitIsop.c] SystemName [ABC: Logic synthesis and verification system.] - PackageName [And-Inverter Graph package.] + PackageName [Computation kit.] - Synopsis [Computing irredundant SOP using truth table.] + Synopsis [ISOP computation based on Morreale's algorithm.] Author [Alan Mishchenko] Affiliation [UC Berkeley] - Date [Ver. 1.0. Started - May 11, 2006.] + Date [Ver. 1.0. Started - Dec 6, 2006.] - Revision [$Id: ivyIsop.c,v 1.00 2006/05/11 00:00:00 alanmi Exp $] + Revision [$Id: kitIsop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] ***********************************************************************/ -#include "ivy.h" +#include "kit.h" //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// // ISOP computation fails if intermediate memory usage exceed this limit -#define IVY_ISOP_MEM_LIMIT 16*4096 - -// intermediate ISOP representation -typedef struct Ivy_Sop_t_ Ivy_Sop_t; -struct Ivy_Sop_t_ -{ - unsigned * pCubes; - int nCubes; -}; +#define KIT_ISOP_MEM_LIMIT (1<<16) // static procedures to compute ISOP -static unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ); -static unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ); +static unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ); +static unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ); //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// @@ -47,9 +39,9 @@ static unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, I Synopsis [Computes ISOP from TT.] - Description [Returns the cover in vCover. Uses the rest of array in vCover + Description [Returns the cover in vMemory. Uses the rest of array in vMemory as an intermediate memory storage. Returns the cover with -1 cubes, if the - the computation exceeded the memory limit (IVY_ISOP_MEM_LIMIT words of + the computation exceeded the memory limit (KIT_ISOP_MEM_LIMIT words of intermediate data).] SideEffects [] @@ -57,10 +49,10 @@ static unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, I SeeAlso [] ***********************************************************************/ -int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBoth ) +int Kit_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vMemory, int fTryBoth ) { - Ivy_Sop_t cRes, * pcRes = &cRes; - Ivy_Sop_t cRes2, * pcRes2 = &cRes2; + Kit_Sop_t cRes, * pcRes = &cRes; + Kit_Sop_t cRes2, * pcRes2 = &cRes2; unsigned * pResult; int RetValue = 0; assert( nVars >= 0 && nVars < 16 ); @@ -68,13 +60,13 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo // for ( i = nVars; i < 5; i++ ) // assert( !Extra_TruthVarInSupport(puTruth, 5, i) ); // prepare memory manager - Vec_IntClear( vCover ); - Vec_IntGrow( vCover, IVY_ISOP_MEM_LIMIT ); + Vec_IntClear( vMemory ); + Vec_IntGrow( vMemory, KIT_ISOP_MEM_LIMIT ); // compute ISOP for the direct polarity - pResult = Ivy_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vCover ); + pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes, vMemory ); if ( pcRes->nCubes == -1 ) { - vCover->nSize = -1; + vMemory->nSize = -1; return 0; } assert( Extra_TruthIsEqual( puTruth, pResult, nVars ) ); @@ -82,7 +74,7 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo { // compute ISOP for the complemented polarity Extra_TruthNot( puTruth, puTruth, nVars ); - pResult = Ivy_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vCover ); + pResult = Kit_TruthIsop_rec( puTruth, puTruth, nVars, pcRes2, vMemory ); if ( pcRes2->nCubes >= 0 ) { assert( Extra_TruthIsEqual( puTruth, pResult, nVars ) ); @@ -94,10 +86,10 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo } Extra_TruthNot( puTruth, puTruth, nVars ); } -// printf( "%d ", vCover->nSize ); +// printf( "%d ", vMemory->nSize ); // move the cover representation to the beginning of the memory buffer - memmove( vCover->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) ); - Vec_IntShrink( vCover, pcRes->nCubes ); + memmove( vMemory->pArray, pcRes->pCubes, pcRes->nCubes * sizeof(unsigned) ); + Vec_IntShrink( vMemory, pcRes->nCubes ); return RetValue; } @@ -112,10 +104,10 @@ int Ivy_TruthIsop( unsigned * puTruth, int nVars, Vec_Int_t * vCover, int fTryBo SeeAlso [] ***********************************************************************/ -unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ) +unsigned * Kit_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ) { - Ivy_Sop_t cRes0, cRes1, cRes2; - Ivy_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; + Kit_Sop_t cRes0, cRes1, cRes2; + Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; unsigned * puRes0, * puRes1, * puRes2; unsigned * puOn0, * puOn1, * puOnDc0, * puOnDc1, * pTemp, * pTemp0, * pTemp1; int i, k, Var, nWords, nWordsAll; @@ -159,7 +151,7 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy // consider a simple case when one-word computation can be used if ( Var < 5 ) { - unsigned uRes = Ivy_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore ); + unsigned uRes = Kit_TruthIsop5_rec( puOn[0], puOnDc[0], Var+1, pcRes, vStore ); for ( i = 0; i < nWordsAll; i++ ) pTemp[i] = uRes; return pTemp; @@ -172,14 +164,14 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy pTemp0 = pTemp; pTemp1 = pTemp + nWords; // solve for cofactors Extra_TruthSharp( pTemp0, puOn0, puOnDc1, Var ); - puRes0 = Ivy_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore ); + puRes0 = Kit_TruthIsop_rec( pTemp0, puOnDc0, Var, pcRes0, vStore ); if ( pcRes0->nCubes == -1 ) { pcRes->nCubes = -1; return NULL; } Extra_TruthSharp( pTemp1, puOn1, puOnDc0, Var ); - puRes1 = Ivy_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore ); + puRes1 = Kit_TruthIsop_rec( pTemp1, puOnDc1, Var, pcRes1, vStore ); if ( pcRes1->nCubes == -1 ) { pcRes->nCubes = -1; @@ -189,7 +181,7 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy Extra_TruthSharp( pTemp1, puOn1, puRes1, Var ); Extra_TruthOr( pTemp0, pTemp0, pTemp1, Var ); Extra_TruthAnd( pTemp1, puOnDc0, puOnDc1, Var ); - puRes2 = Ivy_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore ); + puRes2 = Kit_TruthIsop_rec( pTemp0, pTemp1, Var, pcRes2, vStore ); if ( pcRes2->nCubes == -1 ) { pcRes->nCubes = -1; @@ -205,9 +197,9 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy } k = 0; for ( i = 0; i < pcRes0->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+1)); + pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0)); for ( i = 0; i < pcRes1->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+0)); + pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1)); for ( i = 0; i < pcRes2->nCubes; i++ ) pcRes->pCubes[k++] = pcRes2->pCubes[i]; assert( k == pcRes->nCubes ); @@ -236,11 +228,11 @@ unsigned * Ivy_TruthIsop_rec( unsigned * puOn, unsigned * puOnDc, int nVars, Ivy SeeAlso [] ***********************************************************************/ -unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t * pcRes, Vec_Int_t * vStore ) +unsigned Kit_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Kit_Sop_t * pcRes, Vec_Int_t * vStore ) { unsigned uMasks[5] = { 0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000 }; - Ivy_Sop_t cRes0, cRes1, cRes2; - Ivy_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; + Kit_Sop_t cRes0, cRes1, cRes2; + Kit_Sop_t * pcRes0 = &cRes0, * pcRes1 = &cRes1, * pcRes2 = &cRes2; unsigned uOn0, uOn1, uOnDc0, uOnDc1, uRes0, uRes1, uRes2; int i, k, Var; assert( nVars <= 5 ); @@ -278,19 +270,19 @@ unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t Extra_TruthCofactor0( &uOnDc0, Var + 1, Var ); Extra_TruthCofactor1( &uOnDc1, Var + 1, Var ); // solve for cofactors - uRes0 = Ivy_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore ); + uRes0 = Kit_TruthIsop5_rec( uOn0 & ~uOnDc1, uOnDc0, Var, pcRes0, vStore ); if ( pcRes0->nCubes == -1 ) { pcRes->nCubes = -1; return 0; } - uRes1 = Ivy_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore ); + uRes1 = Kit_TruthIsop5_rec( uOn1 & ~uOnDc0, uOnDc1, Var, pcRes1, vStore ); if ( pcRes1->nCubes == -1 ) { pcRes->nCubes = -1; return 0; } - uRes2 = Ivy_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore ); + uRes2 = Kit_TruthIsop5_rec( (uOn0 & ~uRes0) | (uOn1 & ~uRes1), uOnDc0 & uOnDc1, Var, pcRes2, vStore ); if ( pcRes2->nCubes == -1 ) { pcRes->nCubes = -1; @@ -306,9 +298,9 @@ unsigned Ivy_TruthIsop5_rec( unsigned uOn, unsigned uOnDc, int nVars, Ivy_Sop_t } k = 0; for ( i = 0; i < pcRes0->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+1)); + pcRes->pCubes[k++] = pcRes0->pCubes[i] | (1 << ((Var<<1)+0)); for ( i = 0; i < pcRes1->nCubes; i++ ) - pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+0)); + pcRes->pCubes[k++] = pcRes1->pCubes[i] | (1 << ((Var<<1)+1)); for ( i = 0; i < pcRes2->nCubes; i++ ) pcRes->pCubes[k++] = pcRes2->pCubes[i]; assert( k == pcRes->nCubes ); diff --git a/src/opt/kit/kitSop.c b/src/opt/kit/kitSop.c new file mode 100644 index 00000000..3fa81351 --- /dev/null +++ b/src/opt/kit/kitSop.c @@ -0,0 +1,570 @@ +/**CFile**************************************************************** + + FileName [kitSop.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving SOPs.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitSop.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Creates SOP from the cube array.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopCreate( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nVars, Vec_Int_t * vMemory ) +{ + unsigned uCube; + int i; + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, Vec_IntSize(vInput) ); + // add the cubes + Vec_IntForEachEntry( vInput, uCube, i ) + Kit_SopPushCube( cResult, uCube ); +} + +/**Function************************************************************* + + Synopsis [Creates SOP from the cube array.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopCreateInverse( Kit_Sop_t * cResult, Vec_Int_t * vInput, int nLits, Vec_Int_t * vMemory ) +{ + unsigned uCube, uMask = 0; + int i, nCubes = Vec_IntSize(vInput); + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, nCubes ); + // add the cubes +// Vec_IntForEachEntry( vInput, uCube, i ) + for ( i = 0; i < nCubes; i++ ) + { + uCube = Vec_IntEntry( vInput, i ); + uMask = ((uCube | (uCube >> 1)) & 0x55555555); + uMask |= (uMask << 1); + Kit_SopPushCube( cResult, uCube ^ uMask ); + } +} + +/**Function************************************************************* + + Synopsis [Duplicates SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDup( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) +{ + unsigned uCube; + int i; + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); + // add the cubes + Kit_SopForEachCube( cSop, uCube, i ) + Kit_SopPushCube( cResult, uCube ); +} + +/**Function************************************************************* + + Synopsis [Derives the quotient of division by literal.] + + Description [Reduces the cover to be equal to the result of + division of the given cover by the literal.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivideByLiteralQuo( Kit_Sop_t * cSop, int iLit ) +{ + unsigned uCube; + int i, k = 0; + Kit_SopForEachCube( cSop, uCube, i ) + { + if ( Kit_CubeHasLit(uCube, iLit) ) + Kit_SopWriteCube( cSop, Kit_CubeRemLit(uCube, iLit), k++ ); + } + Kit_SopShrink( cSop, k ); +} + + +/**Function************************************************************* + + Synopsis [Divides cover by one cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivideByCube( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) +{ + unsigned uCube, uDiv; + int i; + // get the only cube + assert( Kit_SopCubeNum(cDiv) == 1 ); + uDiv = Kit_SopCube(cDiv, 0); + // allocate covers + vQuo->nCubes = 0; + vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); + vRem->nCubes = 0; + vRem->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) ); + // sort the cubes + Kit_SopForEachCube( cSop, uCube, i ) + { + if ( Kit_CubeContains( uCube, uDiv ) ) + Kit_SopPushCube( vQuo, Kit_CubeSharp(uCube, uDiv) ); + else + Kit_SopPushCube( vRem, uCube ); + } +} + +/**Function************************************************************* + + Synopsis [Divides cover by one cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivideInternal( Kit_Sop_t * cSop, Kit_Sop_t * cDiv, Kit_Sop_t * vQuo, Kit_Sop_t * vRem, Vec_Int_t * vMemory ) +{ + unsigned uCube, uDiv, uCube2, uDiv2, uQuo; + int i, i2, k, k2, nCubesRem; + assert( Kit_SopCubeNum(cSop) >= Kit_SopCubeNum(cDiv) ); + // consider