diff options
author | Alan Mishchenko <alanmi@berkeley.edu> | 2007-09-30 08:01:00 -0700 |
---|---|---|
committer | Alan Mishchenko <alanmi@berkeley.edu> | 2007-09-30 08:01:00 -0700 |
commit | e54d9691616b9a0326e2fdb3156bb4eeb8abfcd7 (patch) | |
tree | de3ffe87c3e17950351e3b7d97fa18318bd5ea9a /src/misc/espresso | |
parent | 7d7e60f2dc84393cd4c5db22d2eaf7b1fb1a79b2 (diff) | |
download | abc-e54d9691616b9a0326e2fdb3156bb4eeb8abfcd7.tar.gz abc-e54d9691616b9a0326e2fdb3156bb4eeb8abfcd7.tar.bz2 abc-e54d9691616b9a0326e2fdb3156bb4eeb8abfcd7.zip |
Version abc70930
Diffstat (limited to 'src/misc/espresso')
48 files changed, 0 insertions, 15246 deletions
diff --git a/src/misc/espresso/cofactor.c b/src/misc/espresso/cofactor.c deleted file mode 100644 index b851a639..00000000 --- a/src/misc/espresso/cofactor.c +++ /dev/null @@ -1,382 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -/* - The cofactor of a cover against a cube "c" is a cover formed by the - cofactor of each cube in the cover against c. The cofactor of two - cubes is null if they are distance 1 or more apart. If they are - distance zero apart, the cofactor is the restriction of the cube - to the minterms of c. - - The cube list contains the following information: - - T[0] = pointer to a cube identifying the variables that have - been cofactored against - T[1] = pointer to just beyond the sentinel (i.e., T[n] in this case) - T[2] - . - . = pointers to cubes - . - T[n-2] - T[n-1] = NULL pointer (sentinel) - - - Cofactoring involves repeated application of "cdist0" to check if a - cube of the cover intersects the cofactored cube. This can be - slow, especially for the recursive descent of the espresso - routines. Therefore, a special cofactor routine "scofactor" is - provided which assumes the cofactor is only in a single variable. -*/ - - -/* cofactor -- compute the cofactor of a cover with respect to a cube */ -pcube *cofactor(T, c) -IN pcube *T; -IN register pcube c; -{ - pcube temp = cube.temp[0], *Tc_save, *Tc, *T1; - register pcube p; - int listlen; - - listlen = CUBELISTSIZE(T) + 5; - - /* Allocate a new list of cube pointers (max size is previous size) */ - Tc_save = Tc = ALLOC(pcube, listlen); - - /* pass on which variables have been cofactored against */ - *Tc++ = set_or(new_cube(), T[0], set_diff(temp, cube.fullset, c)); - Tc++; - - /* Loop for each cube in the list, determine suitability, and save */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (p != c) { - -#ifdef NO_INLINE - if (! cdist0(p, c)) goto false; -#else - {register int w,last;register unsigned int x;if((last=cube.inword)!=-1) - {x=p[last]&c[last];if(~(x|x>>1)&cube.inmask)goto false;for(w=1;w<last;w++) - {x=p[w]&c[w];if(~(x|x>>1)&DISJOINT)goto false;}}}{register int w,var,last; - register pcube mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){ - mask=cube.var_mask[var];last=cube.last_word[var];for(w=cube.first_word[var - ];w<=last;w++)if(p[w]&c[w]&mask[w])goto nextvar;goto false;nextvar:;}} -#endif - - *Tc++ = p; - false: ; - } - } - - *Tc++ = (pcube) NULL; /* sentinel */ - Tc_save[1] = (pcube) Tc; /* save pointer to last */ - return Tc_save; -} - -/* - scofactor -- compute the cofactor of a cover with respect to a cube, - where the cube is "active" in only a single variable. - - This routine has been optimized for speed. -*/ - -pcube *scofactor(T, c, var) -IN pcube *T, c; -IN int var; -{ - pcube *Tc, *Tc_save; - register pcube p, mask = cube.temp[1], *T1; - register int first = cube.first_word[var], last = cube.last_word[var]; - int listlen; - - listlen = CUBELISTSIZE(T) + 5; - - /* Allocate a new list of cube pointers (max size is previous size) */ - Tc_save = Tc = ALLOC(pcube, listlen); - - /* pass on which variables have been cofactored against */ - *Tc++ = set_or(new_cube(), T[0], set_diff(mask, cube.fullset, c)); - Tc++; - - /* Setup for the quick distance check */ - (void) set_and(mask, cube.var_mask[var], c); - - /* Loop for each cube in the list, determine suitability, and save */ - for(T1 = T+2; (p = *T1++) != NULL; ) - if (p != c) { - register int i = first; - do - if (p[i] & mask[i]) { - *Tc++ = p; - break; - } - while (++i <= last); - } - - *Tc++ = (pcube) NULL; /* sentinel */ - Tc_save[1] = (pcube) Tc; /* save pointer to last */ - return Tc_save; -} - -void massive_count(T) -IN pcube *T; -{ - int *count = cdata.part_zeros; - pcube *T1; - - /* Clear the column counts (count of # zeros in each column) */ - { register int i; - for(i = cube.size - 1; i >= 0; i--) - count[i] = 0; - } - - /* Count the number of zeros in each column */ - { register int i, *cnt; - register unsigned int val; - register pcube p, cof = T[0], full = cube.fullset; - for(T1 = T+2; (p = *T1++) != NULL; ) - for(i = LOOP(p); i > 0; i--) - if (val = full[i] & ~ (p[i] | cof[i])) { - cnt = count + ((i-1) << LOGBPI); -#if BPI == 32 - if (val & 0xFF000000) { - if (val & 0x80000000) cnt[31]++; - if (val & 0x40000000) cnt[30]++; - if (val & 0x20000000) cnt[29]++; - if (val & 0x10000000) cnt[28]++; - if (val & 0x08000000) cnt[27]++; - if (val & 0x04000000) cnt[26]++; - if (val & 0x02000000) cnt[25]++; - if (val & 0x01000000) cnt[24]++; - } - if (val & 0x00FF0000) { - if (val & 0x00800000) cnt[23]++; - if (val & 0x00400000) cnt[22]++; - if (val & 0x00200000) cnt[21]++; - if (val & 0x00100000) cnt[20]++; - if (val & 0x00080000) cnt[19]++; - if (val & 0x00040000) cnt[18]++; - if (val & 0x00020000) cnt[17]++; - if (val & 0x00010000) cnt[16]++; - } -#endif - if (val & 0xFF00) { - if (val & 0x8000) cnt[15]++; - if (val & 0x4000) cnt[14]++; - if (val & 0x2000) cnt[13]++; - if (val & 0x1000) cnt[12]++; - if (val & 0x0800) cnt[11]++; - if (val & 0x0400) cnt[10]++; - if (val & 0x0200) cnt[ 9]++; - if (val & 0x0100) cnt[ 8]++; - } - if (val & 0x00FF) { - if (val & 0x0080) cnt[ 7]++; - if (val & 0x0040) cnt[ 6]++; - if (val & 0x0020) cnt[ 5]++; - if (val & 0x0010) cnt[ 4]++; - if (val & 0x0008) cnt[ 3]++; - if (val & 0x0004) cnt[ 2]++; - if (val & 0x0002) cnt[ 1]++; - if (val & 0x0001) cnt[ 0]++; - } - } - } - - /* - * Perform counts for each variable: - * cdata.var_zeros[var] = number of zeros in the variable - * cdata.parts_active[var] = number of active parts for each variable - * cdata.vars_active = number of variables which are active - * cdata.vars_unate = number of variables which are active and unate - * - * best -- the variable which is best for splitting based on: - * mostactive -- most # active parts in any variable - * mostzero -- most # zeros in any variable - * mostbalanced -- minimum over the maximum # zeros / part / variable - */ - - { register int var, i, lastbit, active, maxactive; - int best = -1, mostactive = 0, mostzero = 0, mostbalanced = 32000; - cdata.vars_unate = cdata.vars_active = 0; - - for(var = 0; var < cube.num_vars; var++) { - if (var < cube.num_binary_vars) { /* special hack for binary vars */ - i = count[var*2]; - lastbit = count[var*2 + 1]; - active = (i > 0) + (lastbit > 0); - cdata.var_zeros[var] = i + lastbit; - maxactive = MAX(i, lastbit); - } else { - maxactive = active = cdata.var_zeros[var] = 0; - lastbit = cube.last_part[var]; - for(i = cube.first_part[var]; i <= lastbit; i++) { - cdata.var_zeros[var] += count[i]; - active += (count[i] > 0); - if (active > maxactive) maxactive = active; - } - } - - /* first priority is to maximize the number of active parts */ - /* for binary case, this will usually select the output first */ - if (active > mostactive) - best = var, mostactive = active, mostzero = cdata.var_zeros[best], - mostbalanced = maxactive; - else if (active == mostactive) - /* secondary condition is to maximize the number zeros */ - /* for binary variables, this is the same as minimum # of 2's */ - if (cdata.var_zeros[var] > mostzero) - best = var, mostzero = cdata.var_zeros[best], - mostbalanced = maxactive; - else if (cdata.var_zeros[var] == mostzero) - /* third condition is to pick a balanced variable */ - /* for binary vars, this means roughly equal # 0's and 1's */ - if (maxactive < mostbalanced) - best = var, mostbalanced = maxactive; - - cdata.parts_active[var] = active; - cdata.is_unate[var] = (active == 1); - cdata.vars_active += (active > 0); - cdata.vars_unate += (active == 1); - } - cdata.best = best; - } -} - -int binate_split_select(T, cleft, cright, debug_flag) -IN pcube *T; -IN register pcube cleft, cright; -IN int debug_flag; -{ - int best = cdata.best; - register int i, lastbit = cube.last_part[best], halfbit = 0; - register pcube cof=T[0]; - - /* Create the cubes to cofactor against */ - (void) set_diff(cleft, cube.fullset, cube.var_mask[best]); - (void) set_diff(cright, cube.fullset, cube.var_mask[best]); - for(i = cube.first_part[best]; i <= lastbit; i++) - if (! is_in_set(cof,i)) - halfbit++; - for(i = cube.first_part[best], halfbit = halfbit/2; halfbit > 0; i++) - if (! is_in_set(cof,i)) - halfbit--, set_insert(cleft, i); - for(; i <= lastbit; i++) - if (! is_in_set(cof,i)) - set_insert(cright, i); - - if (debug & debug_flag) { - (void) printf("BINATE_SPLIT_SELECT: split against %d\n", best); - if (verbose_debug) - (void) printf("cl=%s\ncr=%s\n", pc1(cleft), pc2(cright)); - } - return best; -} - - -pcube *cube1list(A) -pcover A; -{ - register pcube last, p, *plist, *list; - - list = plist = ALLOC(pcube, A->count + 3); - *plist++ = new_cube(); - plist++; - foreach_set(A, last, p) { - *plist++ = p; - } - *plist++ = NULL; /* sentinel */ - list[1] = (pcube) plist; - return list; -} - - -pcube *cube2list(A, B) -pcover A, B; -{ - register pcube last, p, *plist, *list; - - list = plist = ALLOC(pcube, A->count + B->count + 3); - *plist++ = new_cube(); - plist++; - foreach_set(A, last, p) { - *plist++ = p; - } - foreach_set(B, last, p) { - *plist++ = p; - } - *plist++ = NULL; - list[1] = (pcube) plist; - return list; -} - - -pcube *cube3list(A, B, C) -pcover A, B, C; -{ - register pcube last, p, *plist, *list; - - plist = ALLOC(pcube, A->count + B->count + C->count + 3); - list = plist; - *plist++ = new_cube(); - plist++; - foreach_set(A, last, p) { - *plist++ = p; - } - foreach_set(B, last, p) { - *plist++ = p; - } - foreach_set(C, last, p) { - *plist++ = p; - } - *plist++ = NULL; - list[1] = (pcube) plist; - return list; -} - - -pcover cubeunlist(A1) -pcube *A1; -{ - register int i; - register pcube p, pdest, cof = A1[0]; - register pcover A; - - A = new_cover(CUBELISTSIZE(A1)); - for(i = 2; (p = A1[i]) != NULL; i++) { - pdest = GETSET(A, i-2); - INLINEset_or(pdest, p, cof); - } - A->count = CUBELISTSIZE(A1); - return A; -} - -simplify_cubelist(T) -pcube *T; -{ - register pcube *Tdest; - register int i, ncubes; - - (void) set_copy(cube.temp[0], T[0]); /* retrieve cofactor */ - - ncubes = CUBELISTSIZE(T); - qsort((char *) (T+2), ncubes, sizeof(pset), (int (*)()) d1_order); - - Tdest = T+2; - /* *Tdest++ = T[2]; */ - for(i = 3; i < ncubes; i++) { - if (d1_order(&T[i-1], &T[i]) != 0) { - *Tdest++ = T[i]; - } - } - - *Tdest++ = NULL; /* sentinel */ - Tdest[1] = (pcube) Tdest; /* save pointer to last */ -} diff --git a/src/misc/espresso/cols.c b/src/misc/espresso/cols.c deleted file mode 100644 index ec3797e6..00000000 --- a/src/misc/espresso/cols.c +++ /dev/null @@ -1,314 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -//#include "port.h" -#include "sparse_int.h" - - -/* - * allocate a new col vector - */ -sm_col * -sm_col_alloc() -{ - register sm_col *pcol; - -#ifdef FAST_AND_LOOSE - if (sm_col_freelist == NIL(sm_col)) { - pcol = ALLOC(sm_col, 1); - } else { - pcol = sm_col_freelist; - sm_col_freelist = pcol->next_col; - } -#else - pcol = ALLOC(sm_col, 1); -#endif - - pcol->col_num = 0; - pcol->length = 0; - pcol->first_row = pcol->last_row = NIL(sm_element); - pcol->next_col = pcol->prev_col = NIL(sm_col); - pcol->flag = 0; - pcol->user_word = NIL(char); /* for our user ... */ - return pcol; -} - - -/* - * free a col vector -- for FAST_AND_LOOSE, this is real cheap for cols; - * however, freeing a rowumn must still walk down the rowumn discarding - * the elements one-by-one; that is the only use for the extra '-DCOLS' - * compile flag ... - */ -void -sm_col_free(pcol) -register sm_col *pcol; -{ -#if defined(FAST_AND_LOOSE) && ! defined(COLS) - if (pcol->first_row != NIL(sm_element)) { - /* Add the linked list of col items to the free list */ - pcol->last_row->next_row = sm_element_freelist; - sm_element_freelist = pcol->first_row; - } - - /* Add the col to the free list of cols */ - pcol->next_col = sm_col_freelist; - sm_col_freelist = pcol; -#else - register sm_element *p, *pnext; - - for(p = pcol->first_row; p != 0; p = pnext) { - pnext = p->next_row; - sm_element_free(p); - } - FREE(pcol); -#endif -} - - -/* - * duplicate an existing col - */ -sm_col * -sm_col_dup(pcol) -register sm_col *pcol; -{ - register sm_col *pnew; - register sm_element *p; - - pnew = sm_col_alloc(); - for(p = pcol->first_row; p != 0; p = p->next_row) { - (void) sm_col_insert(pnew, p->row_num); - } - return pnew; -} - - -/* - * insert an element into a col vector - */ -sm_element * -sm_col_insert(pcol, row) -register sm_col *pcol; -register int row; -{ - register sm_element *test, *element; - - /* get a new item, save its address */ - sm_element_alloc(element); - test = element; - sorted_insert(sm_element, pcol->first_row, pcol->last_row, pcol->length, - next_row, prev_row, row_num, row, test); - - /* if item was not used, free it */ - if (element != test) { - sm_element_free(element); - } - - /* either way, return the current new value */ - return test; -} - - -/* - * remove an element from a col vector - */ -void -sm_col_remove(pcol, row) -register sm_col *pcol; -register int row; -{ - register sm_element *p; - - for(p = pcol->first_row; p != 0 && p->row_num < row; p = p->next_row) - ; - if (p != 0 && p->row_num == row) { - dll_unlink(p, pcol->first_row, pcol->last_row, - next_row, prev_row, pcol->length); - sm_element_free(p); - } -} - - -/* - * find an element (if it is in the col vector) - */ -sm_element * -sm_col_find(pcol, row) -sm_col *pcol; -int row; -{ - register sm_element *p; - - for(p = pcol->first_row; p != 0 && p->row_num < row; p = p->next_row) - ; - if (p != 0 && p->row_num == row) { - return p; - } else { - return NIL(sm_element); - } -} - -/* - * return 1 if col p2 contains col p1; 0 otherwise - */ -int -sm_col_contains(p1, p2) -sm_col *p1, *p2; -{ - register sm_element *q1, *q2; - - q1 = p1->first_row; - q2 = p2->first_row; - while (q1 != 0) { - if (q2 == 0 || q1->row_num < q2->row_num) { - return 0; - } else if (q1->row_num == q2->row_num) { - q1 = q1->next_row; - q2 = q2->next_row; - } else { - q2 = q2->next_row; - } - } - return 1; -} - - -/* - * return 1 if col p1 and col p2 share an element in common - */ -int -sm_col_intersects(p1, p2) -sm_col *p1, *p2; -{ - register sm_element *q1, *q2; - - q1 = p1->first_row; - q2 = p2->first_row; - if (q1 == 0 || q2 == 0) return 0; - for(;;) { - if (q1->row_num < q2->row_num) { - if ((q1 = q1->next_row) == 0) { - return 0; - } - } else if (q1->row_num > q2->row_num) { - if ((q2 = q2->next_row) == 0) { - return 0; - } - } else { - return 1; - } - } -} - - -/* - * compare two cols, lexical ordering - */ -int -sm_col_compare(p1, p2) -sm_col *p1, *p2; -{ - register sm_element *q1, *q2; - - q1 = p1->first_row; - q2 = p2->first_row; - while(q1 != 0 && q2 != 0) { - if (q1->row_num != q2->row_num) { - return q1->row_num - q2->row_num; - } - q1 = q1->next_row; - q2 = q2->next_row; - } - - if (q1 != 0) { - return 1; - } else if (q2 != 0) { - return -1; - } else { - return 0; - } -} - - -/* - * return the intersection - */ -sm_col * -sm_col_and(p1, p2) -sm_col *p1, *p2; -{ - register sm_element *q1, *q2; - register sm_col *result; - - result = sm_col_alloc(); - q1 = p1->first_row; - q2 = p2->first_row; - if (q1 == 0 || q2 == 0) return result; - for(;;) { - if (q1->row_num < q2->row_num) { - if ((q1 = q1->next_row) == 0) { - return result; - } - } else if (q1->row_num > q2->row_num) { - if ((q2 = q2->next_row) == 0) { - return result; - } - } else { - (void) sm_col_insert(result, q1->row_num); - if ((q1 = q1->next_row) == 0) { - return result; - } - if ((q2 = q2->next_row) == 0) { - return result; - } - } - } -} - -int -sm_col_hash(pcol, modulus) -sm_col *pcol; -int modulus; -{ - register int sum; - register sm_element *p; - - sum = 0; - for(p = pcol->first_row; p != 0; p = p->next_row) { - sum = (sum*17 + p->row_num) % modulus; - } - return sum; -} - -/* - * remove an element from a col vector (given a pointer to the element) - */ -void -sm_col_remove_element(pcol, p) -register sm_col *pcol; -register sm_element *p; -{ - dll_unlink(p, pcol->first_row, pcol->last_row, - next_row, prev_row, pcol->length); - sm_element_free(p); -} - - -void -sm_col_print(fp, pcol) -FILE *fp; -sm_col *pcol; -{ - sm_element *p; - - for(p = pcol->first_row; p != 0; p = p->next_row) { - (void) fprintf(fp, " %d", p->row_num); - } -} diff --git a/src/misc/espresso/compl.c b/src/misc/espresso/compl.c deleted file mode 100644 index 8f1c6606..00000000 --- a/src/misc/espresso/compl.c +++ /dev/null @@ -1,680 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - * module: compl.c - * purpose: compute the complement of a multiple-valued function - * - * The "unate recursive paradigm" is used. After a set of special - * cases are examined, the function is split on the "most active - * variable". These two halves are complemented recursively, and then - * the results are merged. - * - * Changes (from Version 2.1 to Version 2.2) - * 1. Minor bug in compl_lifting -- cubes in the left half were - * not marked as active, so that when merging a leaf from the left - * hand side, the active flags were essentially random. This led - * to minor impredictability problem, but never affected the - * accuracy of the results. - */ - -#include "espresso.h" - -#define USE_COMPL_LIFT 0 -#define USE_COMPL_LIFT_ONSET 1 -#define USE_COMPL_LIFT_ONSET_COMPLEX 2 -#define NO_LIFTING 3 - -static bool compl_special_cases(); -static pcover compl_merge(); -static void compl_d1merge(); -static pcover compl_cube(); -static void compl_lift(); -static void compl_lift_onset(); -static void compl_lift_onset_complex(); -static bool simp_comp_special_cases(); -static bool simplify_special_cases(); - - -/* complement -- compute the complement of T */ -pcover complement(T) -pcube *T; /* T will be disposed of */ -{ - register pcube cl, cr; - register int best; - pcover Tbar, Tl, Tr; - int lifting; - static int compl_level = 0; - - if (debug & COMPL) - debug_print(T, "COMPLEMENT", compl_level++); - - if (compl_special_cases(T, &Tbar) == MAYBE) { - - /* Allocate space for the partition cubes */ - cl = new_cube(); - cr = new_cube(); - best = binate_split_select(T, cl, cr, COMPL); - - /* Complement the left and right halves */ - Tl = complement(scofactor(T, cl, best)); - Tr = complement(scofactor(T, cr, best)); - - if (Tr->count*Tl->count > (Tr->count+Tl->count)*CUBELISTSIZE(T)) { - lifting = USE_COMPL_LIFT_ONSET; - } else { - lifting = USE_COMPL_LIFT; - } - Tbar = compl_merge(T, Tl, Tr, cl, cr, best, lifting); - - free_cube(cl); - free_cube(cr); - free_cubelist(T); - } - - if (debug & COMPL) - debug1_print(Tbar, "exit COMPLEMENT", --compl_level); - return Tbar; -} - -static bool compl_special_cases(T, Tbar) -pcube *T; /* will be disposed if answer is determined */ -pcover *Tbar; /* returned only if answer determined */ -{ - register pcube *T1, p, ceil, cof=T[0]; - pcover A, ceil_compl; - - /* Check for no cubes in the cover */ - if (T[2] == NULL) { - *Tbar = sf_addset(new_cover(1), cube.fullset); - free_cubelist(T); - return TRUE; - } - - /* Check for only a single cube in the cover */ - if (T[3] == NULL) { - *Tbar = compl_cube(set_or(cof, cof, T[2])); - free_cubelist(T); - return TRUE; - } - - /* Check for a row of all 1's (implies complement is null) */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (full_row(p, cof)) { - *Tbar = new_cover(0); - free_cubelist(T); - return TRUE; - } - } - - /* Check for a column of all 0's which can be factored out */ - ceil = set_save(cof); - for(T1 = T+2; (p = *T1++) != NULL; ) { - INLINEset_or(ceil, ceil, p); - } - if (! setp_equal(ceil, cube.fullset)) { - ceil_compl = compl_cube(ceil); - (void) set_or(cof, cof, set_diff(ceil, cube.fullset, ceil)); - set_free(ceil); - *Tbar = sf_append(complement(T), ceil_compl); - return TRUE; - } - set_free(ceil); - - /* Collect column counts, determine unate variables, etc. */ - massive_count(T); - - /* If single active variable not factored out above, then tautology ! */ - if (cdata.vars_active == 1) { - *Tbar = new_cover(0); - free_cubelist(T); - return