special case + if ( Kit_SopCubeNum(cDiv) == 1 ) + { + Kit_SopDivideByCube( cSop, cDiv, vQuo, vRem, vMemory ); + return; + } + // allocate quotient + vQuo->nCubes = 0; + vQuo->pCubes = Vec_IntFetch( vMemory, Kit_SopCubeNum(cSop) / Kit_SopCubeNum(cDiv) ); + // for each cube of the cover + // it either belongs to the quotient or to the remainder + Kit_SopForEachCube( cSop, uCube, i ) + { + // skip taken cubes + if ( Kit_CubeIsMarked(uCube) ) + continue; + // find a matching cube in the divisor + Kit_SopForEachCube( cDiv, uDiv, k ) + if ( Kit_CubeContains( uCube, uDiv ) ) + break; + // the cube is not found + if ( k == Kit_SopCubeNum(cDiv) ) + continue; + // the quotient cube exists + uQuo = Kit_CubeSharp( uCube, uDiv ); + // find corresponding cubes for other cubes of the divisor + Kit_SopForEachCube( cDiv, uDiv2, k2 ) + { + if ( k2 == k ) + continue; + // find a matching cube + Kit_SopForEachCube( cSop, uCube2, i2 ) + { + // skip taken cubes + if ( Kit_CubeIsMarked(uCube2) ) + continue; + // check if the cube can be used + if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) + break; + } + // the case when the cube is not found + if ( i2 == Kit_SopCubeNum(cSop) ) + break; + } + // we did not find some cubes - continue looking at other cubes + if ( k2 != Kit_SopCubeNum(cDiv) ) + continue; + // we found all cubes - add the quotient cube + Kit_SopPushCube( vQuo, uQuo ); + + // mark the first cube + Kit_SopWriteCube( cSop, Kit_CubeMark(uCube), i ); + // mark other cubes that have this quotient + Kit_SopForEachCube( cDiv, uDiv2, k2 ) + { + if ( k2 == k ) + continue; + // find a matching cube + Kit_SopForEachCube( cSop, uCube2, i2 ) + { + // skip taken cubes + if ( Kit_CubeIsMarked(uCube2) ) + continue; + // check if the cube can be used + if ( Kit_CubeContains( uCube2, uDiv2 ) && uQuo == Kit_CubeSharp( uCube2, uDiv2 ) ) + break; + } + assert( i2 < Kit_SopCubeNum(cSop) ); + // the cube is found, mark it + // (later we will add all unmarked cubes to the remainder) + Kit_SopWriteCube( cSop, Kit_CubeMark(uCube2), i2 ); + } + } + // determine the number of cubes in the remainder + nCubesRem = Kit_SopCubeNum(cSop) - Kit_SopCubeNum(vQuo) * Kit_SopCubeNum(cDiv); + // allocate remainder + vRem->nCubes = 0; + vRem->pCubes = Vec_IntFetch( vMemory, nCubesRem ); + // finally add the remaining unmarked cubes to the remainder + // and clean the marked cubes in the cover + Kit_SopForEachCube( cSop, uCube, i ) + { + if ( !Kit_CubeIsMarked(uCube) ) + { + Kit_SopPushCube( vRem, uCube ); + continue; + } + Kit_SopWriteCube( cSop, Kit_CubeUnmark(uCube), i ); + } + assert( nCubesRem == Kit_SopCubeNum(vRem) ); +} + +/**Function************************************************************* + + Synopsis [Returns the common cube.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +static inline unsigned Kit_SopCommonCube( Kit_Sop_t * cSop ) +{ + unsigned uMask, uCube; + int i; + uMask = ~(unsigned)0; + Kit_SopForEachCube( cSop, uCube, i ) + uMask &= uCube; + return uMask; +} + +/**Function************************************************************* + + Synopsis [Makes the cover cube-free.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopMakeCubeFree( Kit_Sop_t * cSop ) +{ + unsigned uMask, uCube; + int i; + uMask = Kit_SopCommonCube( cSop ); + if ( uMask == 0 ) + return; + // remove the common cube + Kit_SopForEachCube( cSop, uCube, i ) + Kit_SopWriteCube( cSop, Kit_CubeSharp(uCube, uMask), i ); +} + +/**Function************************************************************* + + Synopsis [Checks if the cover is cube-free.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopIsCubeFree( Kit_Sop_t * cSop ) +{ + return Kit_SopCommonCube( cSop ) == 0; +} + +/**Function************************************************************* + + Synopsis [Creates SOP composes of the common cube of the given SOP.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopCommonCubeCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, Vec_Int_t * vMemory ) +{ + assert( Kit_SopCubeNum(cSop) > 0 ); + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, 1 ); + Kit_SopPushCube( cResult, Kit_SopCommonCube(cSop) ); +} + + +/**Function************************************************************* + + Synopsis [Find any literal that occurs more than once.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopAnyLiteral( Kit_Sop_t * cSop, int nLits ) +{ + unsigned uCube; + int i, k, nLitsCur; + // go through each literal + for ( i = 0; i < nLits; i++ ) + { + // go through all the cubes + nLitsCur = 0; + Kit_SopForEachCube( cSop, uCube, k ) + if ( Kit_CubeHasLit(uCube, i) ) + nLitsCur++; + if ( nLitsCur > 1 ) + return i; + } + return -1; +} + +/**Function************************************************************* + + Synopsis [Find the least often occurring literal.] + + Description [Find the least often occurring literal among those + that occur more than once.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopWorstLiteral( Kit_Sop_t * cSop, int nLits ) +{ + unsigned uCube; + int i, k, iMin, nLitsMin, nLitsCur; + int fUseFirst = 1; + + // go through each literal + iMin = -1; + nLitsMin = 1000000; + for ( i = 0; i < nLits; i++ ) + { + // go through all the cubes + nLitsCur = 0; + Kit_SopForEachCube( cSop, uCube, k ) + if ( Kit_CubeHasLit(uCube, i) ) + nLitsCur++; + // skip the literal that does not occur or occurs once + if ( nLitsCur < 2 ) + continue; + // check if this is the best literal + if ( fUseFirst ) + { + if ( nLitsMin > nLitsCur ) + { + nLitsMin = nLitsCur; + iMin = i; + } + } + else + { + if ( nLitsMin >= nLitsCur ) + { + nLitsMin = nLitsCur; + iMin = i; + } + } + } + if ( nLitsMin < 1000000 ) + return iMin; + return -1; +} + +/**Function************************************************************* + + Synopsis [Find the least often occurring literal.] + + Description [Find the least often occurring literal among those + that occur more than once.