TRUE; - - /* Check for unate cover */ - } else if (cdata.vars_unate == cdata.vars_active) { - A = map_cover_to_unate(T); - free_cubelist(T); - A = unate_compl(A); - *Tbar = map_unate_to_cover(A); - sf_free(A); - return TRUE; - - /* Not much we can do about it */ - } else { - return MAYBE; - } -} - -/* - * compl_merge -- merge the two cofactors around the splitting - * variable - * - * The merge operation involves intersecting each cube of the left - * cofactor with cl, and intersecting each cube of the right cofactor - * with cr. The union of these two covers is the merged result. - * - * In order to reduce the number of cubes, a distance-1 merge is - * performed (note that two cubes can only combine distance-1 in the - * splitting variable). Also, a simple expand is performed in the - * splitting variable (simple implies the covering check for the - * expansion is not full containment, but single-cube containment). - */ - -static pcover compl_merge(T1, L, R, cl, cr, var, lifting) -pcube *T1; /* Original ON-set */ -pcover L, R; /* Complement from each recursion branch */ -register pcube cl, cr; /* cubes used for cofactoring */ -int var; /* splitting variable */ -int lifting; /* whether to perform lifting or not */ -{ - register pcube p, last, pt; - pcover T, Tbar; - pcube *L1, *R1; - - if (debug & COMPL) { - (void) printf("compl_merge: left %d, right %d\n", L->count, R->count); - (void) printf("%s (cl)\n%s (cr)\nLeft is\n", pc1(cl), pc2(cr)); - cprint(L); - (void) printf("Right is\n"); - cprint(R); - } - - /* Intersect each cube with the cofactored cube */ - foreach_set(L, last, p) { - INLINEset_and(p, p, cl); - SET(p, ACTIVE); - } - foreach_set(R, last, p) { - INLINEset_and(p, p, cr); - SET(p, ACTIVE); - } - - /* Sort the arrays for a distance-1 merge */ - (void) set_copy(cube.temp[0], cube.var_mask[var]); - qsort((char *) (L1 = sf_list(L)), L->count, sizeof(pset), (int (*)()) d1_order); - qsort((char *) (R1 = sf_list(R)), R->count, sizeof(pset), (int (*)()) d1_order); - - /* Perform distance-1 merge */ - compl_d1merge(L1, R1); - - /* Perform lifting */ - switch(lifting) { - case USE_COMPL_LIFT_ONSET: - T = cubeunlist(T1); - compl_lift_onset(L1, T, cr, var); - compl_lift_onset(R1, T, cl, var); - free_cover(T); - break; - case USE_COMPL_LIFT_ONSET_COMPLEX: - T = cubeunlist(T1); - compl_lift_onset_complex(L1, T, var); - compl_lift_onset_complex(R1, T, var); - free_cover(T); - break; - case USE_COMPL_LIFT: - compl_lift(L1, R1, cr, var); - compl_lift(R1, L1, cl, var); - break; - case NO_LIFTING: - break; - default: - ; - } - FREE(L1); - FREE(R1); - - /* Re-create the merged cover */ - Tbar = new_cover(L->count + R->count); - pt = Tbar->data; - foreach_set(L, last, p) { - INLINEset_copy(pt, p); - Tbar->count++; - pt += Tbar->wsize; - } - foreach_active_set(R, last, p) { - INLINEset_copy(pt, p); - Tbar->count++; - pt += Tbar->wsize; - } - - if (debug & COMPL) { - (void) printf("Result %d\n", Tbar->count); - if (verbose_debug) - cprint(Tbar); - } - - free_cover(L); - free_cover(R); - return Tbar; -} - -/* - * compl_lift_simple -- expand in the splitting variable using single - * cube containment against the other recursion branch to check - * validity of the expansion, and expanding all (or none) of the - * splitting variable. - */ -static void compl_lift(A1, B1, bcube, var) -pcube *A1, *B1, bcube; -int var; -{ - register pcube a, b, *B2, lift=cube.temp[4], liftor=cube.temp[5]; - pcube mask = cube.var_mask[var]; - - (void) set_and(liftor, bcube, mask); - - /* for each cube in the first array ... */ - for(; (a = *A1++) != NULL; ) { - if (TESTP(a, ACTIVE)) { - - /* create a lift of this cube in the merging coord */ - (void) set_merge(lift, bcube, a, mask); - - /* for each cube in the second array */ - for(B2 = B1; (b = *B2++) != NULL; ) { - INLINEsetp_implies(lift, b, /* when_false => */ continue); - /* when_true => fall through to next statement */ - - /* cube of A1 was contained by some cube of B1, so raise */ - INLINEset_or(a, a, liftor); - break; - } - } - } -} - - - -/* - * compl_lift_onset -- expand in the splitting variable using a - * distance-1 check against the original on-set; expand all (or - * none) of the splitting variable. Each cube of A1 is expanded - * against the original on-set T. - */ -static void compl_lift_onset(A1, T, bcube, var) -pcube *A1; -pcover T; -pcube bcube; -int var; -{ - register pcube a, last, p, lift=cube.temp[4], mask=cube.var_mask[var]; - - /* for each active cube from one branch of the complement */ - for(; (a = *A1++) != NULL; ) { - if (TESTP(a, ACTIVE)) { - - /* create a lift of this cube in the merging coord */ - INLINEset_and(lift, bcube, mask); /* isolate parts to raise */ - INLINEset_or(lift, a, lift); /* raise these parts in a */ - - /* for each cube in the ON-set, check for intersection */ - foreach_set(T, last, p) { - if (cdist0(p, lift)) { - goto nolift; - } - } - INLINEset_copy(a, lift); /* save the raising */ - SET(a, ACTIVE); -nolift : ; - } - } -} - -/* - * compl_lift_complex -- expand in the splitting variable, but expand all - * parts which can possibly expand. - * T is the original ON-set - * A1 is either the left or right cofactor - */ -static void compl_lift_onset_complex(A1, T, var) -pcube *A1; /* array of pointers to new result */ -pcover T; /* original ON-set */ -int var; /* which variable we split on */ -{ - register int dist; - register pcube last, p, a, xlower; - - /* for each cube in the complement */ - xlower = new_cube(); - for(; (a = *A1++) != NULL; ) { - - if (TESTP(a, ACTIVE)) { - - /* Find which parts of the splitting variable are forced low */ - INLINEset_clear(xlower, cube.size); - foreach_set(T, last, p) { - if ((dist = cdist01(p, a)) < 2) { - if (dist == 0) { - fatal("compl: ON-set and OFF-set are not orthogonal"); - } else { - (void) force_lower(xlower, p, a); - } - } - } - - (void) set_diff(xlower, cube.var_mask[var], xlower); - (void) set_or(a, a, xlower); - free_cube(xlower); - } - } -} - - - -/* - * compl_d1merge -- distance-1 merge in the splitting variable - */ -static void compl_d1merge(L1, R1) -register pcube *L1, *R1; -{ - register pcube pl, pr; - - /* Find equal cubes between the two cofactors */ - for(pl = *L1, pr = *R1; (pl != NULL) && (pr != NULL); ) - switch (d1_order(L1, R1)) { - case 1: - pr = *(++R1); break; /* advance right pointer */ - case -1: - pl = *(++L1); break; /* advance left pointer */ - case 0: - RESET(pr, ACTIVE); - INLINEset_or(pl, pl, pr); - pr = *(++R1); - default: - ; - } -} - - - -/* compl_cube -- return the complement of a single cube (De Morgan's law) */ -static pcover compl_cube(p) -register pcube p; -{ - register pcube diff=cube.temp[7], pdest, mask, full=cube.fullset; - int var; - pcover R; - - /* Allocate worst-case size cover (to avoid checking overflow) */ - R = new_cover(cube.num_vars); - - /* Compute bit-wise complement of the cube */ - INLINEset_diff(diff, full, p); - - for(var = 0; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; - /* If the bit-wise complement is not empty in var ... */ - if (! setp_disjoint(diff, mask)) { - pdest = GETSET(R, R->count++); - INLINEset_merge(pdest, diff, full, mask); - } - } - return R; -} - -/* simp_comp -- quick simplification of T */ -void simp_comp(T, Tnew, Tbar) -pcube *T; /* T will be disposed of */ -pcover *Tnew; -pcover *Tbar; -{ - register pcube cl, cr; - register int best; - pcover Tl, Tr, Tlbar, Trbar; - int lifting; - static int simplify_level = 0; - - if (debug & COMPL) - debug_print(T, "SIMPCOMP", simplify_level++); - - if (simp_comp_special_cases(T, Tnew, Tbar) == MAYBE) { - - /* Allocate space for the partition cubes */ - cl = new_cube(); - cr = new_cube(); - best = binate_split_select(T, cl, cr, COMPL); - - /* Complement the left and right halves */ - simp_comp(scofactor(T, cl, best), &Tl, &Tlbar); - simp_comp(scofactor(T, cr, best), &Tr, &Trbar); - - lifting = USE_COMPL_LIFT; - *Tnew = compl_merge(T, Tl, Tr, cl, cr, best, lifting); - - lifting = USE_COMPL_LIFT; - *Tbar = compl_merge(T, Tlbar, Trbar, cl, cr, best, lifting); - - /* All of this work for nothing ? Let's hope not ... */ - if ((*Tnew)->count > CUBELISTSIZE(T)) { - sf_free(*Tnew); - *Tnew = cubeunlist(T); - } - - free_cube(cl); - free_cube(cr); - free_cubelist(T); - } - - if (debug & COMPL) { - debug1_print(*Tnew, "exit SIMPCOMP (new)", simplify_level); - debug1_print(*Tbar, "exit SIMPCOMP (compl)", simplify_level); - simplify_level--; - } -} - -static bool simp_comp_special_cases(T, Tnew, Tbar) -pcube *T; /* will be disposed if answer is determined */ -pcover *Tnew; /* returned only if answer determined */ -pcover *Tbar; /* returned only if answer determined */ -{ - register pcube *T1, p, ceil, cof=T[0]; - pcube last; - pcover A; - - /* Check for no cubes in the cover (function is empty) */ - if (T[2] == NULL) { - *Tnew = new_cover(1); - *Tbar = sf_addset(new_cover(1), cube.fullset); - free_cubelist(T); - return TRUE; - } - - /* Check for only a single cube in the cover */ - if (T[3] == NULL) { - (void) set_or(cof, cof, T[2]); - *Tnew = sf_addset(new_cover(1), cof); - *Tbar = compl_cube(cof); - free_cubelist(T); - return TRUE; - } - - /* Check for a row of all 1's (function is a tautology) */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (full_row(p, cof)) { - *Tnew = sf_addset(new_cover(1), cube.fullset); - *Tbar = new_cover(1); - free_cubelist(T); - return TRUE; - } - } - - /* Check for a column of all 0's which can be factored out */ - ceil = set_save(cof); - for(T1 = T+2; (p = *T1++) != NULL; ) { - INLINEset_or(ceil, ceil, p); - } - if (! setp_equal(ceil, cube.fullset)) { - p = new_cube(); - (void) set_diff(p, cube.fullset, ceil); - (void) set_or(cof, cof, p); - set_free(p); - simp_comp(T, Tnew, Tbar); - - /* Adjust the ON-set */ - A = *Tnew; - foreach_set(A, last, p) { - INLINEset_and(p, p, ceil); - } - - /* Compute the new complement */ - *Tbar = sf_append(*Tbar, compl_cube(ceil)); - set_free(ceil); - return TRUE; - } - set_free(ceil); - - /* Collect column counts, determine unate variables, etc. */ - massive_count(T); - - /* If single active variable not factored out above, then tautology ! */ - if (cdata.vars_active == 1) { - *Tnew = sf_addset(new_cover(1), cube.fullset); - *Tbar = new_cover(1); - free_cubelist(T); - return TRUE; - - /* Check for unate cover */ - } else if (cdata.vars_unate == cdata.vars_active) { - /* Make the cover minimum by single-cube containment */ - A = cubeunlist(T); - *Tnew = sf_contain(A); - - /* Now form a minimum representation of the complement */ - A = map_cover_to_unate(T); - A = unate_compl(A); - *Tbar = map_unate_to_cover(A); - sf_free(A); - free_cubelist(T); - return TRUE; - - /* Not much we can do about it */ - } else { - return MAYBE; - } -} - -/* simplify -- quick simplification of T */ -pcover simplify(T) -pcube *T; /* T will be disposed of */ -{ - register pcube cl, cr; - register int best; - pcover Tbar, Tl, Tr; - int lifting; - static int simplify_level = 0; - - if (debug & COMPL) { - debug_print(T, "SIMPLIFY", simplify_level++); - } - - if (simplify_special_cases(T, &Tbar) == MAYBE) { - - /* Allocate space for the partition cubes */ - cl = new_cube(); - cr = new_cube(); - - best = binate_split_select(T, cl, cr, COMPL); - - /* Complement the left and right halves */ - Tl = simplify(scofactor(T, cl, best)); - Tr = simplify(scofactor(T, cr, best)); - - lifting = USE_COMPL_LIFT; - Tbar = compl_merge(T, Tl, Tr, cl, cr, best, lifting); - - /* All of this work for nothing ? Let's hope not ... */ - if (Tbar->count > CUBELISTSIZE(T)) { - sf_free(Tbar); - Tbar = cubeunlist(T); - } - - free_cube(cl); - free_cube(cr); - free_cubelist(T); - } - - if (debug & COMPL) { - debug1_print(Tbar, "exit SIMPLIFY", --simplify_level); - } - return Tbar; -} - -static bool simplify_special_cases(T, Tnew) -pcube *T; /* will be disposed if answer is determined */ -pcover *Tnew; /* returned only if answer determined */ -{ - register pcube *T1, p, ceil, cof=T[0]; - pcube last; - pcover A; - - /* Check for no cubes in the cover */ - if (T[2] == NULL) { - *Tnew = new_cover(0); - free_cubelist(T); - return TRUE; - } - - /* Check for only a single cube in the cover */ - if (T[3] == NULL) { - *Tnew = sf_addset(new_cover(1), set_or(cof, cof, T[2])); - free_cubelist(T); - return TRUE; - } - - /* Check for a row of all 1's (implies function is a tautology) */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (full_row(p, cof)) { - *Tnew = sf_addset(new_cover(1), cube.fullset); - free_cubelist(T); - return TRUE; - } - } - - /* Check for a column of all 0's which can be factored out */ - ceil = set_save(cof); - for(T1 = T+2; (p = *T1++) != NULL; ) { - INLINEset_or(ceil, ceil, p); - } - if (! setp_equal(ceil, cube.fullset)) { - p = new_cube(); - (void) set_diff(p, cube.fullset, ceil); - (void) set_or(cof, cof, p); - free_cube(p); - - A = simplify(T); - foreach_set(A, last, p) { - INLINEset_and(p, p, ceil); - } - *Tnew = A; - set_free(ceil); - return TRUE; - } - set_free(ceil); - - /* Collect column counts, determine unate variables, etc. */ - massive_count(T); - - /* If single active variable not factored out above, then tautology ! */ - if (cdata.vars_active == 1) { - *Tnew = sf_addset(new_cover(1), cube.fullset); - free_cubelist(T); - return TRUE; - - /* Check for unate cover */ - } else if (cdata.vars_unate == cdata.vars_active) { - A = cubeunlist(T); - *Tnew = sf_contain(A); - free_cubelist(T); - return TRUE; - - /* Not much we can do about it */ - } else { - return MAYBE; - } -} diff --git a/src/misc/espresso/contain.c b/src/misc/espresso/contain.c deleted file mode 100644 index 180dceb6..00000000 --- a/src/misc/espresso/contain.c +++ /dev/null @@ -1,441 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - contain.c -- set containment routines - - These are complex routines for performing containment over a - family of sets, but they have the advantage of being much faster - than a straightforward n*n routine. - - First the cubes are sorted by size, and as a secondary key they are - sorted so that if two cubes are equal they end up adjacent. We can - than quickly remove equal cubes from further consideration by - comparing each cube to its neighbor. Finally, because the cubes - are sorted by size, we need only check cubes which are larger (or - smaller) than a given cube for containment. -*/ - -#include "espresso.h" - - -/* - sf_contain -- perform containment on a set family (delete sets which - are contained by some larger set in the family). No assumptions are - made about A, and the result will be returned in decreasing order of - set size. -*/ -pset_family sf_contain(A) -INOUT pset_family A; /* disposes of A */ -{ - int cnt; - pset *A1; - pset_family R; - - A1 = sf_sort(A, descend); /* sort into descending order */ - cnt = rm_equal(A1, descend); /* remove duplicates */ - cnt = rm_contain(A1); /* remove contained sets */ - R = sf_unlist(A1, cnt, A->sf_size); /* recreate the set family */ - sf_free(A); - return R; -} - - -/* - sf_rev_contain -- perform containment on a set family (delete sets which - contain some smaller set in the family). No assumptions are made about - A, and the result will be returned in increasing order of set size -*/ -pset_family sf_rev_contain(A) -INOUT pset_family A; /* disposes of A */ -{ - int cnt; - pset *A1; - pset_family R; - - A1 = sf_sort(A, ascend); /* sort into ascending order */ - cnt = rm_equal(A1, ascend); /* remove duplicates */ - cnt = rm_rev_contain(A1); /* remove containing sets */ - R = sf_unlist(A1, cnt, A->sf_size); /* recreate the set family */ - sf_free(A); - return R; -} - - -/* - sf_ind_contain -- perform containment on a set family (delete sets which - are contained by some larger set in the family). No assumptions are - made about A, and the result will be returned in decreasing order of - set size. Also maintains a set of row_indices to track which rows - disappear and how the rows end up permuted. -*/ -pset_family sf_ind_contain(A, row_indices) -INOUT pset_family A; /* disposes of A */ -INOUT int *row_indices; /* updated with the new values */ -{ - int cnt; - pset *A1; - pset_family R; - - A1 = sf_sort(A, descend); /* sort into descending order */ - cnt = rm_equal(A1, descend); /* remove duplicates */ - cnt = rm_contain(A1); /* remove contained sets */ - R = sf_ind_unlist(A1, cnt, A->sf_size, row_indices, A->data); - sf_free(A); - return R; -} - - -/* sf_dupl -- delete duplicate sets in a set family */ -pset_family sf_dupl(A) -INOUT pset_family A; /* disposes of A */ -{ - register int cnt; - register pset *A1; - pset_family R; - - A1 = sf_sort(A, descend); /* sort the set family */ - cnt = rm_equal(A1, descend); /* remove duplicates */ - R = sf_unlist(A1, cnt, A->sf_size); /* recreate the set family */ - sf_free(A); - return R; -} - - -/* - sf_union -- form the contained union of two set families (delete - sets which are contained by some larger set in the family). A and - B are assumed already sorted in decreasing order of set size (and - the SIZE field is assumed to contain the set size), and the result - will be returned sorted likewise. -*/ -pset_family sf_union(A, B) -INOUT pset_family A, B; /* disposes of A and B */ -{ - int cnt; - pset_family R; - pset *A1 = sf_list(A), *B1 = sf_list(B), *E1; - - E1 = ALLOC(pset, MAX(A->count, B->count) + 1); - cnt = rm2_equal(A1, B1, E1, descend); - cnt += rm2_contain(A1, B1) + rm2_contain(B1, A1); - R = sf_merge(A1, B1, E1, cnt, A->sf_size); - sf_free(A); sf_free(B); - return R; -} - - -/* - dist_merge -- consider all sets to be "or"-ed with "mask" and then - delete duplicates from the set family. -*/ -pset_family dist_merge(A, mask) -INOUT pset_family A; /* disposes of A */ -IN pset mask; /* defines variables to mask out */ -{ - pset *A1; - int cnt; - pset_family R; - - (void) set_copy(cube.temp[0], mask); - A1 = sf_sort(A, d1_order); - cnt = d1_rm_equal(A1, d1_order); - R = sf_unlist(A1, cnt, A->sf_size); - sf_free(A); - return R; -} - - -/* - d1merge -- perform an efficient distance-1 merge of cubes of A -*/ -pset_family d1merge(A, var) -INOUT pset_family A; /* disposes of A */ -IN int var; -{ - return dist_merge(A, cube.var_mask[var]); -} - - - -/* d1_rm_equal -- distance-1 merge (merge cubes which are equal under a mask) */ -int d1_rm_equal(A1, compare) -register pset *A1; /* array of set pointers */ -int (*compare)(); /* comparison function */ -{ - register int i, j, dest; - - dest = 0; - if (A1[0] != (pcube) NULL) { - for(i = 0, j = 1; A1[j] != (pcube) NULL; j++) - if ( (*compare)(&A1[i], &A1[j]) == 0) { - /* if sets are equal (under the mask) merge them */ - (void) set_or(A1[i], A1[i], A1[j]); - } else { - /* sets are unequal, so save the set i */ - A1[dest++] = A1[i]; - i = j; - } - A1[dest++] = A1[i]; - } - A1[dest] = (pcube) NULL; - return dest; -} - - -/* rm_equal -- scan a sorted array of set pointers for duplicate sets */ -int rm_equal(A1, compare) -INOUT pset *A1; /* updated in place */ -IN int (*compare)(); -{ - register pset *p, *pdest = A1; - - if (*A1 != NULL) { /* If more than one set */ - for(p = A1+1; *p != NULL; p++) - if ((*compare)(p, p-1) != 0) - *pdest++ = *(p-1); - *pdest++ = *(p-1); - *pdest = NULL; - } - return pdest - A1; -} - - -/* rm_contain -- perform containment over a sorted array of set pointers */ -int rm_contain(A1) -INOUT pset *A1; /* updated in place */ -{ - register pset *pa, *pb, *pcheck, a, b; - pset *pdest = A1; - int last_size = -1; - - /* Loop for all cubes of A1 */ - for(pa = A1; (a = *pa++) != NULL; ) { - /* Update the check pointer if the size has changed */ - if (SIZE(a) != last_size) - last_size = SIZE(a), pcheck = pdest; - for(pb = A1; pb != pcheck; ) { - b = *pb++; - INLINEsetp_implies(a, b, /* when_false => */ continue); - goto lnext1; - } - /* set a was not contained by some larger set, so save it */ - *pdest++ = a; - lnext1: ; - } - - *pdest = NULL; - return pdest - A1; -} - - -/* rm_rev_contain -- perform rcontainment over a sorted array of set pointers */ -int rm_rev_contain(A1) -INOUT pset *A1; /* updated in place */ -{ - register pset *pa, *pb, *pcheck, a, b; - pset *pdest = A1; - int last_size = -1; - - /* Loop for all cubes of A1 */ - for(pa = A1; (a = *pa++) != NULL; ) { - /* Update the check pointer if the size has changed */ - if (SIZE(a) != last_size) - last_size = SIZE(a), pcheck = pdest; - for(pb = A1; pb != pcheck; ) { - b = *pb++; - INLINEsetp_implies(b, a, /* when_false => */ continue); - goto lnext1; - } - /* the set a did not contain some smaller set, so save it */ - *pdest++ = a; - lnext1: ; - } - - *pdest = NULL; - return pdest - A1; -} - - -/* rm2_equal -- check two sorted arrays of set pointers for equal cubes */ -int rm2_equal(A1, B1, E1, compare) -INOUT register pset *A1, *B1; /* updated in place */ -OUT pset *E1; -IN int (*compare)(); -{ - register pset *pda = A1, *pdb = B1, *pde = E1; - - /* Walk through the arrays advancing pointer to larger cube */ - for(; *A1 != NULL && *B1 != NULL; ) - switch((*compare)(A1, B1)) { - case -1: /* "a" comes before "b" */ - *pda++ = *A1++; break; - case 0: /* equal cubes */ - *pde++ = *A1++; B1++; break; - case 1: /* "a" is to follow "b" */ - *pdb++ = *B1++; break; - } - - /* Finish moving down the pointers of A and B */ - while (*A1 != NULL) - *pda++ = *A1++; - while (*B1 != NULL) - *pdb++ = *B1++; - *pda = *pdb = *pde = NULL; - - return pde - E1; -} - - -/* rm2_contain -- perform containment between two arrays of set pointers */ -int rm2_contain(A1, B1) -INOUT pset *A1; /* updated in place */ -IN pset *B1; /* unchanged */ -{ - register pset *pa, *pb, a, b, *pdest = A1; - - /* for each set in the first array ... */ - for(pa = A1; (a = *pa++) != NULL; ) { - /* for each set in the second array which is larger ... */ - for(pb = B1; (b = *pb++) != NULL && SIZE(b) > SIZE(a); ) { - INLINEsetp_implies(a, b, /* when_false => */ continue); - /* set was contained in some set of B, so don't save pointer */ - goto lnext1; - } - /* set wasn't contained in any set of B, so save the pointer */ - *pdest++ = a; - lnext1: ; - } - - *pdest = NULL; /* sentinel */ - return pdest - A1; /* # elements in A1 */ -} - - - -/* sf_sort -- sort the sets of A */ -pset *sf_sort(A, compare) -IN pset_family A; -IN int (*compare)(); -{ - register pset p, last, *pdest, *A1; - - /* Create a single array pointing to each cube of A */ - pdest = A1 = ALLOC(pset, A->count + 1); - foreach_set(A, last, p) { - PUTSIZE(p, set_ord(p)); /* compute the set size */ - *pdest++ = p; /* save the pointer */ - } - *pdest = NULL; /* Sentinel -- never seen by sort */ - - /* Sort cubes by size */ - qsort((char *) A1, A->count, sizeof(pset), compare); - return A1; -} - - -/* sf_list -- make a list of pointers to the sets in a set family */ -pset *sf_list(A) -IN register pset_family A; -{ - register pset p, last, *pdest, *A1; - - /* Create a single array pointing to each cube of A */ - pdest = A1 = ALLOC(pset, A->count + 1); - foreach_set(A, last, p) - *pdest++ = p; /* save the pointer */ - *pdest = NULL; /* Sentinel */ - return A1; -} - - -/* sf_unlist -- make a set family out of a list of pointers to sets */ -pset_family sf_unlist(A1, totcnt, size) -IN pset *A1; -IN int totcnt, size; -{ - register pset pr, p, *pa; - pset_family R = sf_new(totcnt, size); - - R->count = totcnt; - for(pr = R->data, pa = A1; (p = *pa++) != NULL; pr += R->wsize) - INLINEset_copy(pr, p); - FREE(A1); - return R; -} - - -/* sf_ind_unlist -- make a set family out of a list of pointers to sets */ -pset_family sf_ind_unlist(A1, totcnt, size, row_indices, pfirst) -IN pset *A1; -IN int totcnt, size; -INOUT int *row_indices; -IN register pset pfirst; -{ - register pset pr, p, *pa; - register int i, *new_row_indices; - pset_family R = sf_new(totcnt, size); - - R->count = totcnt; - new_row_indices = ALLOC(int, totcnt); - for(pr = R->data, pa = A1, i=0; (p = *pa++) != NULL; pr += R->wsize, i++) { - INLINEset_copy(pr, p); - new_row_indices[i] = row_indices[(p - pfirst)/R->wsize]; - } - for(i = 0; i < totcnt; i++) - row_indices[i] = new_row_indices[i]; - FREE(new_row_indices); - FREE(A1); - return R; -} - - -/* sf_merge -- merge three sorted lists of set pointers */ -pset_family sf_merge(A1, B1, E1, totcnt, size) -INOUT pset *A1, *B1, *E1; /* will be disposed of */ -IN int totcnt, size; -{ - register pset pr, ps, *pmin, *pmid, *pmax; - pset_family R; - pset *temp[3], *swap; - int i, j, n; - - /* Allocate the result set_family */ - R = sf_new(totcnt, size); - R->count = totcnt; - pr = R->data; - - /* Quick bubble sort to order the top member of the three arrays */ - n = 3; temp[0] = A1; temp[1] = B1; temp[2] = E1; - for(i = 0; i < n-1; i++) - for(j = i+1; j < n; j++) - if (desc1(*temp[i], *temp[j]) > 0) { - swap = temp[j]; - temp[j] = temp[i]; - temp[i] = swap; - } - pmin = temp[0]; pmid = temp[1]; pmax = temp[2]; - - /* Save the minimum element, then update pmin, pmid, pmax */ - while (*pmin != (pset) NULL) { - ps = *pmin++; - INLINEset_copy(pr, ps); - pr += R->wsize; - if (desc1(*pmin, *pmax) > 0) { - swap = pmax; pmax = pmin; pmin = pmid; pmid = swap; - } else if (desc1(*pmin, *pmid) > 0) { - swap = pmin; pmin = pmid; pmid = swap; - } - } - - FREE(A1); - FREE(B1); - FREE(E1); - return R; -} diff --git a/src/misc/espresso/cubehack.c b/src/misc/espresso/cubehack.c deleted file mode 100644 index 8e1724fc..00000000 --- a/src/misc/espresso/cubehack.c +++ /dev/null @@ -1,138 +0,0 @@ -/* - * Revision Control Information - * - * $Source: /vol/opua/opua2/sis/sis-1.1/common/src/sis/node/RCS/cubehack.c,v $ - * $Author: sis $ - * $Revision: 1.2 $ - * $Date: 1992/05/06 18:57:41 $ - * - */ -/* -#include "sis.h" -#include "node_int.h" - -#ifdef lint -struct cube_struct cube; -bool summary; -bool trace; -bool remove_essential; -bool force_irredundant; -bool unwrap_onset; -bool single_expand; -bool pos; -bool recompute_onset; -bool use_super_gasp; -bool use_random_order; -#endif -*/ -#include "espresso.h" - - -void -cautious_define_cube_size(n) -int n; -{ - if (cube.fullset != 0 && cube.num_binary_vars == n) - return; - if (cube.fullset != 0) { - setdown_cube(); - FREE(cube.part_size); - } - cube.num_binary_vars = cube.num_vars = n; - cube.part_size = ALLOC(int, n); - cube_setup(); -} - - -void -define_cube_size(n) -int n; -{ - register int q, i; - static int called_before = 0; - - /* check if the cube is already just the right size */ - if (cube.fullset != 0 && cube.num_binary_vars == n && cube.num_vars == n) - return; - - /* We can't handle more than 100 inputs */ - if (n > 100) { - cautious_define_cube_size(n); - called_before = 0; - return; - } - - if (cube.fullset == 0 || ! called_before) { - cautious_define_cube_size(100); - called_before = 1; - } - - cube.num_vars = n; - cube.num_binary_vars = n; - cube.num_mv_vars = 0; - cube.output = -1; - cube.size = n * 2; - - /* first_part, last_part, first_word, last_word, part_size OKAY */ - /* cube.sparse is OKAY */ - - /* need to completely re-make cube.fullset and cube.binary_mask */ - (void) set_fill(cube.fullset, n*2); - (void) set_fill(cube.binary_mask, n*2); - - /* need to resize each set in cube.var_mask and cube.temp */ - q = cube.fullset[0]; - for(i = 0; i < cube.num_vars; i++) - cube.var_mask[i][0] = q; - for(i = 0; i < CUBE_TEMP; i++) - cube.temp[i][0] = q; - - /* need to resize cube.emptyset and cube.mv_mask */ - cube.emptyset[0] = q; - cube.mv_mask[0] = q; - - /* need to reset the inword and inmask */ - if (cube.num_binary_vars != 0) { - cube.inword = cube.last_word[cube.num_binary_vars - 1]; - cube.inmask = cube.binary_mask[cube.inword] & DISJOINT; - } else { - cube.inword = -1; - cube.inmask = 0; - } - - /* cdata (entire structure) is OKAY */ -} - - -void -undefine_cube_size() -{ - if (cube.num_binary_vars > 100) { - if (cube.fullset != 0) { - setdown_cube(); - FREE(cube.part_size); - } - } else { - cube.num_vars = cube.num_binary_vars = 100; - if (cube.fullset != 0) { - setdown_cube(); - FREE(cube.part_size); - } - } -} - - -void -set_espresso_flags() -{ - summary = FALSE; - trace = FALSE; - remove_essential = TRUE; - force_irredundant = TRUE; - unwrap_onset = TRUE; - single_expand = FALSE; - pos = FALSE; - recompute_onset = FALSE; - use_super_gasp = FALSE; - use_random_order = FALSE; -} diff --git a/src/misc/espresso/cubestr.c b/src/misc/espresso/cubestr.c deleted file mode 100644 index 77389e73..00000000 --- a/src/misc/espresso/cubestr.c +++ /dev/null @@ -1,152 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - Module: cubestr.c -- routines for managing the global cube structure -*/ - -#include "espresso.h" - -/* - cube_setup -- assume that the fields "num_vars", "num_binary_vars", and - part_size[num_binary_vars .. num_vars-1] are setup, and initialize the - rest of cube and cdata. - - If a part_size is < 0, then the field size is abs(part_size) and the - field read from the input is symbolic. -*/ -void cube_setup() -{ - register int i, var; - register pcube p; - - if (cube.num_binary_vars < 0 || cube.num_vars < cube.num_binary_vars) - fatal("cube size is silly, error in .i/.o or .mv"); - - cube.num_mv_vars = cube.num_vars - cube.num_binary_vars; - cube.output = cube.num_mv_vars > 0 ? cube.num_vars - 1 : -1; - - cube.size = 0; - cube.first_part = ALLOC(int, cube.num_vars); - cube.last_part = ALLOC(int, cube.num_vars); - cube.first_word = ALLOC(int, cube.num_vars); - cube.last_word = ALLOC(int, cube.num_vars); - for(var = 0; var < cube.num_vars; var++) { - if (var < cube.num_binary_vars) - cube.part_size[var] = 2; - cube.first_part[var] = cube.size; - cube.first_word[var] = WHICH_WORD(cube.size); - cube.size += ABS(cube.part_size[var]); - cube.last_part[var] = cube.size - 1; - cube.last_word[var] = WHICH_WORD(cube.size - 1); - } - - cube.var_mask = ALLOC(pset, cube.num_vars); - cube.sparse = ALLOC(int, cube.num_vars); - cube.binary_mask = new_cube(); - cube.mv_mask = new_cube(); - for(var = 0; var < cube.num_vars; var++) { - p = cube.var_mask[var] = new_cube(); - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) - set_insert(p, i); - if (var < cube.num_binary_vars) { - INLINEset_or(cube.binary_mask, cube.binary_mask, p); - cube.sparse[var] = 0; - } else { - INLINEset_or(cube.mv_mask, cube.mv_mask, p); - cube.sparse[var] = 1; - } - } - if (cube.num_binary_vars == 0) - cube.inword = -1; - else { - cube.inword = cube.last_word[cube.num_binary_vars - 1]; - cube.inmask = cube.binary_mask[cube.inword] & DISJOINT; - } - - cube.temp = ALLOC(pset, CUBE_TEMP); - for(i = 0; i < CUBE_TEMP; i++) - cube.temp[i] = new_cube(); - cube.fullset = set_fill(new_cube(), cube.size); - cube.emptyset = new_cube(); - - cdata.part_zeros = ALLOC(int, cube.size); - cdata.var_zeros = ALLOC(int, cube.num_vars); - cdata.parts_active = ALLOC(int, cube.num_vars); - cdata.is_unate = ALLOC(int, cube.num_vars); -} - -/* - setdown_cube -- free memory allocated for the cube/cdata structs - (free's all but the part_size array) - - (I wanted to call this cube_setdown, but that violates the 8-character - external routine limit on the IBM !) -*/ -void setdown_cube() -{ - register int i, var; - - FREE(cube.first_part); - FREE(cube.last_part); - FREE(cube.first_word); - FREE(cube.last_word); - FREE(cube.sparse); - - free_cube(cube.binary_mask); - free_cube(cube.mv_mask); - free_cube(cube.fullset); - free_cube(cube.emptyset); - for(var = 0; var < cube.num_vars; var++) - free_cube(cube.var_mask[var]); - FREE(cube.var_mask); - - for(i = 0; i < CUBE_TEMP; i++) - free_cube(cube.temp[i]); - FREE(cube.temp); - - FREE(cdata.part_zeros); - FREE(cdata.var_zeros); - FREE(cdata.parts_active); - FREE(cdata.is_unate); - - cube.first_part = cube.last_part = (int *) NULL; - cube.first_word = cube.last_word = (int *) NULL; - cube.sparse = (int *) NULL; - cube.binary_mask = cube.mv_mask = (pcube) NULL; - cube.fullset = cube.emptyset = (pcube) NULL; - cube.var_mask = cube.temp = (pcube *) NULL; - - cdata.part_zeros = cdata.var_zeros = cdata.parts_active = (int *) NULL; - cdata.is_unate = (bool *) NULL; -} - - -void save_cube_struct() -{ - temp_cube_save = cube; /* structure copy ! */ - temp_cdata_save = cdata; /* "" */ - - cube.first_part = cube.last_part = (int *) NULL; - cube.first_word = cube.last_word = (int *) NULL; - cube.part_size = (int *) NULL; - cube.binary_mask = cube.mv_mask = (pcube) NULL; - cube.fullset = cube.emptyset = (pcube) NULL; - cube.var_mask = cube.temp = (pcube *) NULL; - - cdata.part_zeros = cdata.var_zeros = cdata.parts_active = (int *) NULL; - cdata.is_unate = (bool *) NULL; -} - - -void restore_cube_struct() -{ - cube = temp_cube_save; /* structure copy ! */ - cdata = temp_cdata_save; /* "" */ -} diff --git a/src/misc/espresso/cvrin.c b/src/misc/espresso/cvrin.c deleted file mode 100644 index 7790b38b..00000000 --- a/src/misc/espresso/cvrin.c +++ /dev/null @@ -1,810 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: cvrin.c - purpose: cube and cover input routines -*/ - -#include "espresso.h" - -static bool line_length_error; -static int lineno; - -void skip_line(fpin, fpout, echo) -register FILE *fpin, *fpout; -register bool echo; -{ - register int ch; - while ((ch=getc(fpin)) != EOF && ch != '\n') - if (echo) - putc(ch, fpout); - if (echo) - putc('\n', fpout); - lineno++; -} - -char *get_word(fp, word) -register FILE *fp; -register char *word; -{ - register int ch, i = 0; - while ((ch = getc(fp)) != EOF && isspace(ch)) - ; - word[i++] = ch; - while ((ch = getc(fp)) != EOF && ! isspace(ch)) - word[i++] = ch; - word[i++] = '\0'; - return word; -} - -/* - * Yes, I know this routine is a mess - */ -void read_cube(fp, PLA) -register FILE *fp; -pPLA PLA; -{ - register int var, i; - pcube cf = cube.temp[0], cr = cube.temp[1], cd = cube.temp[2]; - bool savef = FALSE, saved = FALSE, saver = FALSE; - char token[256]; /* for kiss read hack */ - int varx, first, last, offset; /* for kiss read hack */ - - set_clear(cf, cube.size); - - /* Loop and read binary variables */ - for(var = 0; var < cube.num_binary_vars; var++) - switch(getc(fp)) { - case EOF: - goto bad_char; - case '\n': - if (! line_length_error) - (void) fprintf(stderr, "product term(s) %s\n", - "span more than one line (warning only)"); - line_length_error = TRUE; - lineno++; - var--; - break; - case ' ': case '|': case '\t': - var--; - break; - case '2': case '-': - set_insert(cf, var*2+1); - case '0': - set_insert(cf, var*2); - break; - case '1': - set_insert(cf, var*2+1); - break; - case '?': - break; - default: - goto bad_char; - } - - - /* Loop for the all but one of the multiple-valued variables */ - for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) - - /* Read a symbolic multiple-valued variable */ - if (cube.part_size[var] < 0) { - (void) fscanf(fp, "%s", token); - if (equal(token, "-") || equal(token, "ANY")) { - if (kiss && var == cube.num_vars - 2) { - /* leave it empty */ - } else { - /* make it full */ - set_or(cf, cf, cube.var_mask[var]); - } - } else if (equal(token, "~")) { - ; - /* leave it empty ... (?) */ - } else { - if (kiss && var == cube.num_vars - 2) - varx = var - 1, offset = ABS(cube.part_size[var-1]); - else - varx = var, offset = 0; - /* Find the symbolic label in the label table */ - first = cube.first_part[varx]; - last = cube.last_part[varx]; - for(i = first; i <= last; i++) - if (PLA->label[i] == (char *) NULL) { - PLA->label[i] = util_strsav(token); /* add new label */ - set_insert(cf, i+offset); - break; - } else if (equal(PLA->label[i], token)) { - set_insert(cf, i+offset); /* use column i */ - break; - } - if (i > last) { - (void) fprintf(stderr, -"declared size of variable %d (counting from variable 0) is too small\n", var); - exit(-1); - } - } - - } else for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) - switch (getc(fp)) { - case EOF: - goto bad_char; - case '\n': - if (! line_length_error) - (void) fprintf(stderr, "product term(s) %s\n", - "span more than one line (warning only)"); - line_length_error = TRUE; - lineno++; - i--; - break; - case ' ': case '|': case '\t': - i--; - break; - case '1': - set_insert(cf, i); - case '0': - break; - default: - goto bad_char; - } - - /* Loop for last multiple-valued variable */ - if (kiss) { - saver = savef = TRUE; - (void) set_xor(cr, cf, cube.var_mask[cube.num_vars - 2]); - } else - set_copy(cr, cf); - set_copy(cd, cf); - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) - switch (getc(fp)) { - case EOF: - goto bad_char; - case '\n': - if (! line_length_error) - (void) fprintf(stderr, "product term(s) %s\n", - "span more than one line (warning only)"); - line_length_error = TRUE; - lineno++; - i--; - break; - case ' ': case '|': case '\t': - i--; - break; - case '4': case '1': - if (PLA->pla_type & F_type) - set_insert(cf, i), savef = TRUE; - break; - case '3': case '0': - if (PLA->pla_type & R_type) - set_insert(cr, i), saver = TRUE; - break; - case '2': case '-': - if (PLA->pla_type & D_type) - set_insert(cd, i), saved = TRUE; - case '~': - break; - default: - goto bad_char; - } - if (savef) PLA->F = sf_addset(PLA->F, cf); - if (saved) PLA->D = sf_addset(PLA->D, cd); - if (saver) PLA->R = sf_addset(PLA->R, cr); - return; - -bad_char: - (void) fprintf(stderr, "(warning): input line #%d ignored\n", lineno); - skip_line(fp, stdout, TRUE); - return; -} -void parse_pla(fp, PLA) -IN FILE *fp; -INOUT pPLA PLA; -{ - int i, var, ch, np, last; - char word[256]; - - lineno = 1; - line_length_error = FALSE; - -loop: - switch(ch = getc(fp)) { - case EOF: - return; - - case '\n': - lineno++; - - case ' ': case '\t': case '\f': case '\r': - break; - - case '#': - (void) ungetc(ch, fp); - skip_line(fp, stdout, echo_comments); - break; - - case '.': - /* .i gives the cube input size (binary-functions only) */ - if (equal(get_word(fp, word), "i")) { - if (cube.fullset != NULL) { - (void) fprintf(stderr, "extra .i ignored\n"); - skip_line(fp, stdout, /* echo */ FALSE); - } else { - if (fscanf(fp, "%d", &cube.num_binary_vars) != 1) - fatal("error reading .i"); - cube.num_vars = cube.num_binary_vars + 1; - cube.part_size = ALLOC(int, cube.num_vars); - } - - /* .o gives the cube output size (binary-functions only) */ - } else if (equal(word, "o")) { - if (cube.fullset != NULL) { - (void) fprintf(stderr, "extra .o ignored\n"); - skip_line(fp, stdout, /* echo */ FALSE); - } else { - if (cube.part_size == NULL) - fatal(".o cannot appear before .i"); - if (fscanf(fp, "%d", &(cube.part_size[cube.num_vars-1]))!=1) - fatal("error reading .o"); - cube_setup(); - PLA_labels(PLA); - } - - /* .mv gives the cube size for a multiple-valued function */ - } else if (equal(word, "mv")) { - if (cube.fullset != NULL) { - (void) fprintf(stderr, "extra .mv ignored\n"); - skip_line(fp, stdout, /* echo */ FALSE); - } else { - if (cube.part_size != NULL) - fatal("cannot mix .i and .mv"); - if (fscanf(fp,"%d %d", - &cube.num_vars,&cube.num_binary_vars) != 2) - fatal("error reading .mv"); - if (cube.num_binary_vars < 0) -fatal("num_binary_vars (second field of .mv) cannot be negative"); - if (cube.num_vars < cube.num_binary_vars) - fatal( -"num_vars (1st field of .mv) must exceed num_binary_vars (2nd field of .mv)"); - cube.part_size = ALLOC(int, cube.num_vars); - for(var=cube.num_binary_vars; var < cube.num_vars; var++) - if (fscanf(fp, "%d", &(cube.part_size[var])) != 1) - fatal("error reading .mv"); - cube_setup(); - PLA_labels(PLA); - } - - /* .p gives the number of product terms -- we ignore it */ - } else if (equal(word, "p")) - (void) fscanf(fp, "%d", &np); - /* .e and .end specify the end of the file */ - else if (equal(word, "e") || equal(word,"end")) { - if (cube.fullset == NULL) { - /* fatal("unknown PLA size, need .i/.o or .mv");*/ - } else if (PLA->F == NULL) { - PLA->F = new_cover(10); - PLA->D = new_cover(10); - PLA->R = new_cover(10); - } - return; - } - /* .kiss turns on the kiss-hack option */ - else if (equal(word, "kiss")) - kiss = TRUE; - - /* .type specifies a logical type for the PLA */ - else if (equal(word, "type")) { - (void) get_word(fp, word); - for(i = 0; pla_types[i].key != 0; i++) - if (equal(pla_types[i].key + 1, word)) { - PLA->pla_type = pla_types[i].value; - break; - } - if (pla_types[i].key == 0) - fatal("unknown type in .type command"); - - /* parse the labels */ - } else if (equal(word, "ilb")) { - if (cube.fullset == NULL) - fatal("PLA size must be declared before .ilb or .ob"); - if (PLA->label == NULL) - PLA_labels(PLA); - for(var = 0; var < cube.num_binary_vars; var++) { - (void) get_word(fp, word); - i = cube.first_part[var]; - PLA->label[i+1] = util_strsav(word); - PLA->label[i] = ALLOC(char, strlen(word) + 6); - (void) sprintf(PLA->label[i], "%s.bar", word); - } - } else if (equal(word, "ob")) { - if (cube.fullset == NULL) - fatal("PLA size must be declared before .ilb or .ob"); - if (PLA->label == NULL) - PLA_labels(PLA); - var = cube.num_vars - 1; - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - (void) get_word(fp, word); - PLA->label[i] = util_strsav(word); - } - /* .label assigns labels to multiple-valued variables */ - } else if (equal(word, "label")) { - if (cube.fullset == NULL) - fatal("PLA size must be declared before .label"); - if (PLA->label == NULL) - PLA_labels(PLA); - if (fscanf(fp, "var=%d", &var) != 1) - fatal("Error reading labels"); - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - (void) get_word(fp, word); - PLA->label[i] = util_strsav(word); - } - - } else if (equal(word, "symbolic")) { - symbolic_t *newlist, *p1; - if (read_symbolic(fp, PLA, word, &newlist)) { - if (PLA->symbolic == NIL(symbolic_t)) { - PLA->symbolic = newlist; - } else { - for(p1=PLA->symbolic;p1->next!