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopBestLiteral( Kit_Sop_t * cSop, int nLits, unsigned uMask ) +{ + unsigned uCube; + int i, k, iMax, nLitsMax, nLitsCur; + int fUseFirst = 1; + + // go through each literal + iMax = -1; + nLitsMax = -1; + for ( i = 0; i < nLits; i++ ) + { + if ( !Kit_CubeHasLit(uMask, i) ) + continue; + // go through all the cubes + nLitsCur = 0; + Kit_SopForEachCube( cSop, uCube, k ) + if ( Kit_CubeHasLit(uCube, i) ) + nLitsCur++; + // skip the literal that does not occur or occurs once + if ( nLitsCur < 2 ) + continue; + // check if this is the best literal + if ( fUseFirst ) + { + if ( nLitsMax < nLitsCur ) + { + nLitsMax = nLitsCur; + iMax = i; + } + } + else + { + if ( nLitsMax <= nLitsCur ) + { + nLitsMax = nLitsCur; + iMax = i; + } + } + } + if ( nLitsMax >= 0 ) + return iMax; + return -1; +} + +/**Function************************************************************* + + Synopsis [Computes a level-zero kernel.] + + Description [Modifies the cover to contain one level-zero kernel.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopDivisorZeroKernel_rec( Kit_Sop_t * cSop, int nLits ) +{ + int iLit; + // find any literal that occurs at least two times + iLit = Kit_SopWorstLiteral( cSop, nLits ); + if ( iLit == -1 ) + return; + // derive the cube-free quotient + Kit_SopDivideByLiteralQuo( cSop, iLit ); // the same cover + Kit_SopMakeCubeFree( cSop ); // the same cover + // call recursively + Kit_SopDivisorZeroKernel_rec( cSop, nLits ); // the same cover +} + +/**Function************************************************************* + + Synopsis [Computes the quick divisor of the cover.] + + Description [Returns 0, if there is no divisor other than trivial.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_SopDivisor( Kit_Sop_t * cResult, Kit_Sop_t * cSop, int nLits, Vec_Int_t * vMemory ) +{ + if ( Kit_SopCubeNum(cSop) <= 1 ) + return 0; + if ( Kit_SopAnyLiteral( cSop, nLits ) == -1 ) + return 0; + // duplicate the cover + Kit_SopDup( cResult, cSop, vMemory ); + // perform the kerneling + Kit_SopDivisorZeroKernel_rec( cResult, nLits ); + assert( Kit_SopCubeNum(cResult) > 0 ); + return 1; +} + + +/**Function************************************************************* + + Synopsis [Create the one-literal cover with the best literal from cSop.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_SopBestLiteralCover( Kit_Sop_t * cResult, Kit_Sop_t * cSop, unsigned uCube, int nLits, Vec_Int_t * vMemory ) +{ + int iLitBest; + // get the best literal + iLitBest = Kit_SopBestLiteral( cSop, nLits, uCube ); + // start the cover + cResult->nCubes = 0; + cResult->pCubes = Vec_IntFetch( vMemory, 1 ); + // set the cube + Kit_SopPushCube( cResult, Kit_CubeSetLit(0, iLitBest) ); +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kitTruth.c b/src/opt/kit/kitTruth.c new file mode 100644 index 00000000..5df10d63 --- /dev/null +++ b/src/opt/kit/kitTruth.c @@ -0,0 +1,1088 @@ +/**CFile**************************************************************** + + FileName [kitTruth.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [Procedures involving truth tables.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kitTruth.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +static unsigned s_VarMasks[5][2] = { + { 0x33333333, 0xAAAAAAAA }, + { 0x55555555, 0xCCCCCCCC }, + { 0x0F0F0F0F, 0xF0F0F0F0 }, + { 0x00FF00FF, 0xFF00FF00 }, + { 0x0000FFFF, 0xFFFF0000 } +}; + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Swaps two adjacent variables in the truth table.] + + Description [Swaps var number Start and var number Start+1 (0-based numbers). + The input truth table is pIn. The output truth table is pOut.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthSwapAdjacentVars( unsigned * pOut, unsigned * pIn, int nVars, int iVar ) +{ + static unsigned PMasks[4][3] = { + { 0x99999999, 0x22222222, 0x44444444 }, + { 0xC3C3C3C3, 0x0C0C0C0C, 0x30303030 }, + { 0xF00FF00F, 0x00F000F0, 0x0F000F00 }, + { 0xFF0000FF, 0x0000FF00, 0x00FF0000 } + }; + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step, Shift; + + assert( iVar < nVars - 1 ); + if ( iVar < 4 ) + { + Shift = (1 << iVar); + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & PMasks[iVar][0]) | ((pIn[i] & PMasks[iVar][1]) << Shift) | ((pIn[i] & PMasks[iVar][2]) >> Shift); + } + else if ( iVar > 4 ) + { + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 4*Step ) + { + for ( i = 0; i < Step; i++ ) + pOut[i] = pIn[i]; + for ( i = 0; i < Step; i++ ) + pOut[Step+i] = pIn[2*Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[2*Step+i] = pIn[Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[3*Step+i] = pIn[3*Step+i]; + pIn += 4*Step; + pOut += 4*Step; + } + } + else // if ( iVar == 4 ) + { + for ( i = 0; i < nWords; i += 2 ) + { + pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); + pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); + } + } +} + +/**Function************************************************************* + + Synopsis [Swaps two adjacent variables in the truth table.] + + Description [Swaps var number Start and var number Start+1 (0-based numbers). + The input truth table is pIn. The output truth table is pOut.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthSwapAdjacentVars2( unsigned * pIn, unsigned * pOut, int nVars, int Start ) +{ + int nWords = (nVars <= 5)? 1 : (1 << (nVars-5)); + int i, k, Step; + + assert( Start < nVars - 1 ); + switch ( Start ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0x99999999) | ((pIn[i] & 0x22222222) << 1) | ((pIn[i] & 0x44444444) >> 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xC3C3C3C3) | ((pIn[i] & 0x0C0C0C0C) << 2) | ((pIn[i] & 0x30303030) >> 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xF00FF00F) | ((pIn[i] & 0x00F000F0) << 4) | ((pIn[i] & 0x0F000F00) >> 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pIn[i] & 0xFF0000FF) | ((pIn[i] & 0x0000FF00) << 8) | ((pIn[i] & 0x00FF0000) >> 8); + return; + case 4: + for ( i = 0; i < nWords; i += 2 ) + { + pOut[i] = (pIn[i] & 0x0000FFFF) | ((pIn[i+1] & 0x0000FFFF) << 16); + pOut[i+1] = (pIn[i+1] & 0xFFFF0000) | ((pIn[i] & 0xFFFF0000) >> 16); + } + return; + default: + Step = (1 << (Start - 5)); + for ( k = 0; k < nWords; k += 4*Step ) + { + for ( i = 0; i < Step; i++ ) + pOut[i] = pIn[i]; + for ( i = 0; i < Step; i++ ) + pOut[Step+i] = pIn[2*Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[2*Step+i] = pIn[Step+i]; + for ( i = 0; i < Step; i++ ) + pOut[3*Step+i] = pIn[3*Step+i]; + pIn += 4*Step; + pOut += 4*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Expands the truth table according to the phase.] + + Description [The input and output truth tables are in pIn/pOut. The current number + of variables is nVars. The total number of variables in nVarsAll. The last argument + (Phase) contains shows where the variables should go.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthStretch( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ) +{ + unsigned * pTemp; + int i, k, Var = nVars - 1, Counter = 0; + for ( i = nVarsAll - 1; i >= 0; i-- ) + if ( Phase & (1 << i) ) + { + for ( k = Var; k < i; k++ ) + { + Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + Counter++; + } + Var--; + } + assert( Var == -1 ); + // swap if it was moved an even number of times + if ( !(Counter & 1) ) + Kit_TruthCopy( pOut, pIn, nVarsAll ); +} + +/**Function************************************************************* + + Synopsis [Shrinks the truth table according to the phase.] + + Description [The input and output truth tables are in pIn/pOut. The current number + of variables is nVars. The total number of variables in nVarsAll. The last argument + (Phase) contains shows what variables should remain.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthShrink( unsigned * pOut, unsigned * pIn, int nVars, int nVarsAll, unsigned Phase ) +{ + unsigned * pTemp; + int i, k, Var = 0, Counter = 0; + for ( i = 0; i < nVarsAll; i++ ) + if ( Phase & (1 << i) ) + { + for ( k = i-1; k >= Var; k-- ) + { + Kit_TruthSwapAdjacentVars( pOut, pIn, nVarsAll, k ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + Counter++; + } + Var++; + } + assert( Var == nVars ); + // swap if it was moved an even number of times + if ( !(Counter & 1) ) + Kit_TruthCopy( pOut, pIn, nVarsAll ); +} + + +/**Function************************************************************* + + Synopsis [Returns 1 if TT depends on the given variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthVarInSupport( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x55555555) != ((pTruth[i] & 0xAAAAAAAA) >> 1) ) + return 1; + return 0; + case 1: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x33333333) != ((pTruth[i] & 0xCCCCCCCC) >> 2) ) + return 1; + return 0; + case 2: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x0F0F0F0F) != ((pTruth[i] & 0xF0F0F0F0) >> 4) ) + return 1; + return 0; + case 3: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x00FF00FF) != ((pTruth[i] & 0xFF00FF00) >> 8) ) + return 1; + return 0; + case 4: + for ( i = 0; i < nWords; i++ ) + if ( (pTruth[i] & 0x0000FFFF) != ((pTruth[i] & 0xFFFF0000) >> 16) ) + return 1; + return 0; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + if ( pTruth[i] != pTruth[Step+i] ) + return 1; + pTruth += 2*Step; + } + return 0; + } +} + +/**Function************************************************************* + + Synopsis [Returns the number of support vars.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthSupportSize( unsigned * pTruth, int nVars ) +{ + int i, Counter = 0; + for ( i = 0; i < nVars; i++ ) + Counter += Kit_TruthVarInSupport( pTruth, nVars, i ); + return Counter; +} + +/**Function************************************************************* + + Synopsis [Returns support of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthSupport( unsigned * pTruth, int nVars ) +{ + int i, Support = 0; + for ( i = 0; i < nVars; i++ ) + if ( Kit_TruthVarInSupport( pTruth, nVars, i ) ) + Support |= (1 << i); + return Support; +} + + + +/**Function************************************************************* + + Synopsis [Computes positive cofactor of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCofactor1( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xAAAAAAAA) | ((pTruth[i] & 0xAAAAAAAA) >> 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xCCCCCCCC) | ((pTruth[i] & 0xCCCCCCCC) >> 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xF0F0F0F0) | ((pTruth[i] & 0xF0F0F0F0) >> 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xFF00FF00) | ((pTruth[i] & 0xFF00FF00) >> 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0xFFFF0000) | ((pTruth[i] & 0xFFFF0000) >> 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + pTruth[i] = pTruth[Step+i]; + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Computes negative cofactor of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCofactor0( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x55555555) | ((pTruth[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x33333333) | ((pTruth[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x0F0F0F0F) | ((pTruth[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x00FF00FF) | ((pTruth[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = (pTruth[i] & 0x0000FFFF) | ((pTruth[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + pTruth[Step+i] = pTruth[i]; + pTruth += 2*Step; + } + return; + } +} + + +/**Function************************************************************* + + Synopsis [Existentially quantifies the variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthExist( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] |= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pTruth[i] |= pTruth[Step+i]; + pTruth[Step+i] = pTruth[i]; + } + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Existentially quantifies the variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthForall( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xAAAAAAAA) >> 1) | ((pTruth[i] & 0x55555555) << 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xCCCCCCCC) >> 2) | ((pTruth[i] & 0x33333333) << 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xF0F0F0F0) >> 4) | ((pTruth[i] & 0x0F0F0F0F) << 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xFF00FF00) >> 8) | ((pTruth[i] & 0x00FF00FF) << 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] &= ((pTruth[i] & 0xFFFF0000) >> 16) | ((pTruth[i] & 0x0000FFFF) << 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pTruth[i] &= pTruth[Step+i]; + pTruth[Step+i] = pTruth[i]; + } + pTruth += 2*Step; + } + return; + } +} + + +/**Function************************************************************* + + Synopsis [Computes negative cofactor of the function.