=NIL(symbolic_t); - p1=p1->next){ - } - p1->next = newlist; - } - } else { - fatal("error reading .symbolic"); - } - - } else if (equal(word, "symbolic-output")) { - symbolic_t *newlist, *p1; - if (read_symbolic(fp, PLA, word, &newlist)) { - if (PLA->symbolic_output == NIL(symbolic_t)) { - PLA->symbolic_output = newlist; - } else { - for(p1=PLA->symbolic_output;p1->next!=NIL(symbolic_t); - p1=p1->next){ - } - p1->next = newlist; - } - } else { - fatal("error reading .symbolic-output"); - } - - /* .phase allows a choice of output phases */ - } else if (equal(word, "phase")) { - if (cube.fullset == NULL) - fatal("PLA size must be declared before .phase"); - if (PLA->phase != NULL) { - (void) fprintf(stderr, "extra .phase ignored\n"); - skip_line(fp, stdout, /* echo */ FALSE); - } else { - do ch = getc(fp); while (ch == ' ' || ch == '\t'); - (void) ungetc(ch, fp); - PLA->phase = set_save(cube.fullset); - last = cube.last_part[cube.num_vars - 1]; - for(i=cube.first_part[cube.num_vars - 1]; i <= last; i++) - if ((ch = getc(fp)) == '0') - set_remove(PLA->phase, i); - else if (ch != '1') - fatal("only 0 or 1 allowed in phase description"); - } - - /* .pair allows for bit-pairing input variables */ - } else if (equal(word, "pair")) { - int j; - if (PLA->pair != NULL) { - (void) fprintf(stderr, "extra .pair ignored\n"); - } else { - ppair pair; - PLA->pair = pair = ALLOC(pair_t, 1); - if (fscanf(fp, "%d", &(pair->cnt)) != 1) - fatal("syntax error in .pair"); - pair->var1 = ALLOC(int, pair->cnt); - pair->var2 = ALLOC(int, pair->cnt); - for(i = 0; i < pair->cnt; i++) { - (void) get_word(fp, word); - if (word[0] == '(') (void) strcpy(word, word+1); - if (label_index(PLA, word, &var, &j)) { - pair->var1[i] = var+1; - } else { - fatal("syntax error in .pair"); - } - - (void) get_word(fp, word); - if (word[strlen(word)-1] == ')') { - word[strlen(word)-1]='\0'; - } - if (label_index(PLA, word, &var, &j)) { - pair->var2[i] = var+1; - } else { - fatal("syntax error in .pair"); - } - } - } - - } else { - if (echo_unknown_commands) - printf("%c%s ", ch, word); - skip_line(fp, stdout, echo_unknown_commands); - } - break; - default: - (void) ungetc(ch, fp); - if (cube.fullset == NULL) { -/* fatal("unknown PLA size, need .i/.o or .mv");*/ - if (echo_comments) - putchar('#'); - skip_line(fp, stdout, echo_comments); - break; - } - if (PLA->F == NULL) { - PLA->F = new_cover(10); - PLA->D = new_cover(10); - PLA->R = new_cover(10); - } - read_cube(fp, PLA); - } - goto loop; -} -/* - read_pla -- read a PLA from a file - - Input stops when ".e" is encountered in the input file, or upon reaching - end of file. - - Returns the PLA in the variable PLA after massaging the "symbolic" - representation into a positional cube notation of the ON-set, OFF-set, - and the DC-set. - - needs_dcset and needs_offset control the computation of the OFF-set - and DC-set (i.e., if either needs to be computed, then it will be - computed via complement only if the corresponding option is TRUE.) - pla_type specifies the interpretation to be used when reading the - PLA. - - The phase of the output functions is adjusted according to the - global option "pos" or according to an imbedded .phase option in - the input file. Note that either phase option implies that the - OFF-set be computed regardless of whether the caller needs it - explicitly or not. - - Bit pairing of the binary variables is performed according to an - imbedded .pair option in the input file. - - The global cube structure also reflects the sizes of the PLA which - was just read. If these fields have already been set, then any - subsequent PLA must conform to these sizes. - - The global flags trace and summary control the output produced - during the read. - - Returns a status code as a result: - EOF (-1) : End of file reached before any data was read - > 0 : Operation successful -*/ - -int read_pla(fp, needs_dcset, needs_offset, pla_type, PLA_return) -IN FILE *fp; -IN bool needs_dcset, needs_offset; -IN int pla_type; -OUT pPLA *PLA_return; -{ - pPLA PLA; - int i, second, third; - long time; - cost_t cost; - - /* Allocate and initialize the PLA structure */ - PLA = *PLA_return = new_PLA(); - PLA->pla_type = pla_type; - - /* Read the pla */ - time = ptime(); - parse_pla(fp, PLA); - - /* Check for nothing on the file -- implies reached EOF */ - if (PLA->F == NULL) { - return EOF; - } - - /* This hack merges the next-state field with the outputs */ - for(i = 0; i < cube.num_vars; i++) { - cube.part_size[i] = ABS(cube.part_size[i]); - } - if (kiss) { - third = cube.num_vars - 3; - second = cube.num_vars - 2; - if (cube.part_size[third] != cube.part_size[second]) { - (void) fprintf(stderr," with .kiss option, third to last and second\n"); - (void) fprintf(stderr, "to last variables must be the same size.\n"); - return EOF; - } - for(i = 0; i < cube.part_size[second]; i++) { - PLA->label[i + cube.first_part[second]] = - util_strsav(PLA->label[i + cube.first_part[third]]); - } - cube.part_size[second] += cube.part_size[cube.num_vars-1]; - cube.num_vars--; - setdown_cube(); - cube_setup(); - } - - if (trace) { - totals(time, READ_TIME, PLA->F, &cost); - } - - /* Decide how to break PLA into ON-set, OFF-set and DC-set */ - time = ptime(); - if (pos || PLA->phase != NULL || PLA->symbolic_output != NIL(symbolic_t)) { - needs_offset = TRUE; - } - if (needs_offset && (PLA->pla_type==F_type || PLA->pla_type==FD_type)) { - free_cover(PLA->R); - PLA->R = complement(cube2list(PLA->F, PLA->D)); - } else if (needs_dcset && PLA->pla_type == FR_type) { - pcover X; - free_cover(PLA->D); - /* hack, why not? */ - X = d1merge(sf_join(PLA->F, PLA->R), cube.num_vars - 1); - PLA->D = complement(cube1list(X)); - free_cover(X); - } else if (PLA->pla_type == R_type || PLA->pla_type == DR_type) { - free_cover(PLA->F); - PLA->F = complement(cube2list(PLA->D, PLA->R)); - } - - if (trace) { - totals(time, COMPL_TIME, PLA->R, &cost); - } - - /* Check for phase rearrangement of the functions */ - if (pos) { - pcover onset = PLA->F; - PLA->F = PLA->R; - PLA->R = onset; - PLA->phase = new_cube(); - set_diff(PLA->phase, cube.fullset, cube.var_mask[cube.num_vars-1]); - } else if (PLA->phase != NULL) { - (void) set_phase(PLA); - } - - /* Setup minimization for two-bit decoders */ - if (PLA->pair != (ppair) NULL) { - set_pair(PLA); - } - - if (PLA->symbolic != NIL(symbolic_t)) { - EXEC(map_symbolic(PLA), "MAP-INPUT ", PLA->F); - } - if (PLA->symbolic_output != NIL(symbolic_t)) { - EXEC(map_output_symbolic(PLA), "MAP-OUTPUT ", PLA->F); - if (needs_offset) { - free_cover(PLA->R); -EXECUTE(PLA->R=complement(cube2list(PLA->F,PLA->D)), COMPL_TIME, PLA->R, cost); - } - } - - return 1; -} - -void PLA_summary(PLA) -pPLA PLA; -{ - int var, i; - symbolic_list_t *p2; - symbolic_t *p1; - - printf("# PLA is %s", PLA->filename); - if (cube.num_binary_vars == cube.num_vars - 1) - printf(" with %d inputs and %d outputs\n", - cube.num_binary_vars, cube.part_size[cube.num_vars - 1]); - else { - printf(" with %d variables (%d binary, mv sizes", - cube.num_vars, cube.num_binary_vars); - for(var = cube.num_binary_vars; var < cube.num_vars; var++) - printf(" %d", cube.part_size[var]); - printf(")\n"); - } - printf("# ON-set cost is %s\n", print_cost(PLA->F)); - printf("# OFF-set cost is %s\n", print_cost(PLA->R)); - printf("# DC-set cost is %s\n", print_cost(PLA->D)); - if (PLA->phase != NULL) - printf("# phase is %s\n", pc1(PLA->phase)); - if (PLA->pair != NULL) { - printf("# two-bit decoders:"); - for(i = 0; i < PLA->pair->cnt; i++) - printf(" (%d %d)", PLA->pair->var1[i], PLA->pair->var2[i]); - printf("\n"); - } - if (PLA->symbolic != NIL(symbolic_t)) { - for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) { - printf("# symbolic: "); - for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) { - printf(" %d", p2->variable); - } - printf("\n"); - } - } - if (PLA->symbolic_output != NIL(symbolic_t)) { - for(p1 = PLA->symbolic_output; p1 != NIL(symbolic_t); p1 = p1->next) { - printf("# output symbolic: "); - for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) { - printf(" %d", p2->pos); - } - printf("\n"); - } - } - (void) fflush(stdout); -} - - -pPLA new_PLA() -{ - pPLA PLA; - - PLA = ALLOC(PLA_t, 1); - PLA->F = PLA->D = PLA->R = (pcover) NULL; - PLA->phase = (pcube) NULL; - PLA->pair = (ppair) NULL; - PLA->label = (char **) NULL; - PLA->filename = (char *) NULL; - PLA->pla_type = 0; - PLA->symbolic = NIL(symbolic_t); - PLA->symbolic_output = NIL(symbolic_t); - return PLA; -} - - -PLA_labels(PLA) -pPLA PLA; -{ - int i; - - PLA->label = ALLOC(char *, cube.size); - for(i = 0; i < cube.size; i++) - PLA->label[i] = (char *) NULL; -} - - -void free_PLA(PLA) -pPLA PLA; -{ - symbolic_list_t *p2, *p2next; - symbolic_t *p1, *p1next; - int i; - - if (PLA->F != (pcover) NULL) - free_cover(PLA->F); - if (PLA->R != (pcover) NULL) - free_cover(PLA->R); - if (PLA->D != (pcover) NULL) - free_cover(PLA->D); - if (PLA->phase != (pcube) NULL) - free_cube(PLA->phase); - if (PLA->pair != (ppair) NULL) { - FREE(PLA->pair->var1); - FREE(PLA->pair->var2); - FREE(PLA->pair); - } - if (PLA->label != NULL) { - for(i = 0; i < cube.size; i++) - if (PLA->label[i] != NULL) - FREE(PLA->label[i]); - FREE(PLA->label); - } - if (PLA->filename != NULL) { - FREE(PLA->filename); - } - for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1next) { - for(p2 = p1->symbolic_list; p2 != NIL(symbolic_list_t); p2 = p2next) { - p2next = p2->next; - FREE(p2); - } - p1next = p1->next; - FREE(p1); - } - PLA->symbolic = NIL(symbolic_t); - for(p1 = PLA->symbolic_output; p1 != NIL(symbolic_t); p1 = p1next) { - for(p2 = p1->symbolic_list; p2 != NIL(symbolic_list_t); p2 = p2next) { - p2next = p2->next; - FREE(p2); - } - p1next = p1->next; - FREE(p1); - } - PLA->symbolic_output = NIL(symbolic_t); - FREE(PLA); -} - - -int read_symbolic(fp, PLA, word, retval) -FILE *fp; -pPLA PLA; -char *word; /* scratch string for words */ -symbolic_t **retval; -{ - symbolic_list_t *listp, *prev_listp; - symbolic_label_t *labelp, *prev_labelp; - symbolic_t *newlist; - int i, var; - - newlist = ALLOC(symbolic_t, 1); - newlist->next = NIL(symbolic_t); - newlist->symbolic_list = NIL(symbolic_list_t); - newlist->symbolic_list_length = 0; - newlist->symbolic_label = NIL(symbolic_label_t); - newlist->symbolic_label_length = 0; - prev_listp = NIL(symbolic_list_t); - prev_labelp = NIL(symbolic_label_t); - - for(;;) { - (void) get_word(fp, word); - if (equal(word, ";")) - break; - if (label_index(PLA, word, &var, &i)) { - listp = ALLOC(symbolic_list_t, 1); - listp->variable = var; - listp->pos = i; - listp->next = NIL(symbolic_list_t); - if (prev_listp == NIL(symbolic_list_t)) { - newlist->symbolic_list = listp; - } else { - prev_listp->next = listp; - } - prev_listp = listp; - newlist->symbolic_list_length++; - } else { - return FALSE; - } - } - - for(;;) { - (void) get_word(fp, word); - if (equal(word, ";")) - break; - labelp = ALLOC(symbolic_label_t, 1); - labelp->label = util_strsav(word); - labelp->next = NIL(symbolic_label_t); - if (prev_labelp == NIL(symbolic_label_t)) { - newlist->symbolic_label = labelp; - } else { - prev_labelp->next = labelp; - } - prev_labelp = labelp; - newlist->symbolic_label_length++; - } - - *retval = newlist; - return TRUE; -} - - -int label_index(PLA, word, varp, ip) -pPLA PLA; -char *word; -int *varp; -int *ip; -{ - int var, i; - - if (PLA->label == NIL(char *) || PLA->label[0] == NIL(char)) { - if (sscanf(word, "%d", varp) == 1) { - *ip = *varp; - return TRUE; - } - } else { - for(var = 0; var < cube.num_vars; var++) { - for(i = 0; i < cube.part_size[var]; i++) { - if (equal(PLA->label[cube.first_part[var]+i], word)) { - *varp = var; - *ip = i; - return TRUE; - } - } - } - } - return FALSE; -} diff --git a/src/misc/espresso/cvrm.c b/src/misc/espresso/cvrm.c deleted file mode 100644 index 7d42d6e3..00000000 --- a/src/misc/espresso/cvrm.c +++ /dev/null @@ -1,539 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: cvrm.c - Purpose: miscellaneous cover manipulation - a) verify two covers are equal, check consistency of a cover - b) unravel a multiple-valued cover into minterms - c) sort covers -*/ - -#include "espresso.h" - - -static void cb_unravel(c, start, end, startbase, B1) -IN register pcube c; -IN int start, end; -IN pcube startbase; -INOUT pcover B1; -{ - pcube base = cube.temp[0], p, last; - int expansion, place, skip, var, size, offset; - register int i, j, k, n; - - /* Determine how many cubes it will blow up into, and create a mask - for those parts that have only a single coordinate - */ - expansion = 1; - (void) set_copy(base, startbase); - for(var = start; var <= end; var++) { - if ((size = set_dist(c, cube.var_mask[var])) < 2) { - (void) set_or(base, base, cube.var_mask[var]); - } else { - expansion *= size; - } - } - (void) set_and(base, c, base); - - /* Add the unravelled sets starting at the last element of B1 */ - offset = B1->count; - B1->count += expansion; - foreach_remaining_set(B1, last, GETSET(B1, offset-1), p) { - INLINEset_copy(p, base); - } - - place = expansion; - for(var = start; var <= end; var++) { - if ((size = set_dist(c, cube.var_mask[var])) > 1) { - skip = place; - place = place / size; - n = 0; - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - if (is_in_set(c, i)) { - for(j = n; j < expansion; j += skip) { - for(k = 0; k < place; k++) { - p = GETSET(B1, j+k+offset); - (void) set_insert(p, i); - } - } - n += place; - } - } - } - } -} - - -pcover unravel_range(B, start, end) -IN pcover B; -IN int start, end; -{ - pcover B1; - int var, total_size, expansion, size; - register pcube p, last, startbase = cube.temp[1]; - - /* Create the starting base for those variables not being unravelled */ - (void) set_copy(startbase, cube.emptyset); - for(var = 0; var < start; var++) - (void) set_or(startbase, startbase, cube.var_mask[var]); - for(var = end+1; var < cube.num_vars; var++) - (void) set_or(startbase, startbase, cube.var_mask[var]); - - /* Determine how many cubes it will blow up into */ - total_size = 0; - foreach_set(B, last, p) { - expansion = 1; - for(var = start; var <= end; var++) - if ((size = set_dist(p, cube.var_mask[var])) >= 2) - if ((expansion *= size) > 1000000) - fatal("unreasonable expansion in unravel"); - total_size += expansion; - } - - /* We can now allocate a cover of exactly the correct size */ - B1 = new_cover(total_size); - foreach_set(B, last, p) { - cb_unravel(p, start, end, startbase, B1); - } - free_cover(B); - return B1; -} - - -pcover unravel(B, start) -IN pcover B; -IN int start; -{ - return unravel_range(B, start, cube.num_vars-1); -} - -/* lex_sort -- sort cubes in a standard lexical fashion */ -pcover lex_sort(T) -pcover T; -{ - pcover T1 = sf_unlist(sf_sort(T, lex_order), T->count, T->sf_size); - free_cover(T); - return T1; -} - - -/* size_sort -- sort cubes by their size */ -pcover size_sort(T) -pcover T; -{ - pcover T1 = sf_unlist(sf_sort(T, descend), T->count, T->sf_size); - free_cover(T); - return T1; -} - - -/* mini_sort -- sort cubes according to the heuristics of mini */ -pcover mini_sort(F, compare) -pcover F; -int (*compare)(); -{ - register int *count, cnt, n = cube.size, i; - register pcube p, last; - pcover F_sorted; - pcube *F1; - - /* Perform a column sum over the set family */ - count = sf_count(F); - - /* weight is "inner product of the cube and the column sums" */ - foreach_set(F, last, p) { - cnt = 0; - for(i = 0; i < n; i++) - if (is_in_set(p, i)) - cnt += count[i]; - PUTSIZE(p, cnt); - } - FREE(count); - - /* use qsort to sort the array */ - qsort((char *) (F1 = sf_list(F)), F->count, sizeof(pcube), compare); - F_sorted = sf_unlist(F1, F->count, F->sf_size); - free_cover(F); - - return F_sorted; -} - - -/* sort_reduce -- Espresso strategy for ordering the cubes before reduction */ -pcover sort_reduce(T) -IN pcover T; -{ - register pcube p, last, largest = NULL; - register int bestsize = -1, size, n = cube.num_vars; - pcover T_sorted; - pcube *T1; - - if (T->count == 0) - return T; - - /* find largest cube */ - foreach_set(T, last, p) - if ((size = set_ord(p)) > bestsize) - largest = p, bestsize = size; - - foreach_set(T, last, p) - PUTSIZE(p, ((n - cdist(largest,p)) << 7) + MIN(set_ord(p),127)); - - qsort((char *) (T1 = sf_list(T)), T->count, sizeof(pcube), (int (*)()) descend); - T_sorted = sf_unlist(T1, T->count, T->sf_size); - free_cover(T); - - return T_sorted; -} - -pcover random_order(F) -register pcover F; -{ - pset temp; - register int i, k; -#ifdef RANDOM - long random(); -#endif - - temp = set_new(F->sf_size); - for(i = F->count - 1; i > 0; i--) { - /* Choose a random number between 0 and i */ -#ifdef RANDOM - k = random() % i; -#else - /* this is not meant to be really used; just provides an easy - "out" if random() and srandom() aren't around - */ - k = (i*23 + 997) % i; -#endif - /* swap sets i and k */ - (void) set_copy(temp, GETSET(F, k)); - (void) set_copy(GETSET(F, k), GETSET(F, i)); - (void) set_copy(GETSET(F, i), temp); - } - set_free(temp); - return F; -} - -/* - * cubelist_partition -- take a cubelist T and see if it has any components; - * if so, return cubelist's of the two partitions A and B; the return value - * is the size of the partition; if not, A and B - * are undefined and the return value is 0 - */ -int cubelist_partition(T, A, B, comp_debug) -pcube *T; /* a list of cubes */ -pcube **A, **B; /* cubelist of partition and remainder */ -unsigned int comp_debug; -{ - register pcube *T1, p, seed, cof; - pcube *A1, *B1; - bool change; - int count, numcube; - - numcube = CUBELISTSIZE(T); - - /* Mark all cubes -- covered cubes belong to the partition */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - RESET(p, COVERED); - } - - /* - * Extract a partition from the cubelist T; start with the first cube as a - * seed, and then pull in all cubes which share a variable with the seed; - * iterate until no new cubes are brought into the partition. - */ - seed = set_save(T[2]); - cof = T[0]; - SET(T[2], COVERED); - count = 1; - - do { - change = FALSE; - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (! TESTP(p, COVERED) && ccommon(p, seed, cof)) { - INLINEset_and(seed, seed, p); - SET(p, COVERED); - change = TRUE; - count++; - } - - } - } while (change); - - set_free(seed); - - if (comp_debug) { - (void) printf("COMPONENT_REDUCTION: split into %d %d\n", - count, numcube - count); - } - - if (count != numcube) { - /* Allocate and setup the cubelist's for the two partitions */ - *A = A1 = ALLOC(pcube, numcube+3); - *B = B1 = ALLOC(pcube, numcube+3); - (*A)[0] = set_save(T[0]); - (*B)[0] = set_save(T[0]); - A1 = *A + 2; - B1 = *B + 2; - - /* Loop over the cubes in T and distribute to A and B */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (TESTP(p, COVERED)) { - *A1++ = p; - } else { - *B1++ = p; - } - } - - /* Stuff needed at the end of the cubelist's */ - *A1++ = NULL; - (*A)[1] = (pcube) A1; - *B1++ = NULL; - (*B)[1] = (pcube) B1; - } - - return numcube - count; -} - -/* - * quick cofactor against a single output function - */ -pcover cof_output(T, i) -pcover T; -register int i; -{ - pcover T1; - register pcube p, last, pdest, mask; - - mask = cube.var_mask[cube.output]; - T1 = new_cover(T->count); - foreach_set(T, last, p) { - if (is_in_set(p, i)) { - pdest = GETSET(T1, T1->count++); - INLINEset_or(pdest, p, mask); - RESET(pdest, PRIME); - } - } - return T1; -} - - -/* - * quick intersection against a single output function - */ -pcover uncof_output(T, i) -pcover T; -int i; -{ - register pcube p, last, mask; - - if (T == NULL) { - return T; - } - - mask = cube.var_mask[cube.output]; - foreach_set(T, last, p) { - INLINEset_diff(p, p, mask); - set_insert(p, i); - } - return T; -} - - -/* - * A generic routine to perform an operation for each output function - * - * func() is called with a PLA for each output function (with the output - * part effectively removed). - * func1() is called after reforming the equivalent output function - * - * Each function returns TRUE if process is to continue - */ -foreach_output_function(PLA, func, func1) -pPLA PLA; -int (*func)(); -int (*func1)(); -{ - pPLA PLA1; - int i; - - /* Loop for each output function */ - for(i = 0; i < cube.part_size[cube.output]; i++) { - - /* cofactor