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthMux( unsigned * pOut, unsigned * pCof0, unsigned * pCof1, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x55555555) | (pCof1[i] & 0xAAAAAAAA); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x33333333) | (pCof1[i] & 0xCCCCCCCC); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x0F0F0F0F) | (pCof1[i] & 0xF0F0F0F0); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x00FF00FF) | (pCof1[i] & 0xFF00FF00); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pOut[i] = (pCof0[i] & 0x0000FFFF) | (pCof1[i] & 0xFFFF0000); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + pOut[i] = pCof0[i]; + pOut[Step+i] = pCof1[Step+i]; + } + pOut += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Checks symmetry of two variables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthVarsSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) +{ + static unsigned uTemp0[16], uTemp1[16]; + assert( nVars <= 9 ); + // compute Cof01 + Kit_TruthCopy( uTemp0, pTruth, nVars ); + Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); + Kit_TruthCofactor1( uTemp0, nVars, iVar1 ); + // compute Cof10 + Kit_TruthCopy( uTemp1, pTruth, nVars ); + Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); + Kit_TruthCofactor0( uTemp1, nVars, iVar1 ); + // compare + return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); +} + +/**Function************************************************************* + + Synopsis [Checks antisymmetry of two variables.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthVarsAntiSymm( unsigned * pTruth, int nVars, int iVar0, int iVar1 ) +{ + static unsigned uTemp0[16], uTemp1[16]; + assert( nVars <= 9 ); + // compute Cof00 + Kit_TruthCopy( uTemp0, pTruth, nVars ); + Kit_TruthCofactor0( uTemp0, nVars, iVar0 ); + Kit_TruthCofactor0( uTemp0, nVars, iVar1 ); + // compute Cof11 + Kit_TruthCopy( uTemp1, pTruth, nVars ); + Kit_TruthCofactor1( uTemp1, nVars, iVar0 ); + Kit_TruthCofactor1( uTemp1, nVars, iVar1 ); + // compare + return Kit_TruthIsEqual( uTemp0, uTemp1, nVars ); +} + +/**Function************************************************************* + + Synopsis [Changes phase of the function w.r.t. one variable.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthChangePhase( unsigned * pTruth, int nVars, int iVar ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Step; + unsigned Temp; + + assert( iVar < nVars ); + switch ( iVar ) + { + case 0: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x55555555) << 1) | ((pTruth[i] & 0xAAAAAAAA) >> 1); + return; + case 1: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x33333333) << 2) | ((pTruth[i] & 0xCCCCCCCC) >> 2); + return; + case 2: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x0F0F0F0F) << 4) | ((pTruth[i] & 0xF0F0F0F0) >> 4); + return; + case 3: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x00FF00FF) << 8) | ((pTruth[i] & 0xFF00FF00) >> 8); + return; + case 4: + for ( i = 0; i < nWords; i++ ) + pTruth[i] = ((pTruth[i] & 0x0000FFFF) << 16) | ((pTruth[i] & 0xFFFF0000) >> 16); + return; + default: + Step = (1 << (iVar - 5)); + for ( k = 0; k < nWords; k += 2*Step ) + { + for ( i = 0; i < Step; i++ ) + { + Temp = pTruth[i]; + pTruth[i] = pTruth[Step+i]; + pTruth[Step+i] = Temp; + } + pTruth += 2*Step; + } + return; + } +} + +/**Function************************************************************* + + Synopsis [Computes minimum overlap in supports of cofactors.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Kit_TruthMinCofSuppOverlap( unsigned * pTruth, int nVars, int * pVarMin ) +{ + static unsigned uCofactor[16]; + int i, ValueCur, ValueMin, VarMin; + unsigned uSupp0, uSupp1; + int nVars0, nVars1; + assert( nVars <= 9 ); + ValueMin = 32; + VarMin = -1; + for ( i = 0; i < nVars; i++ ) + { + // get negative cofactor + Kit_TruthCopy( uCofactor, pTruth, nVars ); + Kit_TruthCofactor0( uCofactor, nVars, i ); + uSupp0 = Kit_TruthSupport( uCofactor, nVars ); + nVars0 = Kit_WordCountOnes( uSupp0 ); +//Kit_PrintBinary( stdout, &uSupp0, 8 ); printf( "\n" ); + // get positive cofactor + Kit_TruthCopy( uCofactor, pTruth, nVars ); + Kit_TruthCofactor1( uCofactor, nVars, i ); + uSupp1 = Kit_TruthSupport( uCofactor, nVars ); + nVars1 = Kit_WordCountOnes( uSupp1 ); +//Kit_PrintBinary( stdout, &uSupp1, 8 ); printf( "\n" ); + // get the number of common vars + ValueCur = Kit_WordCountOnes( uSupp0 & uSupp1 ); + if ( ValueMin > ValueCur && nVars0 <= 5 && nVars1 <= 5 ) + { + ValueMin = ValueCur; + VarMin = i; + } + if ( ValueMin == 0 ) + break; + } + if ( pVarMin ) + *pVarMin = VarMin; + return ValueMin; +} + + +/**Function************************************************************* + + Synopsis [Counts the number of 1's in each cofactor.] + + Description [The resulting numbers are stored in the array of shorts, + whose length is 2*nVars. The number of 1's is counted in a different + space than the original function. For example, if the function depends + on k variables, the cofactors are assumed to depend on k-1 variables.