on the output part */ - PLA1 = new_PLA(); - PLA1->F = cof_output(PLA->F, i + cube.first_part[cube.output]); - PLA1->R = cof_output(PLA->R, i + cube.first_part[cube.output]); - PLA1->D = cof_output(PLA->D, i + cube.first_part[cube.output]); - - /* Call a routine to do something with the cover */ - if ((*func)(PLA1, i) == 0) { - free_PLA(PLA1); - return; - } - - /* intersect with the particular output part again */ - PLA1->F = uncof_output(PLA1->F, i + cube.first_part[cube.output]); - PLA1->R = uncof_output(PLA1->R, i + cube.first_part[cube.output]); - PLA1->D = uncof_output(PLA1->D, i + cube.first_part[cube.output]); - - /* Call a routine to do something with the final result */ - if ((*func1)(PLA1, i) == 0) { - free_PLA(PLA1); - return; - } - - /* Cleanup for next go-around */ - free_PLA(PLA1); - - - } -} - -static pcover Fmin; -static pcube phase; - -/* - * minimize each output function individually - */ -void so_espresso(PLA, strategy) -pPLA PLA; -int strategy; -{ - Fmin = new_cover(PLA->F->count); - if (strategy == 0) { - foreach_output_function(PLA, so_do_espresso, so_save); - } else { - foreach_output_function(PLA, so_do_exact, so_save); - } - sf_free(PLA->F); - PLA->F = Fmin; -} - - -/* - * minimize each output function, choose function or complement based on the - * one with the fewer number of terms - */ -void so_both_espresso(PLA, strategy) -pPLA PLA; -int strategy; -{ - phase = set_save(cube.fullset); - Fmin = new_cover(PLA->F->count); - if (strategy == 0) { - foreach_output_function(PLA, so_both_do_espresso, so_both_save); - } else { - foreach_output_function(PLA, so_both_do_exact, so_both_save); - } - sf_free(PLA->F); - PLA->F = Fmin; - PLA->phase = phase; -} - - -int so_do_espresso(PLA, i) -pPLA PLA; -int i; -{ - char word[32]; - - /* minimize the single-output function (on-set) */ - skip_make_sparse = 1; - (void) sprintf(word, "ESPRESSO-POS(%d)", i); - EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F); - return 1; -} - - -int so_do_exact(PLA, i) -pPLA PLA; -int i; -{ - char word[32]; - - /* minimize the single-output function (on-set) */ - skip_make_sparse = 1; - (void) sprintf(word, "EXACT-POS(%d)", i); - EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F); - return 1; -} - - -/*ARGSUSED*/ -int so_save(PLA, i) -pPLA PLA; -int i; -{ - Fmin = sf_append(Fmin, PLA->F); /* disposes of PLA->F */ - PLA->F = NULL; - return 1; -} - - -int so_both_do_espresso(PLA, i) -pPLA PLA; -int i; -{ - char word[32]; - - /* minimize the single-output function (on-set) */ - (void) sprintf(word, "ESPRESSO-POS(%d)", i); - skip_make_sparse = 1; - EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), word, PLA->F); - - /* minimize the single-output function (off-set) */ - (void) sprintf(word, "ESPRESSO-NEG(%d)", i); - skip_make_sparse = 1; - EXEC_S(PLA->R = espresso(PLA->R, PLA->D, PLA->F), word, PLA->R); - - return 1; -} - - -int so_both_do_exact(PLA, i) -pPLA PLA; -int i; -{ - char word[32]; - - /* minimize the single-output function (on-set) */ - (void) sprintf(word, "EXACT-POS(%d)", i); - skip_make_sparse = 1; - EXEC_S(PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1), word, PLA->F); - - /* minimize the single-output function (off-set) */ - (void) sprintf(word, "EXACT-NEG(%d)", i); - skip_make_sparse = 1; - EXEC_S(PLA->R = minimize_exact(PLA->R, PLA->D, PLA->F, 1), word, PLA->R); - - return 1; -} - - -int so_both_save(PLA, i) -pPLA PLA; -int i; -{ - if (PLA->F->count > PLA->R->count) { - sf_free(PLA->F); - PLA->F = PLA->R; - PLA->R = NULL; - i += cube.first_part[cube.output]; - set_remove(phase, i); - } else { - sf_free(PLA->R); - PLA->R = NULL; - } - Fmin = sf_append(Fmin, PLA->F); - PLA->F = NULL; - return 1; -} diff --git a/src/misc/espresso/cvrmisc.c b/src/misc/espresso/cvrmisc.c deleted file mode 100644 index 0f3de195..00000000 --- a/src/misc/espresso/cvrmisc.c +++ /dev/null @@ -1,142 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - - -/* cost -- compute the cost of a cover */ -void cover_cost(F, cost) -IN pcover F; -INOUT pcost cost; -{ - register pcube p, last; - pcube *T; - int var; - - /* use the routine used by cofactor to decide splitting variables */ - massive_count(T = cube1list(F)); - free_cubelist(T); - - cost->cubes = F->count; - cost->total = cost->in = cost->out = cost->mv = cost->primes = 0; - - /* Count transistors (zeros) for each binary variable (inputs) */ - for(var = 0; var < cube.num_binary_vars; var++) - cost->in += cdata.var_zeros[var]; - - /* Count transistors for each mv variable based on sparse/dense */ - for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) - if (cube.sparse[var]) - cost->mv += F->count * cube.part_size[var] - cdata.var_zeros[var]; - else - cost->mv += cdata.var_zeros[var]; - - /* Count the transistors (ones) for the output variable */ - if (cube.num_binary_vars != cube.num_vars) { - var = cube.num_vars - 1; - cost->out = F->count * cube.part_size[var] - cdata.var_zeros[var]; - } - - /* Count the number of nonprime cubes */ - foreach_set(F, last, p) - cost->primes += TESTP(p, PRIME) != 0; - - /* Count the total number of literals */ - cost->total = cost->in + cost->out + cost->mv; -} - - -/* fmt_cost -- return a string which reports the "cost" of a cover */ -char *fmt_cost(cost) -IN pcost cost; -{ - static char s[200]; - - if (cube.num_binary_vars == cube.num_vars - 1) - (void) sprintf(s, "c=%d(%d) in=%d out=%d tot=%d", - cost->cubes, cost->cubes - cost->primes, cost->in, - cost->out, cost->total); - else - (void) sprintf(s, "c=%d(%d) in=%d mv=%d out=%d", - cost->cubes, cost->cubes - cost->primes, cost->in, - cost->mv, cost->out); - return s; -} - - -char *print_cost(F) -IN pcover F; -{ - cost_t cost; - cover_cost(F, &cost); - return fmt_cost(&cost); -} - - -/* copy_cost -- copy a cost function from s to d */ -void copy_cost(s, d) -pcost s, d; -{ - d->cubes = s->cubes; - d->in = s->in; - d->out = s->out; - d->mv = s->mv; - d->total = s->total; - d->primes = s->primes; -} - - -/* size_stamp -- print single line giving the size of a cover */ -void size_stamp(T, name) -IN pcover T; -IN char *name; -{ - (void) printf("# %s\tCost is %s\n", name, print_cost(T)); - (void) fflush(stdout); -} - - -/* print_trace -- print a line reporting size and time after a function */ -void print_trace(T, name, time) -pcover T; -char *name; -long time; -{ - (void) printf("# %s\tTime was %s, cost is %s\n", - name, print_time(time), print_cost(T)); - (void) fflush(stdout); -} - - -/* totals -- add time spent in the function into the totals */ -void totals(time, i, T, cost) -long time; -int i; -pcover T; -pcost cost; -{ - time = ptime() - time; - total_time[i] += time; - total_calls[i]++; - cover_cost(T, cost); - if (trace) { - (void) printf("# %s\tTime was %s, cost is %s\n", - total_name[i], print_time(time), fmt_cost(cost)); - (void) fflush(stdout); - } -} - - -/* fatal -- report fatal error message and take a dive */ -void fatal(s) -char *s; -{ - (void) fprintf(stderr, "espresso: %s\n", s); - exit(1); -} diff --git a/src/misc/espresso/cvrout.c b/src/misc/espresso/cvrout.c deleted file mode 100644 index 4bd1c53b..00000000 --- a/src/misc/espresso/cvrout.c +++ /dev/null @@ -1,609 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: cvrout.c - purpose: cube and cover output routines -*/ - -#include "espresso.h" - -void fprint_pla(fp, PLA, output_type) -INOUT FILE *fp; -IN pPLA PLA; -IN int output_type; -{ - int num; - register pcube last, p; - - if ((output_type & CONSTRAINTS_type) != 0) { - output_symbolic_constraints(fp, PLA, 0); - output_type &= ~ CONSTRAINTS_type; - if (output_type == 0) { - return; - } - } - - if ((output_type & SYMBOLIC_CONSTRAINTS_type) != 0) { - output_symbolic_constraints(fp, PLA, 1); - output_type &= ~ SYMBOLIC_CONSTRAINTS_type; - if (output_type == 0) { - return; - } - } - - if (output_type == PLEASURE_type) { - pls_output(PLA); - } else if (output_type == EQNTOTT_type) { - eqn_output(PLA); - } else if (output_type == KISS_type) { - kiss_output(fp, PLA); - } else { - fpr_header(fp, PLA, output_type); - - num = 0; - if (output_type & F_type) num += (PLA->F)->count; - if (output_type & D_type) num += (PLA->D)->count; - if (output_type & R_type) num += (PLA->R)->count; - (void) fprintf(fp, ".p %d\n", num); - - /* quick patch 01/17/85 to support TPLA ! */ - if (output_type == F_type) { - foreach_set(PLA->F, last, p) { - print_cube(fp, p, "01"); - } - (void) fprintf(fp, ".e\n"); - } else { - if (output_type & F_type) { - foreach_set(PLA->F, last, p) { - print_cube(fp, p, "~1"); - } - } - if (output_type & D_type) { - foreach_set(PLA->D, last, p) { - print_cube(fp, p, "~2"); - } - } - if (output_type & R_type) { - foreach_set(PLA->R, last, p) { - print_cube(fp, p, "~0"); - } - } - (void) fprintf(fp, ".end\n"); - } - } -} - -void fpr_header(fp, PLA, output_type) -FILE *fp; -pPLA PLA; -int output_type; -{ - register int i, var; - int first, last; - - /* .type keyword gives logical type */ - if (output_type != F_type) { - (void) fprintf(fp, ".type "); - if (output_type & F_type) putc('f', fp); - if (output_type & D_type) putc('d', fp); - if (output_type & R_type) putc('r', fp); - putc('\n', fp); - } - - /* Check for binary or multiple-valued labels */ - if (cube.num_mv_vars <= 1) { - (void) fprintf(fp, ".i %d\n", cube.num_binary_vars); - if (cube.output != -1) - (void) fprintf(fp, ".o %d\n", cube.part_size[cube.output]); - } else { - (void) fprintf(fp, ".mv %d %d", cube.num_vars, cube.num_binary_vars); - for(var = cube.num_binary_vars; var < cube.num_vars; var++) - (void) fprintf(fp, " %d", cube.part_size[var]); - (void) fprintf(fp, "\n"); - } - - /* binary valued labels */ - if (PLA->label != NIL(char *) && PLA->label[1] != NIL(char) - && cube.num_binary_vars > 0) { - (void) fprintf(fp, ".ilb"); - for(var = 0; var < cube.num_binary_vars; var++) - /* see (NIL) OUTLABELS comment below */ - if(INLABEL(var) == NIL(char)){ - (void) fprintf(fp, " (null)"); - } - else{ - (void) fprintf(fp, " %s", INLABEL(var)); - } - putc('\n', fp); - } - - /* output-part (last multiple-valued variable) labels */ - if (PLA->label != NIL(char *) && - PLA->label[cube.first_part[cube.output]] != NIL(char) - && cube.output != -1) { - (void) fprintf(fp, ".ob"); - for(i = 0; i < cube.part_size[cube.output]; i++) - /* (NIL) OUTLABELS caused espresso to segfault under solaris */ - if(OUTLABEL(i) == NIL(char)){ - (void) fprintf(fp, " (null)"); - } - else{ - (void) fprintf(fp, " %s", OUTLABEL(i)); - } - putc('\n', fp); - } - - /* multiple-valued labels */ - for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) { - first = cube.first_part[var]; - last = cube.last_part[var]; - if (PLA->label != NULL && PLA->label[first] != NULL) { - (void) fprintf(fp, ".label var=%d", var); - for(i = first; i <= last; i++) { - (void) fprintf(fp, " %s", PLA->label[i]); - } - putc('\n', fp); - } - } - - if (PLA->phase != (pcube) NULL) { - first = cube.first_part[cube.output]; - last = cube.last_part[cube.output]; - (void) fprintf(fp, "#.phase "); - for(i = first; i <= last; i++) - putc(is_in_set(PLA->phase,i) ? '1' : '0', fp); - (void) fprintf(fp, "\n"); - } -} - -void pls_output(PLA) -IN pPLA PLA; -{ - register pcube last, p; - - (void) printf(".option unmerged\n"); - makeup_labels(PLA); - pls_label(PLA, stdout); - pls_group(PLA, stdout); - (void) printf(".p %d\n", PLA->F->count); - foreach_set(PLA->F, last, p) { - print_expanded_cube(stdout, p, PLA->phase); - } - (void) printf(".end\n"); -} - - -void pls_group(PLA, fp) -pPLA PLA; -FILE *fp; -{ - int var, i, col, len; - - (void) fprintf(fp, "\n.group"); - col = 6; - for(var = 0; var < cube.num_vars-1; var++) { - (void) fprintf(fp, " ("), col += 2; - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - len = strlen(PLA->label[i]); - if (col + len > 75) - (void) fprintf(fp, " \\\n"), col = 0; - else if (i != 0) - putc(' ', fp), col += 1; - (void) fprintf(fp, "%s", PLA->label[i]), col += len; - } - (void) fprintf(fp, ")"), col += 1; - } - (void) fprintf(fp, "\n"); -} - - -void pls_label(PLA, fp) -pPLA PLA; -FILE *fp; -{ - int var, i, col, len; - - (void) fprintf(fp, ".label"); - col = 6; - for(var = 0; var < cube.num_vars; var++) - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - len = strlen(PLA->label[i]); - if (col + len > 75) - (void) fprintf(fp, " \\\n"), col = 0; - else - putc(' ', fp), col += 1; - (void) fprintf(fp, "%s", PLA->label[i]), col += len; - } -} - - - -/* - eqntott output mode -- output algebraic equations -*/ -void eqn_output(PLA) -pPLA PLA; -{ - register pcube p, last; - register int i, var, col, len; - int x; - bool firstand, firstor; - - if (cube.output == -1) - fatal("Cannot have no-output function for EQNTOTT output mode"); - if (cube.num_mv_vars != 1) - fatal("Must have binary-valued function for EQNTOTT output mode"); - makeup_labels(PLA); - - /* Write a single equation for each output */ - for(i = 0; i < cube.part_size[cube.output]; i++) { - (void) printf("%s = ", OUTLABEL(i)); - col = strlen(OUTLABEL(i)) + 3; - firstor = TRUE; - - /* Write product terms for each cube in this output */ - foreach_set(PLA->F, last, p) - if (is_in_set(p, i + cube.first_part[cube.output])) { - if (firstor) - (void) printf("("), col += 1; - else - (void) printf(" | ("), col += 4; - firstor = FALSE; - firstand = TRUE; - - /* print out a product term */ - for(var = 0; var < cube.num_binary_vars; var++) - if ((x=GETINPUT(p, var)) != DASH) { - len = strlen(INLABEL(var)); - if (col+len > 72) - (void) printf("\n "), col = 4; - if (! firstand) - (void) printf("&"), col += 1; - firstand = FALSE; - if (x == ZERO) - (void) printf("!"), col += 1; - (void) printf("%s", INLABEL(var)), col += len; - } - (void) printf(")"), col += 1; - } - (void) printf(";\n\n"); - } -} - - -char *fmt_cube(c, out_map, s) -register pcube c; -register char *out_map, *s; -{ - register int i, var, last, len = 0; - - for(var = 0; var < cube.num_binary_vars; var++) { - s[len++] = "?01-" [GETINPUT(c, var)]; - } - for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) { - s[len++] = ' '; - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - s[len++] = "01" [is_in_set(c, i) != 0]; - } - } - if (cube.output != -1) { - last = cube.last_part[cube.output]; - s[len++] = ' '; - for(i = cube.first_part[cube.output]; i <= last; i++) { - s[len++] = out_map [is_in_set(c, i) != 0]; - } - } - s[len] = '\0'; - return s; -} - - -void print_cube(fp, c, out_map) -register FILE *fp; -register pcube c; -register char *out_map; -{ - register int i, var, ch; - int last; - - for(var = 0; var < cube.num_binary_vars; var++) { - ch = "?01-" [GETINPUT(c, var)]; - putc(ch, fp); - } - for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) { - putc(' ', fp); - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - ch = "01" [is_in_set(c, i) != 0]; - putc(ch, fp); - } - } - if (cube.output != -1) { - last = cube.last_part[cube.output]; - putc(' ', fp); - for(i = cube.first_part[cube.output]; i <= last; i++) { - ch = out_map [is_in_set(c, i) != 0]; - putc(ch, fp); - } - } - putc('\n', fp); -} - - -void print_expanded_cube(fp, c, phase) -register FILE *fp; -register pcube c; -pcube phase; -{ - register int i, var, ch; - char *out_map; - - for(var = 0; var < cube.num_binary_vars; var++) { - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - ch = "~1" [is_in_set(c, i) != 0]; - putc(ch, fp); - } - } - for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) { - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - ch = "1~" [is_in_set(c, i) != 0]; - putc(ch, fp); - } - } - if (cube.output != -1) { - var = cube.num_vars - 1; - putc(' ', fp); - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - if (phase == (pcube) NULL || is_in_set(phase, i)) { - out_map = "~1"; - } else { - out_map = "~0"; - } - ch = out_map[is_in_set(c, i) != 0]; - putc(ch, fp); - } - } - putc('\n', fp); -} - - -char *pc1(c) pcube c; -{static char s1[256];return fmt_cube(c, "01", s1);} -char *pc2(c) pcube c; -{static char s2[256];return fmt_cube(c, "01", s2);} - - -void debug_print(T, name, level) -pcube *T; -char *name; -int level; -{ - register pcube *T1, p, temp; - register int cnt; - - cnt = CUBELISTSIZE(T); - temp = new_cube(); - if (verbose_debug && level == 0) - (void) printf("\n"); - (void) printf("%s[%d]: ord(T)=%d\n", name, level, cnt); - if (verbose_debug) { - (void) printf("cofactor=%s\n", pc1(T[0])); - for(T1 = T+2, cnt = 1; (p = *T1++) != (pcube) NULL; cnt++) - (void) printf("%4d. %s\n", cnt, pc1(set_or(temp, p, T[0]))); - } - free_cube(temp); -} - - -void debug1_print(T, name, num) -pcover T; -char *name; -int num; -{ - register int cnt = 1; - register pcube p, last; - - if (verbose_debug && num == 0) - (void) printf("\n"); - (void) printf("%s[%d]: ord(T)=%d\n", name, num, T->count); - if (verbose_debug) - foreach_set(T, last, p) - (void) printf("%4d. %s\n", cnt++, pc1(p)); -} - - -void cprint(T) -pcover T; -{ - register pcube p, last; - - foreach_set(T, last, p) - (void) printf("%s\n", pc1(p)); -} - - -int makeup_labels(PLA) -pPLA PLA; -{ - int var, i, ind; - - if (PLA->label == (char **) NULL) - PLA_labels(PLA); - - for(var = 0; var < cube.num_vars; var++) - for(i = 0; i < cube.part_size[var]; i++) { - ind = cube.first_part[var] + i; - if (PLA->label[ind] == (char *) NULL) { - PLA->label[ind] = ALLOC(char, 15); - if (var < cube.num_binary_vars) - if ((i % 2) == 0) - (void) sprintf(PLA->label[ind], "v%d.bar", var); - else - (void) sprintf(PLA->label[ind], "v%d", var); - else - (void) sprintf(PLA->label[ind], "v%d.%d", var, i); - } - } -} - - -kiss_output(fp, PLA) -FILE *fp; -pPLA PLA; -{ - register pset last, p; - - foreach_set(PLA->F, last, p) { - kiss_print_cube(fp, PLA, p, "~1"); - } - foreach_set(PLA->D, last, p) { - kiss_print_cube(fp, PLA, p, "~2"); - } -} - - -kiss_print_cube(fp, PLA, p, out_string) -FILE *fp; -pPLA PLA; -pcube p; -char *out_string; -{ - register int i, var; - int part, x; - - for(var = 0; var < cube.num_binary_vars; var++) { - x = "?01-" [GETINPUT(p, var)]; - putc(x, fp); - } - - for(var = cube.num_binary_vars; var < cube.num_vars - 1; var++) { - putc(' ', fp); - if (setp_implies(cube.var_mask[var], p)) { - putc('-', fp); - } else { - part = -1; - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - if (is_in_set(p, i)) { - if (part != -1) { - fatal("more than 1 part in a symbolic variable\n"); - } - part = i; - } - } - if (part == -1) { - putc('~', fp); /* no parts, hope its an output ... */ - } else { - (void) fputs(PLA->label[part], fp); - } - } - } - - if ((var = cube.output) != -1) { - putc(' ', fp); - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - x = out_string [is_in_set(p, i) != 0]; - putc(x, fp); - } - } - - putc('\n', fp); -} - -output_symbolic_constraints(fp, PLA, output_symbolic) -FILE *fp; -pPLA PLA; -int output_symbolic; -{ - pset_family A; - register int i, j; - int size, var, npermute, *permute, *weight, noweight; - - if ((cube.num_vars - cube.num_binary_vars) <= 1) { - return; - } - makeup_labels(PLA); - - for(var=cube.num_binary_vars; var < cube.num_vars-1; var++) { - - /* pull out the columns for variable "var" */ - npermute = cube.part_size[var]; - permute = ALLOC(int, npermute); - for(i=0; i < npermute; i++) { - permute[i] = cube.first_part[var] + i; - } - A = sf_permute(sf_save(PLA->F), permute, npermute); - FREE(permute); - - - /* Delete the singletons and the full sets */ - noweight = 0; - for(i = 0; i < A->count; i++) { - size = set_ord(GETSET(A,i)); - if (size == 1 || size == A->sf_size) { - sf_delset(A, i--); - noweight++; - } - } - - - /* Count how many times each is duplicated */ - weight = ALLOC(int, A->count); - for(i = 0; i < A->count; i++) { - RESET(GETSET(A, i), COVERED); - } - for(i = 0; i < A->count; i++) { - weight[i] = 0; - if (! TESTP(GETSET(A,i), COVERED)) { - weight[i] = 1; - for(j = i+1; j < A->count; j++) { - if (setp_equal(GETSET(A,i), GETSET(A,j))) { - weight[i]++; - SET(GETSET(A,j), COVERED); - } - } - } - } - - - /* Print out the contraints */ - if (! output_symbolic) { - (void) fprintf(fp, - "# Symbolic constraints for variable %d (Numeric form)\n", var); - (void) fprintf(fp, "# unconstrained weight = %d\n", noweight); - (void) fprintf(fp, "num_codes=%d\n", cube.part_size[var]); - for(i = 0; i < A->count; i++) { - if (weight[i] > 0) { - (void) fprintf(fp, "weight=%d: ", weight[i]); - for(j = 0; j < A->sf_size; j++) { - if (is_in_set(GETSET(A,i), j)) { - (void) fprintf(fp, " %d", j); - } - } - (void) fprintf(fp, "\n"); - } - } - } else { - (void) fprintf(fp, - "# Symbolic constraints for variable %d (Symbolic form)\n", var); - for(i = 0; i < A->count; i++) { - if (weight[i] > 0) { - (void) fprintf(fp, "# w=%d: (", weight[i]); - for(j = 0; j < A->sf_size; j++) { - if (is_in_set(GETSET(A,i), j)) { - (void) fprintf(fp, " %s", - PLA->label[cube.first_part[var]+j]); - } - } - (void) fprintf(fp, " )\n"); - } - } - FREE(weight); - } - } -} diff --git a/src/misc/espresso/dominate.c b/src/misc/espresso/dominate.c deleted file mode 100644 index a930d453..00000000 --- a/src/misc/espresso/dominate.c +++ /dev/null @@ -1,98 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "mincov_int.h" - - -int -sm_row_dominance(A) -sm_matrix *A; -{ - register sm_row *prow, *prow1; - register sm_col *pcol, *least_col; - register sm_element *p, *pnext; - int rowcnt; - - rowcnt = A->nrows; - - /* Check each row against all other rows */ - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - - /* Among all columns with a 1 in this row, choose smallest */ - least_col = sm_get_col(A, prow->first_col->col_num); - for(p = prow->first_col->next_col; p != 0; p = p->next_col) { - pcol = sm_get_col(A, p->col_num); - if (pcol->length < least_col->length) { - least_col = pcol; - } - } - - /* Only check for containment against rows in this column */ - for(p = least_col->first_row; p != 0; p = pnext) { - pnext = p->next_row; - - prow1 = sm_get_row(A, p->row_num); - if ((prow1->length > prow->length) || - (prow1->length == prow->length && - prow1->row_num > prow->row_num)) { - if (sm_row_contains(prow, prow1)) { - sm_delrow(A, prow1->row_num); - } - } - } - } - - return rowcnt - A->nrows; -} - -int -sm_col_dominance(A, weight) -sm_matrix *A; -int *weight; -{ - register sm_row *prow; - register sm_col *pcol, *pcol1; - register sm_element *p; - sm_row *least_row; - sm_col *next_col; - int colcnt; - - colcnt = A->ncols; - - /* Check each column against all other columns */ - for(pcol = A->first_col; pcol != 0; pcol = next_col) { - next_col = pcol->next_col; - - /* Check all rows to find the one with fewest elements */ - least_row = sm_get_row(A, pcol->first_row->row_num); - for(p = pcol->first_row->next_row; p != 0; p = p->next_row) { - prow = sm_get_row(A, p->row_num); - if (prow->length < least_row->length) { - least_row = prow; - } - } - - /* Only check for containment against columns in this row */ - for(p = least_row->first_col; p != 0; p = p->next_col) { - pcol1 = sm_get_col(A, p->col_num); - if (weight != 0 && weight[pcol1->col_num] > weight[pcol->col_num]) - continue; - if ((pcol1->length > pcol->length) || - (pcol1->length == pcol->length && - pcol1->col_num > pcol->col_num)) { - if (sm_col_contains(pcol, pcol1)) { - sm_delcol(A, pcol->col_num); - break; - } - } - } - } - - return colcnt - A->ncols; -} diff --git a/src/misc/espresso/equiv.c b/src/misc/espresso/equiv.c deleted file mode 100644 index ba898a70..00000000 --- a/src/misc/espresso/equiv.c +++ /dev/null @@ -1,94 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - - -find_equiv_outputs(PLA) -pPLA PLA; -{ - int i, j, ipart, jpart, some_equiv; - pcover *R, *F; - - some_equiv = FALSE; - - makeup_labels(PLA); - - F = ALLOC(pcover, cube.part_size[cube.output]); - R = ALLOC(pcover, cube.part_size[cube.output]); - - for(i = 0; i < cube.part_size[cube.output]; i++) { - ipart = cube.first_part[cube.output] + i; - R[i] = cof_output(PLA->R, ipart); - F[i] = complement(cube1list(R[i])); - } - - for(i = 0; i < cube.part_size[cube.output]-1; i++) { - for(j = i+1; j < cube.part_size[cube.output]; j++) { - ipart = cube.first_part[cube.output] + i; - jpart = cube.first_part[cube.output] + j; - - if (check_equiv(F[i], F[j])) { - (void) printf("# Outputs %d and %d (%s and %s) are equivalent\n", - i, j, PLA->label[ipart], PLA->label[jpart]); - some_equiv = TRUE; - } else if (check_equiv(F[i], R[j])) { - (void) printf("# Outputs %d and NOT %d (%s and %s) are equivalent\n", - i, j, PLA->label[ipart], PLA->label[jpart]); - some_equiv = TRUE; - } else if (check_equiv(R[i], F[j])) { - (void) printf("# Outputs NOT %d and %d (%s and %s) are equivalent\n", - i, j, PLA->label[ipart], PLA->label[jpart]); - some_equiv = TRUE; - } else if (check_equiv(R[i], R[j])) { - (void) printf("# Outputs NOT %d and NOT %d (%s and %s) are equivalent\n", - i, j, PLA->label[ipart], PLA->label[jpart]); - some_equiv = TRUE; - } - } - } - - if (! some_equiv) { - (void) printf("# No outputs are equivalent\n"); - } - - for(i = 0; i < cube.part_size[cube.output]; i++) { - free_cover(F[i]); - free_cover(R[i]); - } - FREE(F); - FREE(R); -} - - - -int check_equiv(f1, f2) -pcover f1, f2; -{ - register pcube *f1list, *f2list; - register pcube p, last; - - f1list = cube1list(f1); - foreach_set(f2, last, p) { - if (! cube_is_covered(f1list, p)) { - return FALSE; - } - } - free_cubelist(f1list); - - f2list = cube1list(f2); - foreach_set(f1, last, p) { - if (! cube_is_covered(f2list, p)) { - return FALSE; - } - } - free_cubelist(f2list); - - return TRUE; -} diff --git a/src/misc/espresso/espresso.c b/src/misc/espresso/espresso.c deleted file mode 100644 index 8f05d43f..00000000 --- a/src/misc/espresso/espresso.c +++ /dev/null @@ -1,139 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - * Module: espresso.c - * Purpose: The main espresso algorithm - * - * Returns a minimized version of the ON-set of a function - * - * The following global variables affect the operation of Espresso: - * - * MISCELLANEOUS: - * trace - * print trace information as the minimization progresses - * - * remove_essential - * remove essential primes - * - * single_expand - * if true, stop after first expand/irredundant - * - * LAST_GASP or SUPER_GASP strategy: - * use_super_gasp - * uses the super_gasp strategy rather than last_gasp - * - * SETUP strategy: - * recompute_onset - * recompute onset using the complement before starting - * - * unwrap_onset - * unwrap the function output part before first expand - * - * MAKE_SPARSE strategy: - * force_irredundant - * iterates make_sparse to force a minimal solution (used - * indirectly by make_sparse) - * - * skip_make_sparse - * skip the make_sparse step (used by opo only) - */ - -#include "espresso.h" - -pcover espresso(F, D1, R) -pcover F, D1, R; -{ - pcover E, D, Fsave; - pset last, p; - cost_t cost, best_cost; - -begin: - Fsave = sf_save(F); /* save original function */ - D = sf_save(D1); /* make a scratch copy of D */ - - /* Setup has always been a problem */ - if (recompute_onset) { - EXEC(E = simplify(cube1list(F)), "SIMPLIFY ", E); - free_cover(F); - F = E; - } - cover_cost(F, &cost); - if (unwrap_onset && (cube.part_size[cube.num_vars - 1] > 1) - && (cost.out != cost.cubes*cube.part_size[cube.num_vars-1]) - && (cost.out < 5000)) - EXEC(F = sf_contain(unravel(F, cube.num_vars - 1)), "SETUP ", F); - - /* Initial expand and irredundant */ - foreach_set(F, last, p) { - RESET(p, PRIME); - } - EXECUTE(F = expand(F, R, FALSE), EXPAND_TIME, F, cost); - EXECUTE(F = irredundant(F, D), IRRED_TIME, F, cost); - - if (! single_expand) { - if (remove_essential) { - EXECUTE(E = essential(&F, &D), ESSEN_TIME, E, cost); - } else { - E = new_cover(0); - } - - cover_cost(F, &cost); - do { - - /* Repeat inner loop until solution becomes "stable" */ - do { - copy_cost(&cost, &best_cost); - EXECUTE(F = reduce(F, D), REDUCE_TIME, F, cost); - EXECUTE(F = expand(F, R, FALSE), EXPAND_TIME, F, cost); - EXECUTE(F = irredundant(F, D), IRRED_TIME, F, cost); - } while (cost.cubes < best_cost.cubes); - - /* Perturb solution to see if we can continue to iterate */ - copy_cost(&cost, &best_cost); - if (use_super_gasp) { - F = super_gasp(F, D, R, &cost); - if (cost.cubes >= best_cost.cubes) - break; - } else { - F = last_gasp(F, D, R, &cost); - } - - } while (cost.cubes < best_cost.cubes || - (cost.cubes == best_cost.cubes && cost.total < best_cost.total)); - - /* Append the essential cubes to F */ - F = sf_append(F, E); /* disposes of E */ - if (trace) size_stamp(F, "ADJUST "); - } - - /* Free the D which we used */ - free_cover(D); - - /* Attempt to make the PLA matrix sparse */ - if (! skip_make_sparse) { - F = make_sparse(F, D1, R); - } - - /* - * Check to make sure function is actually smaller !! - * This can only happen because of the initial unravel. If we fail, - * then run the whole thing again without the unravel. - */ - if (Fsave->count < F->count) { - free_cover(F); - F = Fsave; - unwrap_onset = FALSE; - goto begin; - } else { - free_cover(Fsave); - } - - return F; -} diff --git a/src/misc/espresso/espresso.h b/src/misc/espresso/espresso.h deleted file mode 100644 index 1c7a8646..00000000 --- a/src/misc/espresso/espresso.h +++ /dev/null @@ -1,782 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - * espresso.h -- header file for Espresso-mv - */ - -//#include "port.h" -//#include "utility.h" -#include "sparse.h" -#include "mincov.h" - -#include "util_hack.h" // added - -#define ptime() util_cpu_time() -#define print_time(t) util_print_time(t) - -#ifdef IBM_WATC -#define void int -#include "short.h" -#endif - -#ifdef IBMPC /* set default options for IBM/PC */ -#define NO_INLINE -#define BPI 16 -#endif - -/*-----THIS USED TO BE set.h----- */ - -/* - * set.h -- definitions for packed arrays of bits - * - * This header file describes the data structures which comprise a - * facility for efficiently implementing packed arrays of bits - * (otherwise known as sets, cf. Pascal). - * - * A set is a vector of bits and is implemented here as an array of - * unsigned integers. The low order bits of set[0] give the index of - * the last word of set data. The higher order bits of set[0] are - * used to store data associated with the set. The set data is - * contained in elements set[1] ... set[LOOP(set)] as a packed bit - * array. - * - * A family of sets is a two-dimensional matrix of bits and is - * implemented with the data type "set_family". - * - * BPI == 32 and BPI == 16 have been tested and work. - */ - - -/* Define host machine characteristics of "unsigned int" */ -#ifndef BPI -#define BPI 32 /* # bits per integer */ -#endif - -#if BPI == 32 -#define LOGBPI 5 /* log(BPI)/log(2) */ -#else -#define LOGBPI 4 /* log(BPI)/log(2) */ -#endif - -/* Define the set type */ -typedef unsigned int *pset; - -/* Define the set family type -- an array of sets */ -typedef struct set_family { - int wsize; /* Size of each set in 'ints' */ - int sf_size; /* User declared set size */ - int capacity; /* Number of sets allocated */ - int count; /* The number of sets in the family */ - int active_count; /* Number of "active" sets */ - pset data; /* Pointer to the set data */ - struct set_family *next; /* For garbage collection */ -} set_family_t, *pset_family; - -/* Macros to set and test single elements */ -#define WHICH_WORD(element) (((element) >> LOGBPI) + 1) -#define WHICH_BIT(element) ((element) & (BPI-1)) - -/* # of ints needed to allocate a set with "size" elements */ -#if BPI == 32 -#define SET_SIZE(size) ((size) <= BPI ? 2 : (WHICH_WORD((size)-1) + 1)) -#else -#define SET_SIZE(size) ((size) <= BPI ? 3 : (WHICH_WORD((size)-1) + 2)) -#endif - -/* - * Three fields are maintained in the first word of the set - * LOOP is the index of the last word used for set data - * LOOPCOPY is the index of the last word in the set - * SIZE is available for general use (e.g., recording # elements in set) - * NELEM retrieves the number of elements in the set - */ -#define LOOP(set) (set[0] & 0x03ff) -#define PUTLOOP(set, i) (set[0] &= ~0x03ff, set[0] |= (i)) -#if BPI == 32 -#define LOOPCOPY(set) LOOP(set) -#define SIZE(set) (set[0] >> 16) -#define PUTSIZE(set, size) (set[0] &= 0xffff, set[0] |= ((size) << 16)) -#else -#define LOOPCOPY(set) (LOOP(set) + 1) -#define SIZE(set) (set[LOOP(set)+1]) -#define PUTSIZE(set, size) ((set[LOOP(set)+1]) = (size)) -#endif - -#define NELEM(set) (BPI * LOOP(set)) -#define LOOPINIT(size) ((size <= BPI) ? 1 : WHICH_WORD((size)-1)) - -/* - * FLAGS store general information about the set - */ -#define SET(set, flag) (set[0] |= (flag)) -#define RESET(set, flag) (set[0] &= ~ (flag)) -#define TESTP(set, flag) (set[0] & (flag)) - -/* Flag definitions are ... */ -#define PRIME 0x8000 /* cube is prime */ -#define NONESSEN 0x4000 /* cube cannot be essential prime */ -#define ACTIVE 0x2000 /* cube is still active */ -#define REDUND 0x1000 /* cube is redundant(at this point) */ -#define COVERED 0x0800 /* cube has been covered */ -#define RELESSEN 0x0400 /* cube is relatively essential */ - -/* Most efficient way to look at all members of a set family */ -#define foreach_set(R, last, p)\ - for(p=R->data,last=p+R->count*R->wsize;p<last;p+=R->wsize) -#define foreach_remaining_set(R, last, pfirst, p)\ - for(p=pfirst+R->wsize,last=R->data+R->count*R->wsize;p<last;p+=R->wsize) -#define foreach_active_set(R, last, p)\ - foreach_set(R,last,p) if (TESTP(p, ACTIVE)) - -/* Another way that also keeps the index of the current set member in i */ -#define foreachi_set(R, i, p)\ - for(p=R->data,i=0;i<R->count;p+=R->wsize,i++) -#define foreachi_active_set(R, i, p)\ - foreachi_set(R,i,p) if (TESTP(p, ACTIVE)) - -/* Looping over all elements in a set: - * foreach_set_element(pset p, int i, unsigned val, int base) { - * . - * . - * . - * } - */ -#define foreach_set_element(p, i, val, base) \ - for(i = LOOP(p); i > 0; ) \ - for(val = p[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) \ - if (val & 1) - -/* Return a pointer to a given member of a set family */ -#define GETSET(family, index) ((family)->data + (family)->wsize * (index)) - -/* Allocate and deallocate sets */ -#define set_new(size) set_clear(ALLOC(unsigned int, SET_SIZE(size)), size) -#define set_full(size) set_fill(ALLOC(unsigned int, SET_SIZE(size)), size) -#define set_save(r) set_copy(ALLOC(unsigned int, SET_SIZE(NELEM(r))), r) -#define set_free(r) FREE(r) - -/* Check for set membership, remove set element and insert set element */ -#define is_in_set(set, e) (set[WHICH_WORD(e)] & (1 << WHICH_BIT(e))) -#define set_remove(set, e) (set[WHICH_WORD(e)] &= ~ (1 << WHICH_BIT(e))) -#define set_insert(set, e) (set[WHICH_WORD(e)] |= 1 << WHICH_BIT(e)) - -/* Inline code substitution for those places that REALLY need it on a VAX */ -#ifdef NO_INLINE -#define INLINEset_copy(r, a) (void) set_copy(r,a) -#define INLINEset_clear(r, size) (void) set_clear(r, size) -#define INLINEset_fill(r, size) (void) set_fill(r, size) -#define INLINEset_and(r, a, b) (void) set_and(r, a, b) -#define INLINEset_or(r, a, b) (void) set_or(r, a, b) -#define INLINEset_diff(r, a, b) (void) set_diff(r, a, b) -#define INLINEset_ndiff(r, a, b, f) (void) set_ndiff(r, a, b, f) -#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b) -#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f) -#define INLINEset_merge(r, a, b, mask) (void) set_merge(r, a, b, mask) -#define INLINEsetp_implies(a, b, when_false) \ - if (! setp_implies(a,b)) when_false -#define INLINEsetp_disjoint(a, b, when_false) \ - if (! setp_disjoint(a,b)) when_false -#define INLINEsetp_equal(a, b, when_false) \ - if (! setp_equal(a,b)) when_false - -#else - -#define INLINEset_copy(r, a)\ - {register int i_=LOOPCOPY(a); do r[i_]=a[i_]; while (--i_>=0);} -#define INLINEset_clear(r, size)\ - {register int i_=LOOPINIT(size); *r=i_; do r[i_] = 0; while (--i_ > 0);} -#define INLINEset_fill(r, size)\ - {register int i_=LOOPINIT(size); *r=i_; \ - r[i_]=((unsigned int)(~0))>>(i_*BPI-size); while(--i_>0) r[i_]=~0;} -#define INLINEset_and(r, a, b)\ - {register int i_=LOOP(a); PUTLOOP(r,i_);\ - do r[i_] = a[i_] & b[i_]; while (--i_>0);} -#define INLINEset_or(r, a, b)\ - {register int i_=LOOP(a); PUTLOOP(r,i_);\ - do r[i_] = a[i_] | b[i_]; while (--i_>0);} -#define INLINEset_diff(r, a, b)\ - {register int i_=LOOP(a); PUTLOOP(r,i_);\ - do r[i_] = a[i_] & ~ b[i_]; while (--i_>0);} -#define INLINEset_ndiff(r, a, b, fullset)\ - {register int i_=LOOP(a); PUTLOOP(r,i_);\ - do r[i_] = fullset[i_] & (a[i_] | ~ b[i_]); while (--i_>0);} -#ifdef IBM_WATC -#define INLINEset_xor(r, a, b) (void) set_xor(r, a, b) -#define INLINEset_xnor(r, a, b, f) (void) set_xnor(r, a, b, f) -#else -#define INLINEset_xor(r, a, b)\ - {register int i_=LOOP(a); PUTLOOP(r,i_);\ - do r[i_] = a[i_] ^ b[i_]; while (--i_>0);} -#define INLINEset_xnor(r, a, b, fullset)\ - {register int i_=LOOP(a); PUTLOOP(r,i_);\ - do r[i_] = fullset[i_] & ~ (a[i_] ^ b[i_]); while (--i_>0);} -#endif -#define INLINEset_merge(r, a, b, mask)\ - {register int i_=LOOP(a); PUTLOOP(r,i_);\ - do r[i_] = (a[i_]&mask[i_]) | (b[i_]&~mask[i_]); while (--i_>0);} -#define INLINEsetp_implies(a, b, when_false)\ - {register int i_=LOOP(a); do if (a[i_]&~b[i_]) break; while (--i_>0);\ - if (i_ != 0) when_false;} -#define INLINEsetp_disjoint(a, b, when_false)\ - {register int i_=LOOP(a); do if (a[i_]&b[i_]) break; while (--i_>0);\ - if (i_ != 0) when_false;} -#define INLINEsetp_equal(a, b, when_false)\ - {register int i_=LOOP(a); do if (a[i_]!=b[i_]) break; while (--i_>0);\ - if (i_ != 0) when_false;} - -#endif - -#if BPI == 32 -#define count_ones(v)\ - (bit_count[v & 255] + bit_count[(v >> 8) & 255]\ - + bit_count[(v >> 16) & 255] + bit_count[(v >> 24) & 255]) -#else -#define count_ones(v) (bit_count[v & 255] + bit_count[(v >> 8) & 255]) -#endif - -/* Table for efficient bit counting */ -extern int bit_count[256]; -/*----- END OF set.h ----- */ - - -/* Define a boolean type */ -#define bool int -#define FALSE 0 -#define TRUE 1 -#define MAYBE 2 -#define print_bool(x) ((x) == 0 ? "FALSE" : ((x) == 1 ? "TRUE" : "MAYBE")) - -/* Map many cube/cover types/routines into equivalent set types/routines */ -#define pcube pset -#define new_cube() set_new(cube.size) -#define free_cube(r) set_free(r) -#define pcover pset_family -#define new_cover(i) sf_new(i, cube.size) -#define free_cover(r) sf_free(r) -#define free_cubelist(T) FREE(T[0]); FREE(T); - - -/* cost_t describes the cost of a cover */ -typedef struct cost_struct { - int cubes; /* number of cubes in the cover */ - int in; /* transistor count, binary-valued variables */ - int out; /* transistor count, output part */ - int mv; /* transistor count, multiple-valued vars */ - int total; /* total number of transistors */ - int primes; /* number of prime cubes */ -} cost_t, *pcost; - - -/* pair_t describes bit-paired variables */ -typedef struct pair_struct { - int cnt; - int *var1; - int *var2; -} pair_t, *ppair; - - -/* symbolic_list_t describes a single ".symbolic" line */ -typedef struct symbolic_list_struct { - int variable; - int pos; - struct symbolic_list_struct *next; -} symbolic_list_t; - - -/* symbolic_list_t describes a single ".symbolic" line */ -typedef struct symbolic_label_struct { - char *label; - struct symbolic_label_struct *next; -} symbolic_label_t; - - -/* symbolic_t describes a linked list of ".symbolic" lines */ -typedef struct symbolic_struct { - symbolic_list_t *symbolic_list; /* linked list of items */ - int symbolic_list_length; /* length of symbolic_list list */ - symbolic_label_t *symbolic_label; /* linked list of new names */ - int symbolic_label_length; /* length of symbolic_label list */ - struct symbolic_struct *next; -} symbolic_t; - - -/* PLA_t stores the logical representation of a PLA */ -typedef struct { - pcover F, D, R; /* on-set, off-set and dc-set */ - char *filename; /* filename */ - int pla_type; /* logical PLA format */ - pcube phase; /* phase to split into on-set and off-set */ - ppair pair; /* how to pair variables */ - char **label; /* labels for the columns */ - symbolic_t *symbolic; /* allow binary->symbolic mapping */ - symbolic_t *symbolic_output;/* allow symbolic output mapping */ -} PLA_t, *pPLA; - -#define equal(a,b) (strcmp(a,b) == 0) - -/* This is a hack which I wish I hadn't done, but too painful to change */ -#define CUBELISTSIZE(T) (((pcube *) T[1] - T) - 3) - -/* For documentation purposes */ -#define IN -#define OUT -#define INOUT - -/* The pla_type field describes the input and output format of the PLA */ -#define F_type 1 -#define D_type 2 -#define R_type 4 -#define PLEASURE_type 8 /* output format */ -#define EQNTOTT_type 16 /* output format algebraic eqns */ -#define KISS_type 128 /* output format kiss */ -#define CONSTRAINTS_type 256 /* output the constraints (numeric) */ -#define SYMBOLIC_CONSTRAINTS_type 512 /* output the constraints (symbolic) */ -#define FD_type (F_type | D_type) -#define FR_type (F_type | R_type) -#define DR_type (D_type | R_type) -#define FDR_type (F_type | D_type | R_type) - -/* Definitions for the debug variable */ -#define COMPL 0x0001 -#define ESSEN 0x0002 -#define EXPAND 0x0004 -#define EXPAND1 0x0008 -#define GASP 0x0010 -#define IRRED 0x0020 -#define REDUCE 0x0040 -#define REDUCE1 0x0080 -#define SPARSE 0x0100 -#define TAUT 0x0200 -#define EXACT 0x0400 -#define MINCOV 0x0800 -#define MINCOV1 0x1000 -#define SHARP 0x2000 -#define IRRED1 0x4000 - -#define VERSION\ - "UC Berkeley, Espresso Version #2.3, Release date 01/31/88" - -/* Define constants used for recording program statistics */ -#define TIME_COUNT 16 -#define READ_TIME 0 -#define COMPL_TIME 1 -#define ONSET_TIME 2 -#define ESSEN_TIME 3 -#define EXPAND_TIME 4 -#define IRRED_TIME 5 -#define REDUCE_TIME 6 -#define GEXPAND_TIME 7 -#define GIRRED_TIME 8 -#define GREDUCE_TIME 9 -#define PRIMES_TIME 10 -#define MINCOV_TIME 11 -#define MV_REDUCE_TIME 12 -#define RAISE_IN_TIME 13 -#define VERIFY_TIME 14 -#define WRITE_TIME 15 - - -/* For those who like to think about PLAs, macros to get at inputs/outputs */ -#define NUMINPUTS cube.num_binary_vars -#define NUMOUTPUTS cube.part_size[cube.num_vars - 1] - -#define POSITIVE_PHASE(pos)\ - (is_in_set(PLA->phase, cube.first_part[cube.output]+pos) != 0) - -#define INLABEL(var) PLA->label[cube.first_part[var] + 1] -#define OUTLABEL(pos) PLA->label[cube.first_part[cube.output] + pos] - -#define GETINPUT(c, pos)\ - ((c[WHICH_WORD(2*pos)] >> WHICH_BIT(2*pos)) & 3) -#define GETOUTPUT(c, pos)\ - (is_in_set(c, cube.first_part[cube.output] + pos) != 0) - -#define PUTINPUT(c, pos, value)\ - c[WHICH_WORD(2*pos)] = (c[WHICH_WORD(2*pos)] & ~(3 << WHICH_BIT(2*pos)))\ - | (value << WHICH_BIT(2*pos)) -#define PUTOUTPUT(c, pos, value)\ - c[WHICH_WORD(pos)] = (c[WHICH_WORD(pos)] & ~(1 << WHICH_BIT(pos)))\ - | (value << WHICH_BIT(pos)) - -#define TWO 3 -#define DASH 3 -#define ONE 2 -#define ZERO 1 - - -#define EXEC(fct, name, S)\ - {long t=ptime();fct;if(trace)print_trace(S,name,ptime()-t);} -#define EXEC_S(fct, name, S)\ - {long t=ptime();fct;if(summary)print_trace(S,name,ptime()-t);} -#define EXECUTE(fct,i,S,cost)\ - {long t=ptime();fct;totals(t,i,S,&(cost));} - -/* - * Global Variable Declarations - */ - -extern unsigned int debug; /* debug parameter */ -extern bool verbose_debug; /* -v: whether to print a lot */ -extern char *total_name[TIME_COUNT]; /* basic function names */ -extern long total_time[TIME_COUNT]; /* time spent in basic fcts */ -extern int total_calls[TIME_COUNT]; /* # calls to each fct */ - -extern bool echo_comments; /* turned off by -eat option */ -extern bool echo_unknown_commands; /* always true ?? */ -extern bool force_irredundant; /* -nirr command line option */ -extern bool skip_make_sparse; -extern bool kiss; /* -kiss command line option */ -extern bool pos; /* -pos command line option */ -extern bool print_solution; /* -x command line option */ -extern bool recompute_onset; /* -onset command line option */ -extern bool remove_essential; /* -ness command line option */ -extern bool single_expand; /* -fast command line option */ -extern bool summary; /* -s command line option */ -extern bool trace; /* -t command line option */ -extern bool unwrap_onset; /* -nunwrap command line option */ -extern bool use_random_order; /* -random command line option */ -extern bool use_super_gasp; /* -strong command line option */ -extern char *filename; /* filename PLA was read from */ -extern bool debug_exact_minimization; /* dumps info for -do exact */ - - -/* - * pla_types are the input and output types for reading/writing a PLA - */ -struct pla_types_struct { - char *key; - int value; -}; - - -/* - * The cube structure is a global structure which contains information - * on how a set maps into a cube -- i.e., number of parts per variable, - * number of variables, etc. Also, many fields are pre-computed to - * speed up various primitive operations. - */ -#define CUBE_TEMP 10 - -struct cube_struct { - int size; /* set size of a cube */ - int num_vars; /* number of variables in a cube */ - int num_binary_vars; /* number of binary variables */ - int *first_part; /* first element of each variable */ - int *last_part; /* first element of each variable */ - int *part_size; /* number of elements in each variable */ - int *first_word; /* first word for each variable */ - int *last_word; /* last word for each variable */ - pset binary_mask; /* Mask to extract binary variables */ - pset mv_mask; /* mask to get mv parts */ - pset *var_mask; /* mask to extract a variable */ - pset *temp; /* an array of temporary sets */ - pset fullset; /* a full cube */ - pset emptyset; /* an empty cube */ - unsigned int inmask; /* mask to get odd word of binary part */ - int inword; /* which word number for above */ - int *sparse; /* should this variable be sparse? */ - int num_mv_vars; /* number of multiple-valued variables */ - int output; /* which variable is "output" (-1 if none) */ -}; - -struct cdata_struct { - int *part_zeros; /* count of zeros for each element */ - int *var_zeros; /* count of zeros for each variable */ - int *parts_active; /* number of "active" parts for each var */ - bool *is_unate; /* indicates given var is unate */ - int vars_active; /* number of "active" variables */ - int vars_unate; /* number of unate variables */ - int best; /* best "binate" variable */ -}; - - -extern struct pla_types_struct pla_types[]; -extern struct cube_struct cube, temp_cube_save; -extern struct cdata_struct cdata, temp_cdata_save; - -#ifdef lint -#define DISJOINT 0x5555 -#else -#if BPI == 32 -#define DISJOINT 0x55555555 -#else -#define DISJOINT 0x5555 -#endif -#endif - -/* function declarations */ - -/* cofactor.c */ extern int binate_split_select(); -/* cofactor.c */ extern pcover cubeunlist(); -/* cofactor.c */ extern pcube *cofactor(); -/* cofactor.c */ extern pcube *cube1list(); -/* cofactor.c */ extern pcube *cube2list(); -/* cofactor.c */ extern pcube *cube3list(); -/* cofactor.c */ extern pcube *scofactor(); -/* cofactor.c */ extern void massive_count(); -/* compl.c */ extern pcover complement(); -/* compl.c */ extern pcover simplify(); -/* compl.c */ extern void simp_comp(); -/* contain.c */ extern int d1_rm_equal(); -/* contain.c */ extern int rm2_contain(); -/* contain.c */ extern int rm2_equal(); -/* contain.c */ extern int rm_contain(); -/* contain.c */ extern int rm_equal(); -/* contain.c */ extern int rm_rev_contain(); -/* contain.c */ extern pset *sf_list(); -/* contain.c */ extern pset *sf_sort(); -/* contain.c */ extern pset_family d1merge(); -/* contain.c */ extern pset_family dist_merge(); -/* contain.c */ extern pset_family sf_contain(); -/* contain.c */ extern pset_family sf_dupl(); -/* contain.c */ extern pset_family sf_ind_contain(); -/* contain.c */ extern pset_family sf_ind_unlist(); -/* contain.c */ extern pset_family sf_merge(); -/* contain.c */ extern pset_family sf_rev_contain(); -/* contain.c */ extern pset_family sf_union(); -/* contain.c */ extern pset_family sf_unlist(); -/* cubestr.c */ extern void cube_setup(); -/* cubestr.c */ extern void restore_cube_struct(); -/* cubestr.c */ extern void save_cube_struct(); -/* cubestr.c */ extern void setdown_cube(); -/* cvrin.c */ extern PLA_labels(); -/* cvrin.c */ extern char *get_word(); -/* cvrin.c */ extern int label_index(); -/* cvrin.c */ extern int read_pla(); -/* cvrin.c */ extern int read_symbolic(); -/* cvrin.c */ extern pPLA new_PLA(); -/* cvrin.c */ extern void PLA_summary(); -/* cvrin.c */ extern void free_PLA(); -/* cvrin.c */ extern void parse_pla(); -/* cvrin.c */ extern void read_cube(); -/* cvrin.c */ extern void skip_line(); -/* cvrm.c */ extern foreach_output_function(); -/* cvrm.c */ extern int cubelist_partition(); -/* cvrm.c */ extern int so_both_do_espresso(); -/* cvrm.c */ extern int so_both_do_exact(); -/* cvrm.c */ extern int so_both_save(); -/* cvrm.c */ extern int so_do_espresso(); -/* cvrm.c */ extern int so_do_exact(); -/* cvrm.c */ extern int so_save(); -/* cvrm.c */ extern pcover cof_output(); -/* cvrm.c */ extern pcover lex_sort(); -/* cvrm.c */ extern pcover mini_sort(); -/* cvrm.c */ extern pcover random_order(); -/* cvrm.c */ extern pcover size_sort(); -/* cvrm.c */ extern pcover sort_reduce(); -/* cvrm.c */ extern pcover uncof_output(); -/* cvrm.c */ extern pcover unravel(); -/* cvrm.c */ extern pcover unravel_range(); -/* cvrm.c */ extern void so_both_espresso(); -/* cvrm.c */ extern void so_espresso(); -/* cvrmisc.c */ extern char *fmt_cost(); -/* cvrmisc.c */ extern char *print_cost(); -/* cvrmisc.c */ extern char *strsav(); -/* cvrmisc.c */ extern void copy_cost(); -/* cvrmisc.c */ extern void cover_cost(); -/* cvrmisc.c */ extern void fatal(); -/* cvrmisc.c */ extern void print_trace(); -/* cvrmisc.c */ extern void size_stamp(); -/* cvrmisc.c */ extern void totals(); -/* cvrout.c */ extern char *fmt_cube(); -/* cvrout.c */ extern char *fmt_expanded_cube(); -/* cvrout.c */ extern char *pc1(); -/* cvrout.c */ extern char *pc2(); -/* cvrout.c */ extern char *pc3(); -/* cvrout.c */ extern int makeup_labels(); -/* cvrout.c */ extern kiss_output(); -/* cvrout.c */ extern kiss_print_cube(); -/* cvrout.c */ extern output_symbolic_constraints(); -/* cvrout.c */ extern void cprint(); -/* cvrout.c */ extern void debug1_print(); -/* cvrout.c */ extern void debug_print(); -/* cvrout.c */ extern void eqn_output(); -/* cvrout.c */ extern void fpr_header(); -/* cvrout.c */ extern void fprint_pla(); -/* cvrout.c */ extern void pls_group(); -/* cvrout.c */ extern void pls_label(); -/* cvrout.c */ extern void pls_output(); -/* cvrout.c */ extern void print_cube(); -/* cvrout.c */ extern void print_expanded_cube(); -/* cvrout.c */ extern void sf_debug_print(); -/* equiv.c */ extern find_equiv_outputs(); -/* equiv.c */ extern int check_equiv(); -/* espresso.c */ extern pcover espresso(); -/* essen.c */ extern bool essen_cube(); -/* essen.c */ extern pcover cb_consensus(); -/* essen.c */ extern pcover cb_consensus_dist0(); -/* essen.c */ extern pcover essential(); -/* exact.c */ extern pcover minimize_exact(); -/* exact.c */ extern pcover minimize_exact_literals(); -/* expand.c */ extern bool feasibly_covered(); -/* expand.c */ extern int most_frequent(); -/* expand.c */ extern pcover all_primes(); -/* expand.c */ extern pcover expand(); -/* expand.c */ extern pcover find_all_primes(); -/* expand.c */ extern void elim_lowering(); -/* expand.c */ extern void essen_parts(); -/* expand.c */ extern void essen_raising(); -/* expand.c */ extern void expand1(); -/* expand.c */ extern void mincov(); -/* expand.c */ extern void select_feasible(); -/* expand.c */ extern void setup_BB_CC(); -/* gasp.c */ extern pcover expand_gasp(); -/* gasp.c */ extern pcover irred_gasp(); -/* gasp.c */ extern pcover last_gasp(); -/* gasp.c */ extern pcover super_gasp(); -/* gasp.c */ extern void expand1_gasp(); -/* getopt.c */ extern int util_getopt(); -/* hack.c */ extern find_dc_inputs(); -/* hack.c */ extern find_inputs(); -/* hack.c */ extern form_bitvector(); -/* hack.c */ extern map_dcset(); -/* hack.c */ extern map_output_symbolic(); -/* hack.c */ extern map_symbolic(); -/* hack.c */ extern pcover map_symbolic_cover(); -/* hack.c */ extern symbolic_hack_labels(); -/* irred.c */ extern bool cube_is_covered(); -/* irred.c */ extern bool taut_special_cases(); -/* irred.c */ extern bool tautology(); -/* irred.c */ extern pcover irredundant(); -/* irred.c */ extern void mark_irredundant(); -/* irred.c */ extern void irred_split_cover(); -/* irred.c */ extern sm_matrix *irred_derive_table(); -/* map.c */ extern pset minterms(); -/* map.c */ extern void explode(); -/* map.c */ extern void map(); -/* opo.c */ extern output_phase_setup(); -/* opo.c */ extern pPLA set_phase(); -/* opo.c */ extern pcover opo(); -/* opo.c */ extern pcube find_phase(); -/* opo.c */ extern pset_family find_covers(); -/* opo.c */ extern pset_family form_cover_table(); -/* opo.c */ extern pset_family opo_leaf(); -/* opo.c */ extern pset_family opo_recur(); -/* opo.c */ extern void opoall(); -/* opo.c */ extern void phase_assignment(); -/* opo.c */ extern void repeated_phase_assignment(); -/* pair.c */ extern generate_all_pairs(); -/* pair.c */ extern int **find_pairing_cost(); -/* pair.c */ extern int find_best_cost(); -/* pair.c */ extern int greedy_best_cost(); -/* pair.c */ extern int minimize_pair(); -/* pair.c */ extern int pair_free(); -/* pair.c */ extern pair_all(); -/* pair.c */ extern pcover delvar(); -/* pair.c */ extern pcover pairvar(); -/* pair.c */ extern ppair pair_best_cost(); -/* pair.c */ extern ppair pair_new(); -/* pair.c */ extern ppair pair_save(); -/* pair.c */ extern print_pair(); -/* pair.c */ extern void find_optimal_pairing(); -/* pair.c */ extern void set_pair(); -/* pair.c */ extern void set_pair1(); -/* primes.c */ extern pcover primes_consensus(); -/* reduce.c */ extern bool sccc_special_cases(); -/* reduce.c */ extern pcover reduce(); -/* reduce.c */ extern pcube reduce_cube(); -/* reduce.c */ extern pcube sccc(); -/* reduce.c */ extern pcube sccc_cube(); -/* reduce.c */ extern pcube sccc_merge(); -/* set.c */ extern bool set_andp(); -/* set.c */ extern bool set_orp(); -/* set.c */ extern bool setp_disjoint(); -/* set.c */ extern bool setp_empty(); -/* set.c */ extern bool setp_equal(); -/* set.c */ extern bool setp_full(); -/* set.c */ extern bool setp_implies(); -/* set.c */ extern char *pbv1(); -/* set.c */ extern char *ps1(); -/* set.c */ extern int *sf_count(); -/* set.c */ extern int *sf_count_restricted(); -/* set.c */ extern int bit_index(); -/* set.c */ extern int set_dist(); -/* set.c */ extern int set_ord(); -/* set.c */ extern void set_adjcnt(); -/* set.c */ extern pset set_and(); -/* set.c */ extern pset set_clear(); -/* set.c */ extern pset set_copy(); -/* set.c */ extern pset set_diff(); -/* set.c */ extern pset set_fill(); -/* set.c */ extern pset set_merge(); -/* set.c */ extern pset set_or(); -/* set.c */ extern pset set_xor(); -/* set.c */ extern pset sf_and(); -/* set.c */ extern pset sf_or(); -/* set.c */ extern pset_family sf_active(); -/* set.c */ extern pset_family sf_addcol(); -/* set.c */ extern pset_family sf_addset(); -/* set.c */ extern pset_family sf_append(); -/* set.c */ extern pset_family sf_bm_read(); -/* set.c */ extern pset_family sf_compress(); -/* set.c */ extern pset_family sf_copy(); -/* set.c */ extern pset_family sf_copy_col(); -/* set.c */ extern pset_family sf_delc(); -/* set.c */ extern pset_family sf_delcol(); -/* set.c */ extern pset_family sf_inactive(); -/* set.c */ extern pset_family sf_join(); -/* set.c */ extern pset_family sf_new(); -/* set.c */ extern pset_family sf_permute(); -/* set.c */ extern pset_family sf_read(); -/* set.c */ extern pset_family sf_save(); -/* set.c */ extern pset_family sf_transpose(); -/* set.c */ extern void set_write(); -/* set.c */ extern void sf_bm_print(); -/* set.c */ extern void sf_cleanup(); -/* set.c */ extern void sf_delset(); -/* set.c */ extern void sf_free(); -/* set.c */ extern void sf_print(); -/* set.c */ extern void sf_write(); -/* setc.c */ extern bool ccommon(); -/* setc.c */ extern bool cdist0(); -/* setc.c */ extern bool full_row(); -/* setc.c */ extern int ascend(); -/* setc.c */ extern int cactive(); -/* setc.c */ extern int cdist(); -/* setc.c */ extern int cdist01(); -/* setc.c */ extern int cvolume(); -/* setc.c */ extern int d1_order(); -/* setc.c */ extern int d1_order_size(); -/* setc.c */ extern int desc1(); -/* setc.c */ extern int descend(); -/* setc.c */ extern int lex_order(); -/* setc.c */ extern int lex_order1(); -/* setc.c */ extern pset force_lower(); -/* setc.c */ extern void consensus(); -/* sharp.c */ extern pcover cb1_dsharp(); -/* sharp.c */ extern pcover cb_dsharp(); -/* sharp.c */ extern pcover cb_recur_dsharp(); -/* sharp.c */ extern pcover cb_recur_sharp(); -/* sharp.c */ extern pcover cb_sharp(); -/* sharp.c */ extern pcover cv_dsharp(); -/* sharp.c */ extern pcover cv_intersect(); -/* sharp.c */ extern pcover cv_sharp(); -/* sharp.c */ extern pcover dsharp(); -/* sharp.c */ extern pcover make_disjoint(); -/* sharp.c */ extern pcover sharp(); -/* sminterf.c */pset do_sm_minimum_cover(); -/* sparse.c */ extern pcover make_sparse(); -/* sparse.c */ extern pcover mv_reduce(); -#if !defined(__osf__) && !defined(__STDC__) && !defined(__hpux) -/* ucbqsort.c */ extern qsort(); -#endif -/* ucbqsort.c */ extern qst(); -/* unate.c */ extern pcover find_all_minimal_covers_petrick(); -/* unate.c */ extern pcover map_cover_to_unate(); -/* unate.c */ extern pcover map_unate_to_cover(); -/* unate.c */ extern pset_family exact_minimum_cover(); -/* unate.c */ extern pset_family gen_primes(); -/* unate.c */ extern pset_family unate_compl(); -/* unate.c */ extern pset_family unate_complement(); -/* unate.c */ extern pset_family unate_intersect(); -/* verify.c */ extern PLA_permute(); -/* verify.c */ extern bool PLA_verify(); -/* verify.c */ extern bool check_consistency(); -/* verify.c */ extern bool verify(); diff --git a/src/misc/espresso/essen.c b/src/misc/espresso/essen.c deleted file mode 100644 index 6a46295d..00000000 --- a/src/misc/espresso/essen.c +++ /dev/null @@ -1,179 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: essen.c - purpose: Find essential primes in a multiple-valued function -*/ - -#include "espresso.h" - -/* - essential -- return a cover consisting of the cubes of F which are - essential prime implicants (with respect to F u D); Further, remove - these cubes from the ON-set F, and add them to the OFF-set D. - - Sometimes EXPAND can determine that a cube is not an essential prime. - If so, it will set the "NONESSEN" flag in the cube. - - We count on IRREDUNDANT to have set the flag RELESSEN to indicate - that a prime was relatively essential (i.e., covers some minterm - not contained in any other prime in the current cover), or to have - reset the flag to indicate that a prime was relatively redundant - (i.e., all minterms covered by other primes in the current cover). - Of course, after executing irredundant, all of the primes in the - cover are relatively essential, but we can mark the primes which - were redundant at the start of irredundant and avoid an extra check - on these primes for essentiality. -*/ - -pcover essential(Fp, Dp) -IN pcover *Fp, *Dp; -{ - register pcube last, p; - pcover E, F = *Fp, D = *Dp; - - /* set all cubes in F active */ - (void) sf_active(F); - - /* Might as well start out with some cubes in E */ - E = new_cover(10); - - foreach_set(F, last, p) { - /* don't test a prime which EXPAND says is nonessential */ - if (! TESTP(p, NONESSEN)) { - /* only test a prime which was relatively essential */ - if (TESTP(p, RELESSEN)) { - /* Check essentiality */ - if (essen_cube(F, D, p)) { - if (debug & ESSEN) - printf("ESSENTIAL: %s\n", pc1(p)); - E = sf_addset(E, p); - RESET(p, ACTIVE); - F->active_count--; - } - } - } - } - - *Fp = sf_inactive(F); /* delete the inactive cubes from F */ - *Dp = sf_join(D, E); /* add the essentials to D */ - sf_free(D); - return E; -} - -/* - essen_cube -- check if a single cube is essential or not - - The prime c is essential iff - - consensus((F u D) # c, c) u D - - does not contain c. -*/ -bool essen_cube(F, D, c) -IN pcover F, D; -IN pcube c; -{ - pcover H, FD; - pcube *H1; - bool essen; - - /* Append F and D together, and take the sharp-consensus with c */ - FD = sf_join(F, D); - H = cb_consensus(FD, c); - free_cover(FD); - - /* Add the don't care set, and see if this covers c */ - H1 = cube2list(H, D); - essen = ! cube_is_covered(H1, c); - free_cubelist(H1); - - free_cover(H); - return essen; -} - - -/* - * cb_consensus -- compute consensus(T # c, c) - */ -pcover cb_consensus(T, c) -register pcover T; -register pcube c; -{ - register pcube temp, last, p; - register pcover R; - - R = new_cover(T->count*2); - temp = new_cube(); - foreach_set(T, last, p) { - if (p != c) { - switch (cdist01(p, c)) { - case 0: - /* distance-0 needs special care */ - R = cb_consensus_dist0(R, p, c); - break; - - case 1: - /* distance-1 is easy because no sharping required */ - consensus(temp, p, c); - R = sf_addset(R, temp); - break; - } - } - } - set_free(temp); - return R; -} - - -/* - * form the sharp-consensus for p and c when they intersect - * What we are forming is consensus(p # c, c). - */ -pcover cb_consensus_dist0(R, p, c) -pcover R; -register pcube p, c; -{ - int var; - bool got_one; - register pcube temp, mask; - register pcube p_diff_c=cube.temp[0], p_and_c=cube.temp[1]; - - /* If c contains p, then this gives us no information for essential test */ - if (setp_implies(p, c)) { - return R; - } - - /* For the multiple-valued variables */ - temp = new_cube(); - got_one = FALSE; - INLINEset_diff(p_diff_c, p, c); - INLINEset_and(p_and_c, p, c); - - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - /* Check if c(var) is contained in p(var) -- if so, no news */ - mask = cube.var_mask[var]; - if (! setp_disjoint(p_diff_c, mask)) { - INLINEset_merge(temp, c, p_and_c, mask); - R = sf_addset(R, temp); - got_one = TRUE; - } - } - - /* if no cube so far, add one for the intersection */ - if (! got_one && cube.num_binary_vars > 0) { - /* Add a single cube for the intersection of p and c */ - INLINEset_and(temp, p, c); - R = sf_addset(R, temp); - } - - set_free(temp); - return R; -} diff --git a/src/misc/espresso/exact.c b/src/misc/espresso/exact.c deleted file mode 100644 index b1943636..00000000 --- a/src/misc/espresso/exact.c +++ /dev/null @@ -1,181 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - - -static void dump_irredundant(); -static pcover do_minimize(); - - -/* - * minimize_exact -- main entry point for exact minimization - * - * Global flags which affect this routine are: - * - * debug - * skip_make_sparse - */ - -pcover -minimize_exact(F, D, R, exact_cover) -pcover F, D, R; -int exact_cover; -{ - return do_minimize(F, D, R, exact_cover, /*weighted*/ 0); -} - - -pcover -minimize_exact_literals(F, D, R, exact_cover) -pcover F, D, R; -int exact_cover; -{ - return do_minimize(F, D, R, exact_cover, /*weighted*/ 1); -} - - - -static pcover -do_minimize(F, D, R, exact_cover, weighted) -pcover F, D, R; -int exact_cover; -int weighted; -{ - pcover newF, E, Rt, Rp; - pset p, last; - int heur, level, *weights, i; - sm_matrix *table; - sm_row *cover; - sm_element *pe; - int debug_save = debug; - - if (debug & EXACT) { - debug |= (IRRED | MINCOV); - } -#if defined(sun) || defined(bsd4_2) /* hack ... */ - if (debug & MINCOV) { - setlinebuf(stdout); - } -#endif - level = (debug & MINCOV) ? 