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Kit_TruthCountOnesInCofs( unsigned * pTruth, int nVars, short * pStore ) +{ + int nWords = Kit_TruthWordNum( nVars ); + int i, k, Counter; + memset( pStore, 0, sizeof(short) * 2 * nVars ); + if ( nVars <= 5 ) + { + if ( nVars > 0 ) + { + pStore[2*0+0] = Kit_WordCountOnes( pTruth[0] & 0x55555555 ); + pStore[2*0+1] = Kit_WordCountOnes( pTruth[0] & 0xAAAAAAAA ); + } + if ( nVars > 1 ) + { + pStore[2*1+0] = Kit_WordCountOnes( pTruth[0] & 0x33333333 ); + pStore[2*1+1] = Kit_WordCountOnes( pTruth[0] & 0xCCCCCCCC ); + } + if ( nVars > 2 ) + { + pStore[2*2+0] = Kit_WordCountOnes( pTruth[0] & 0x0F0F0F0F ); + pStore[2*2+1] = Kit_WordCountOnes( pTruth[0] & 0xF0F0F0F0 ); + } + if ( nVars > 3 ) + { + pStore[2*3+0] = Kit_WordCountOnes( pTruth[0] & 0x00FF00FF ); + pStore[2*3+1] = Kit_WordCountOnes( pTruth[0] & 0xFF00FF00 ); + } + if ( nVars > 4 ) + { + pStore[2*4+0] = Kit_WordCountOnes( pTruth[0] & 0x0000FFFF ); + pStore[2*4+1] = Kit_WordCountOnes( pTruth[0] & 0xFFFF0000 ); + } + return; + } + // nVars >= 6 + // count 1's for all other variables + for ( k = 0; k < nWords; k++ ) + { + Counter = Kit_WordCountOnes( pTruth[k] ); + for ( i = 5; i < nVars; i++ ) + if ( k & (1 << (i-5)) ) + pStore[2*i+1] += Counter; + else + pStore[2*i+0] += Counter; + } + // count 1's for the first five variables + for ( k = 0; k < nWords/2; k++ ) + { + pStore[2*0+0] += Kit_WordCountOnes( (pTruth[0] & 0x55555555) | ((pTruth[1] & 0x55555555) << 1) ); + pStore[2*0+1] += Kit_WordCountOnes( (pTruth[0] & 0xAAAAAAAA) | ((pTruth[1] & 0xAAAAAAAA) >> 1) ); + pStore[2*1+0] += Kit_WordCountOnes( (pTruth[0] & 0x33333333) | ((pTruth[1] & 0x33333333) << 2) ); + pStore[2*1+1] += Kit_WordCountOnes( (pTruth[0] & 0xCCCCCCCC) | ((pTruth[1] & 0xCCCCCCCC) >> 2) ); + pStore[2*2+0] += Kit_WordCountOnes( (pTruth[0] & 0x0F0F0F0F) | ((pTruth[1] & 0x0F0F0F0F) << 4) ); + pStore[2*2+1] += Kit_WordCountOnes( (pTruth[0] & 0xF0F0F0F0) | ((pTruth[1] & 0xF0F0F0F0) >> 4) ); + pStore[2*3+0] += Kit_WordCountOnes( (pTruth[0] & 0x00FF00FF) | ((pTruth[1] & 0x00FF00FF) << 8) ); + pStore[2*3+1] += Kit_WordCountOnes( (pTruth[0] & 0xFF00FF00) | ((pTruth[1] & 0xFF00FF00) >> 8) ); + pStore[2*4+0] += Kit_WordCountOnes( (pTruth[0] & 0x0000FFFF) | ((pTruth[1] & 0x0000FFFF) << 16) ); + pStore[2*4+1] += Kit_WordCountOnes( (pTruth[0] & 0xFFFF0000) | ((pTruth[1] & 0xFFFF0000) >> 16) ); + pTruth += 2; + } +} + + +/**Function************************************************************* + + Synopsis [Canonicize the truth table.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_TruthHash( unsigned * pIn, int nWords ) +{ + // The 1,024 smallest prime numbers used to compute the hash value + // http://www.math.utah.edu/~alfeld/math/primelist.html + static int HashPrimes[1024] = { 2, 3, 5, + 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, + 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, + 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, + 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, + 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, + 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, + 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, + 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, + 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, + 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, + 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, + 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, + 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, + 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, + 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, + 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, + 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, + 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, + 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, + 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, + 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, + 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, + 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, + 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, + 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, + 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, + 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, + 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, + 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, + 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, + 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, + 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, + 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, + 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, + 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, + 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, + 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, + 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, + 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, + 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, + 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, + 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, + 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, + 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, + 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, + 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, + 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, + 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, + 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, + 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, + 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, + 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, + 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, + 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, + 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, + 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, + 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, + 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, + 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, + 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, + 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, + 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, + 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, + 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, + 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, + 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, + 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, + 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, + 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, + 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, + 8147, 8161 }; + int i; + unsigned uHashKey; + assert( nWords <= 1024 ); + uHashKey = 0; + for ( i = 0; i < nWords; i++ ) + uHashKey ^= HashPrimes[i] * pIn[i]; + return uHashKey; +} + + +/**Function************************************************************* + + Synopsis [Canonicize the truth table.] + + Description [Returns the phase. ] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +unsigned Kit_TruthSemiCanonicize( unsigned * pInOut, unsigned * pAux, int nVars, char * pCanonPerm, short * pStore ) +{ + unsigned * pIn = pInOut, * pOut = pAux, * pTemp; + int nWords = Kit_TruthWordNum( nVars ); + int i, Temp, fChange, Counter, nOnes;//, k, j, w, Limit; + unsigned uCanonPhase; + + // canonicize output + uCanonPhase = 0; + nOnes = Kit_TruthCountOnes(pIn, nVars); + if ( (nOnes > nWords * 16) || ((nOnes == nWords * 16) && (pIn[0] & 1)) ) + { + uCanonPhase |= (1 << nVars); + Kit_TruthNot( pIn, pIn, nVars ); + } + + // collect the minterm counts + Kit_TruthCountOnesInCofs( pIn, nVars, pStore ); + + // canonicize phase + for ( i = 0; i < nVars; i++ ) + { + if ( pStore[2*i+0] <= pStore[2*i+1] ) + continue; + uCanonPhase |= (1 << i); + Temp = pStore[2*i+0]; + pStore[2*i+0] = pStore[2*i+1]; + pStore[2*i+1] = Temp; + Kit_TruthChangePhase( pIn, nVars, i ); + } + +// Kit_PrintHexadecimal( stdout, pIn, nVars ); +// printf( "\n" ); + + // permute + Counter = 0; + do { + fChange = 0; + for ( i = 0; i < nVars-1; i++ ) + { + if ( pStore[2*i] <= pStore[2*(i+1)] ) + continue; + Counter++; + fChange = 1; + + Temp = pCanonPerm[i]; + pCanonPerm[i] = pCanonPerm[i+1]; + pCanonPerm[i+1] = Temp; + + Temp = pStore[2*i]; + pStore[2*i] = pStore[2*(i+1)]; + pStore[2*(i+1)] = Temp; + + Temp = pStore[2*i+1]; + pStore[2*i+1] = pStore[2*(i+1)+1]; + pStore[2*(i+1)+1] = Temp; + + Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, i ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + } + } while ( fChange ); + +/* + Kit_PrintBinary( stdout, &uCanonPhase, nVars+1 ); printf( " : " ); + for ( i = 0; i < nVars; i++ ) + printf( "%d=%d/%d ", pCanonPerm[i], pStore[2*i], pStore[2*i+1] ); + printf( " C = %d\n", Counter ); + Kit_PrintHexadecimal( stdout, pIn, nVars ); + printf( "\n" ); +*/ + +/* + // process symmetric variable groups + uSymms = 0; + for ( i = 0; i < nVars-1; i++ ) + { + if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric + continue; + if ( pStore[2*i] != pStore[2*i+1] ) + continue; + if ( Kit_TruthVarsSymm( pIn, nVars, i, i+1 ) ) + continue; + if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, i+1 ) ) + Kit_TruthChangePhase( pIn, nVars, i+1 ); + } +*/ + +/* + // process symmetric variable groups + uSymms = 0; + for ( i = 0; i < nVars-1; i++ ) + { + if ( pStore[2*i] != pStore[2*(i+1)] ) // i and i+1 cannot be symmetric + continue; + // i and i+1 can be symmetric + // find the end of this group + for ( k = i+1; k < nVars; k++ ) + if ( pStore[2*i] != pStore[2*k] ) + break; + Limit = k; + assert( i < Limit-1 ); + // go through the variables in this group + for ( j = i + 1; j < Limit; j++ ) + { + // check symmetry + if ( Kit_TruthVarsSymm( pIn, nVars, i, j ) ) + { + uSymms |= (1 << j); + continue; + } + // they are phase-unknown + if ( pStore[2*i] == pStore[2*i+1] ) + { + if ( Kit_TruthVarsAntiSymm( pIn, nVars, i, j ) ) + { + Kit_TruthChangePhase( pIn, nVars, j ); + uCanonPhase ^= (1 << j); + uSymms |= (1 << j); + continue; + } + } + + // they are not symmetric - move j as far as it goes in the group + for ( k = j; k < Limit-1; k++ ) + { + Counter++; + + Temp = pCanonPerm[k]; + pCanonPerm[k] = pCanonPerm[k+1]; + pCanonPerm[k+1] = Temp; + + assert( pStore[2*k] == pStore[2*(k+1)] ); + Kit_TruthSwapAdjacentVars( pOut, pIn, nVars, k ); + pTemp = pIn; pIn = pOut; pOut = pTemp; + } + Limit--; + j--; + } + i = Limit - 1; + } +*/ + + // swap if it was moved an even number of times + if ( Counter & 1 ) + Kit_TruthCopy( pOut, pIn, nVars ); + return uCanonPhase; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/kit_.c b/src/opt/kit/kit_.c new file mode 100644 index 00000000..5c68ee3c --- /dev/null +++ b/src/opt/kit/kit_.c @@ -0,0 +1,48 @@ +/**CFile**************************************************************** + + FileName [kit_.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Computation kit.] + + Synopsis [] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - Dec 6, 2006.] + + Revision [$Id: kit_.c,v 1.00 2006/12/06 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "kit.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + diff --git a/src/opt/kit/module.make b/src/opt/kit/module.make new file mode 100644 index 00000000..36beda7a --- /dev/null +++ b/src/opt/kit/module.make @@ -0,0 +1,7 @@ +SRC += src/opt/kit/kitBdd.c \ + src/opt/kit/kitFactor.c \ + src/opt/kit/kitGraph.c \ + src/opt/kit/kitHop.c \ + src/opt/kit/kitIsop.c \ + src/opt/kit/kitSop.c \ + src/opt/kit/kitTruth.c diff --git a/src/sat/bsat/satSolver.c b/src/sat/bsat/satSolver.c index 2a6c17bf..1dd40155 100644 --- a/src/sat/bsat/satSolver.c +++ b/src/sat/bsat/satSolver.c @@ -801,14 +801,14 @@ void sat_solver_reducedb(sat_solver* s) vecp_resize(&s->learnts,j); } -static lbool sat_solver_search(sat_solver* s, int nof_conflicts, int nof_learnts) +static lbool sat_solver_search(sat_solver* s, sint64 nof_conflicts, sint64 nof_learnts) { int* levels = s->levels; double var_decay = 0.95; double clause_decay = 0.999; double random_var_freq = 0.02; - int conflictC = 0; + sint64 conflictC = 0; veci learnt_clause; int i; @@ -1118,8 +1118,8 @@ bool sat_solver_simplify(sat_solver* s) int sat_solver_solve(sat_solver* s, lit* begin, lit* end, sint64 nConfLimit, sint64 nInsLimit, sint64 nConfLimitGlobal, sint64 nInsLimitGlobal) { - double nof_conflicts = 100; - double nof_learnts = sat_solver_nclauses(s) / 3; + sint64 nof_conflicts = 100; + sint64 nof_learnts = sat_solver_nclauses(s) / 3; lbool status = l_Undef; lbool* values = s->assigns; lit* i; @@ -1178,9 +1178,9 @@ int sat_solver_solve(sat_solver* s, lit* begin, lit* end, sint64 nConfLimit, sin s->progress_estimate*100); fflush(stdout); } - status = sat_solver_search(s,(int)nof_conflicts, (int)nof_learnts); - nof_conflicts *= 1.5; - nof_learnts *= 1.1; + status = sat_solver_search(s, nof_conflicts, nof_learnts); + nof_conflicts = nof_conflicts * 3 / 2; //*= 1.5; + nof_learnts = nof_learnts * 11 / 10; //*= 1.1; // quit the loop if reached an external limit if ( s->nConfLimit && s->stats.conflicts > s->nConfLimit ) |