4 : 0; - heur = ! exact_cover; - - /* Generate all prime implicants */ - EXEC(F = primes_consensus(cube2list(F, D)), "PRIMES ", F); - - /* Setup the prime implicant table */ - EXEC(irred_split_cover(F, D, &E, &Rt, &Rp), "ESSENTIALS ", E); - EXEC(table = irred_derive_table(D, E, Rp), "PI-TABLE ", Rp); - - /* Solve either a weighted or nonweighted covering problem */ - if (weighted) { - /* correct only for all 2-valued variables */ - weights = ALLOC(int, F->count); - foreach_set(Rp, last, p) { - weights[SIZE(p)] = cube.size - set_ord(p); - /* We have added the 0's in the output part instead of the 1's. - This loop corrects the literal count. */ - for (i = cube.first_part[cube.output]; - i <= cube.last_part[cube.output]; i++) { - is_in_set(p, i) ? weights[SIZE(p)]++ : weights[SIZE(p)]--; - } - } - } else { - weights = NIL(int); - } - EXEC(cover=sm_minimum_cover(table,weights,heur,level), "MINCOV ", F); - if (weights != 0) { - FREE(weights); - } - - if (debug & EXACT) { - dump_irredundant(E, Rt, Rp, table); - } - - /* Form the result cover */ - newF = new_cover(100); - foreach_set(E, last, p) { - newF = sf_addset(newF, p); - } - sm_foreach_row_element(cover, pe) { - newF = sf_addset(newF, GETSET(F, pe->col_num)); - } - - free_cover(E); - free_cover(Rt); - free_cover(Rp); - sm_free(table); - sm_row_free(cover); - free_cover(F); - - /* Attempt to make the results more sparse */ - debug &= ~ (IRRED | SHARP | MINCOV); - if (! skip_make_sparse && R != 0) { - newF = make_sparse(newF, D, R); - } - - debug = debug_save; - return newF; -} - -static void -dump_irredundant(E, Rt, Rp, table) -pcover E, Rt, Rp; -sm_matrix *table; -{ - FILE *fp_pi_table, *fp_primes; - pPLA PLA; - pset last, p; - char *file; - - if (filename == 0 || strcmp(filename, "(stdin)") == 0) { - fp_pi_table = fp_primes = stdout; - } else { - file = ALLOC(char, strlen(filename)+20); - (void) sprintf(file, "%s.primes", filename); - if ((fp_primes = fopen(file, "w")) == NULL) { - (void) fprintf(stderr, "espresso: Unable to open %s\n", file); - fp_primes = stdout; - } - (void) sprintf(file, "%s.pi", filename); - if ((fp_pi_table = fopen(file, "w")) == NULL) { - (void) fprintf(stderr, "espresso: Unable to open %s\n", file); - fp_pi_table = stdout; - } - FREE(file); - } - - PLA = new_PLA(); - PLA_labels(PLA); - - fpr_header(fp_primes, PLA, F_type); - free_PLA(PLA); - - (void) fprintf(fp_primes, "# Essential primes are\n"); - foreach_set(E, last, p) { - (void) fprintf(fp_primes, "%s\n", pc1(p)); - } - (void) fprintf(fp_primes, "# Totally redundant primes are\n"); - foreach_set(Rt, last, p) { - (void) fprintf(fp_primes, "%s\n", pc1(p)); - } - (void) fprintf(fp_primes, "# Partially redundant primes are\n"); - foreach_set(Rp, last, p) { - (void) fprintf(fp_primes, "%s\n", pc1(p)); - } - if (fp_primes != stdout) { - (void) fclose(fp_primes); - } - - sm_write(fp_pi_table, table); - if (fp_pi_table != stdout) { - (void) fclose(fp_pi_table); - } -} diff --git a/src/misc/espresso/expand.c b/src/misc/espresso/expand.c deleted file mode 100644 index 2765d71c..00000000 --- a/src/misc/espresso/expand.c +++ /dev/null @@ -1,693 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: expand.c - purpose: Perform the Espresso-II Expansion Step - - The idea is to take each nonprime cube of the on-set and expand it - into a prime implicant such that we can cover as many other cubes - of the on-set. If no cube of the on-set can be covered, then we - expand each cube into a large prime implicant by transforming the - problem into a minimum covering problem which is solved by the - heuristics of minimum_cover. - - These routines revolve around having a representation of the - OFF-set. (In contrast to the Espresso-II manuscript, we do NOT - require an "unwrapped" version of the OFF-set). - - Some conventions on variable names: - - SUPER_CUBE is the supercube of all cubes which can be covered - by an expansion of the cube being expanded - - OVEREXPANDED_CUBE is the cube which would result from expanding - all parts which can expand individually of the cube being expanded - - RAISE is the current expansion of the current cube - - FREESET is the set of parts which haven't been raised or lowered yet. - - INIT_LOWER is a set of parts to be removed from the free parts before - starting the expansion -*/ - -#include "espresso.h" - -/* - expand -- expand each nonprime cube of F into a prime implicant - - If nonsparse is true, only the non-sparse variables will be expanded; - this is done by forcing all of the sparse variables out of the free set. -*/ - -pcover expand(F, R, nonsparse) -INOUT pcover F; -IN pcover R; -IN bool nonsparse; /* expand non-sparse variables only */ -{ - register pcube last, p; - pcube RAISE, FREESET, INIT_LOWER, SUPER_CUBE, OVEREXPANDED_CUBE; - int var, num_covered; - bool change; - - /* Order the cubes according to "chewing-away from the edges" of mini */ - if (use_random_order) - F = random_order(F); - else - F = mini_sort(F, ascend); - - /* Allocate memory for variables needed by expand1() */ - RAISE = new_cube(); - FREESET = new_cube(); - INIT_LOWER = new_cube(); - SUPER_CUBE = new_cube(); - OVEREXPANDED_CUBE = new_cube(); - - /* Setup the initial lowering set (differs only for nonsparse) */ - if (nonsparse) - for(var = 0; var < cube.num_vars; var++) - if (cube.sparse[var]) - (void) set_or(INIT_LOWER, INIT_LOWER, cube.var_mask[var]); - - /* Mark all cubes as not covered, and maybe essential */ - foreach_set(F, last, p) { - RESET(p, COVERED); - RESET(p, NONESSEN); - } - - /* Try to expand each nonprime and noncovered cube */ - foreach_set(F, last, p) { - /* do not expand if PRIME or if covered by previous expansion */ - if (! TESTP(p, PRIME) && ! TESTP(p, COVERED)) { - - /* expand the cube p, result is RAISE */ - expand1(R, F, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE, - INIT_LOWER, &num_covered, p); - if (debug & EXPAND) - printf("EXPAND: %s (covered %d)\n", pc1(p), num_covered); - (void) set_copy(p, RAISE); - SET(p, PRIME); - RESET(p, COVERED); /* not really necessary */ - - /* See if we generated an inessential prime */ - if (num_covered == 0 && ! setp_equal(p, OVEREXPANDED_CUBE)) { - SET(p, NONESSEN); - } - } - } - - /* Delete any cubes of F which became covered during the expansion */ - F->active_count = 0; - change = FALSE; - foreach_set(F, last, p) { - if (TESTP(p, COVERED)) { - RESET(p, ACTIVE); - change = TRUE; - } else { - SET(p, ACTIVE); - F->active_count++; - } - } - if (change) - F = sf_inactive(F); - - free_cube(RAISE); - free_cube(FREESET); - free_cube(INIT_LOWER); - free_cube(SUPER_CUBE); - free_cube(OVEREXPANDED_CUBE); - return F; -} - -/* - expand1 -- Expand a single cube against the OFF-set -*/ -void expand1(BB, CC, RAISE, FREESET, OVEREXPANDED_CUBE, SUPER_CUBE, - INIT_LOWER, num_covered, c) -pcover BB; /* Blocking matrix (OFF-set) */ -pcover CC; /* Covering matrix (ON-set) */ -pcube RAISE; /* The current parts which have been raised */ -pcube FREESET; /* The current parts which are free */ -pcube OVEREXPANDED_CUBE; /* Overexpanded cube of c */ -pcube SUPER_CUBE; /* Supercube of all cubes of CC we cover */ -pcube INIT_LOWER; /* Parts to initially remove from FREESET */ -int *num_covered; /* Number of cubes of CC which are covered */ -pcube c; /* The cube to be expanded */ -{ - int bestindex; - - if (debug & EXPAND1) - printf("\nEXPAND1: \t%s\n", pc1(c)); - - /* initialize BB and CC */ - SET(c, PRIME); /* don't try to cover ourself */ - setup_BB_CC(BB, CC); - - /* initialize count of # cubes covered, and the supercube of them */ - *num_covered = 0; - (void) set_copy(SUPER_CUBE, c); - - /* Initialize the lowering, raising and unassigned sets */ - (void) set_copy(RAISE, c); - (void) set_diff(FREESET, cube.fullset, RAISE); - - /* If some parts are forced into lowering set, remove them */ - if (! setp_empty(INIT_LOWER)) { - (void) set_diff(FREESET, FREESET, INIT_LOWER); - elim_lowering(BB, CC, RAISE, FREESET); - } - - /* Determine what can be raised, and return the over-expanded cube */ - essen_parts(BB, CC, RAISE, FREESET); - (void) set_or(OVEREXPANDED_CUBE, RAISE, FREESET); - - /* While there are still cubes which can be covered, cover them ! */ - if (CC->active_count > 0) { - select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered); - } - - /* While there are still cubes covered by the overexpanded cube ... */ - while (CC->active_count > 0) { - bestindex = most_frequent(CC, FREESET); - set_insert(RAISE, bestindex); - set_remove(FREESET, bestindex); - essen_parts(BB, CC, RAISE, FREESET); - } - - /* Finally, when all else fails, choose the largest possible prime */ - /* We will loop only if we decide unravelling OFF-set is too expensive */ - while (BB->active_count > 0) { - mincov(BB, RAISE, FREESET); - } - - /* Raise any remaining free coordinates */ - (void) set_or(RAISE, RAISE, FREESET); -} - -/* - essen_parts -- determine which parts are forced into the lowering - set to insure that the cube be orthognal to the OFF-set. - - If any cube of the OFF-set is distance 1 from the raising cube, - then we must lower all parts of the conflicting variable. (If the - cube is distance 0, we detect this error here.) - - If there are essentially lowered parts, we can remove from consideration - any cubes of the OFF-set which are more than distance 1 from the - overexpanded cube of RAISE. -*/ - -void essen_parts(BB, CC, RAISE, FREESET) -pcover BB, CC; -pcube RAISE, FREESET; -{ - register pcube p, r = RAISE; - pcube lastp, xlower = cube.temp[0]; - int dist; - - (void) set_copy(xlower, cube.emptyset); - - foreach_active_set(BB, lastp, p) { -#ifdef NO_INLINE - if ((dist = cdist01(p, r)) > 1) goto exit_if; -#else - {register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1) -{x=p[last]&r[last];if(x=~(x|x>>1)&cube.inmask)if((dist=count_ones(x))>1)goto -exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if(x=~(x|x>>1)&DISJOINT)if(dist==1||( -dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube -mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[ -var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[ -w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}} -#endif - if (dist == 0) { - fatal("ON-set and OFF-set are not orthogonal"); - } else { - (void) force_lower(xlower, p, r); - BB->active_count--; - RESET(p, ACTIVE); - } -exit_if: ; - } - - if (! setp_empty(xlower)) { - (void) set_diff(FREESET, FREESET, xlower);/* remove from free set */ - elim_lowering(BB, CC, RAISE, FREESET); - } - - if (debug & EXPAND1) - printf("ESSEN_PARTS:\tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET)); -} - -/* - essen_raising -- determine which parts may always be added to - the raising set without restricting further expansions - - General rule: if some part is not blocked by any cube of BB, then - this part can always be raised. -*/ - -void essen_raising(BB, RAISE, FREESET) -register pcover BB; -pcube RAISE, FREESET; -{ - register pcube last, p, xraise = cube.temp[0]; - - /* Form union of all cubes of BB, and then take complement wrt FREESET */ - (void) set_copy(xraise, cube.emptyset); - foreach_active_set(BB, last, p) - INLINEset_or(xraise, xraise, p); - (void) set_diff(xraise, FREESET, xraise); - - (void) set_or(RAISE, RAISE, xraise); /* add to raising set */ - (void) set_diff(FREESET, FREESET, xraise); /* remove from free set */ - - if (debug & EXPAND1) - printf("ESSEN_RAISING:\tRAISE=%s FREESET=%s\n", - pc1(RAISE), pc2(FREESET)); -} - -/* - elim_lowering -- after removing parts from FREESET, we can reduce the - size of both BB and CC. - - We mark as inactive any cube of BB which does not intersect the - overexpanded cube (i.e., RAISE + FREESET). Likewise, we remove - from CC any cube which is not covered by the overexpanded cube. -*/ - -void elim_lowering(BB, CC, RAISE, FREESET) -pcover BB, CC; -pcube RAISE, FREESET; -{ - register pcube p, r = set_or(cube.temp[0], RAISE, FREESET); - pcube last; - - /* - * Remove sets of BB which are orthogonal to future expansions - */ - foreach_active_set(BB, last, p) { -#ifdef NO_INLINE - if (! cdist0(p, r)) -#else - {register int w,lastw;register unsigned int x;if((lastw=cube.inword)!=-1){x=p[ -lastw]&r[lastw];if(~(x|x>>1)&cube.inmask)goto false;for(w=1;w<lastw;w++){x=p[w] -&r[w];if(~(x|x>>1)&DISJOINT)goto false;}}}{register int w,var,lastw;register -pcube mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube. -var_mask[var];lastw=cube.last_word[var];for(w=cube.first_word[var];w<=lastw;w++) -if(p[w]&r[w]&mask[w])goto nextvar;goto false;nextvar:;}}continue;false: -#endif - BB->active_count--, RESET(p, ACTIVE); - } - - - /* - * Remove sets of CC which cannot be covered by future expansions - */ - if (CC != (pcover) NULL) { - foreach_active_set(CC, last, p) { -#ifdef NO_INLINE - if (! setp_implies(p, r)) -#else - INLINEsetp_implies(p, r, /* when false => */ goto false1); - /* when true => go to end of loop */ continue; - false1: -#endif - CC->active_count--, RESET(p, ACTIVE); - } - } -} - -/* - most_frequent -- When all else fails, select a reasonable part to raise - The active cubes of CC are the cubes which are covered by the - overexpanded cube of the original cube (however, we know that none - of them can actually be covered by a feasible expansion of the - original cube). We resort to the MINI strategy of selecting to - raise the part which will cover the same part in the most cubes of CC. -*/ -int most_frequent(CC, FREESET) -pcover CC; -pcube FREESET; -{ - register int i, best_part, best_count, *count; - register pset p, last; - - /* Count occurences of each variable */ - count = ALLOC(int, cube.size); - for(i = 0; i < cube.size; i++) - count[i] = 0; - if (CC != (pcover) NULL) - foreach_active_set(CC, last, p) - set_adjcnt(p, count, 1); - - /* Now find which free part occurs most often */ - best_count = best_part = -1; - for(i = 0; i < cube.size; i++) - if (is_in_set(FREESET,i) && count[i] > best_count) { - best_part = i; - best_count = count[i]; - } - FREE(count); - - if (debug & EXPAND1) - printf("MOST_FREQUENT:\tbest=%d FREESET=%s\n", best_part, pc2(FREESET)); - return best_part; -} - -/* - setup_BB_CC -- set up the blocking and covering set families; - - Note that the blocking family is merely the set of cubes of R, and - that CC is the set of cubes of F which might possibly be covered - (i.e., nonprime cubes, and cubes not already covered) -*/ - -void setup_BB_CC(BB, CC) -register pcover BB, CC; -{ - register pcube p, last; - - /* Create the block and cover set families */ - BB->active_count = BB->count; - foreach_set(BB, last, p) - SET(p, ACTIVE); - - if (CC != (pcover) NULL) { - CC->active_count = CC->count; - foreach_set(CC, last, p) - if (TESTP(p, COVERED) || TESTP(p, PRIME)) - CC->active_count--, RESET(p, ACTIVE); - else - SET(p, ACTIVE); - } -} - -/* - select_feasible -- Determine if there are cubes which can be covered, - and if so, raise those parts necessary to cover as many as possible. - - We really don't check to maximize the number that can be covered; - instead, we check, for each fcc, how many other fcc remain fcc - after expanding to cover the fcc. (Essentially one-level lookahead). -*/ - -void select_feasible(BB, CC, RAISE, FREESET, SUPER_CUBE, num_covered) -pcover BB, CC; -pcube RAISE, FREESET, SUPER_CUBE; -int *num_covered; -{ - register pcube p, last, bestfeas, *feas; - register int i, j; - pcube *feas_new_lower; - int bestcount, bestsize, count, size, numfeas, lastfeas; - pcover new_lower; - - /* Start out with all cubes covered by the over-expanded cube as - * the "possibly" feasibly-covered cubes (pfcc) - */ - feas = ALLOC(pcube, CC->active_count); - numfeas = 0; - foreach_active_set(CC, last, p) - feas[numfeas++] = p; - - /* Setup extra cubes to record parts forced low after a covering */ - feas_new_lower = ALLOC(pcube, CC->active_count); - new_lower = new_cover(numfeas); - for(i = 0; i < numfeas; i++) - feas_new_lower[i] = GETSET(new_lower, i); - - -loop: - /* Find the essentially raised parts -- this might cover some cubes - for us, without having to find out if they are fcc or not - */ - essen_raising(BB, RAISE, FREESET); - - /* Now check all "possibly" feasibly covered cubes to check feasibility */ - lastfeas = numfeas; - numfeas = 0; - for(i = 0; i < lastfeas; i++) { - p = feas[i]; - - /* Check active because essen_parts might have removed it */ - if (TESTP(p, ACTIVE)) { - - /* See if the cube is already covered by RAISE -- - * this can happen because of essen_raising() or because of - * the previous "loop" - */ - if (setp_implies(p, RAISE)) { - (*num_covered) += 1; - (void) set_or(SUPER_CUBE, SUPER_CUBE, p); - CC->active_count--; - RESET(p, ACTIVE); - SET(p, COVERED); - /* otherwise, test if it is feasibly covered */ - } else if (feasibly_covered(BB,p,RAISE,feas_new_lower[numfeas])) { - feas[numfeas] = p; /* save the fcc */ - numfeas++; - } - } - } - if (debug & EXPAND1) - printf("SELECT_FEASIBLE: started with %d pfcc, ended with %d fcc\n", - lastfeas, numfeas); - - /* Exit here if there are no feasibly covered cubes */ - if (numfeas == 0) { - FREE(feas); - FREE(feas_new_lower); - free_cover(new_lower); - return; - } - - /* Now find which is the best feasibly covered cube */ - bestcount = 0; - bestsize = 9999; - for(i = 0; i < numfeas; i++) { - size = set_dist(feas[i], FREESET); /* # of newly raised parts */ - count = 0; /* # of other cubes which remain fcc after raising */ - -#define NEW -#ifdef NEW - for(j = 0; j < numfeas; j++) - if (setp_disjoint(feas_new_lower[i], feas[j])) - count++; -#else - for(j = 0; j < numfeas; j++) - if (setp_implies(feas[j], feas[i])) - count++; -#endif - if (count > bestcount) { - bestcount = count; - bestfeas = feas[i]; - bestsize = size; - } else if (count == bestcount && size < bestsize) { - bestfeas = feas[i]; - bestsize = size; - } - } - - /* Add the necessary parts to the raising set */ - (void) set_or(RAISE, RAISE, bestfeas); - (void) set_diff(FREESET, FREESET, RAISE); - if (debug & EXPAND1) - printf("FEASIBLE: \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET)); - essen_parts(BB, CC, RAISE, FREESET); - goto loop; -/* NOTREACHED */ -} - -/* - feasibly_covered -- determine if the cube c is feasibly covered - (i.e., if it is possible to raise all of the necessary variables - while still insuring orthogonality with R). Also, if c is feasibly - covered, then compute the new set of parts which are forced into - the lowering set. -*/ - -bool feasibly_covered(BB, c, RAISE, new_lower) -pcover BB; -pcube c, RAISE, new_lower; -{ - register pcube p, r = set_or(cube.temp[0], RAISE, c); - int dist; - pcube lastp; - - set_copy(new_lower, cube.emptyset); - foreach_active_set(BB, lastp, p) { -#ifdef NO_INLINE - if ((dist = cdist01(p, r)) > 1) goto exit_if; -#else - {register int w,last;register unsigned int x;dist=0;if((last=cube.inword)!=-1) -{x=p[last]&r[last];if(x=~(x|x>>1)&cube.inmask)if((dist=count_ones(x))>1)goto -exit_if;for(w=1;w<last;w++){x=p[w]&r[w];if(x=~(x|x>>1)&DISJOINT)if(dist==1||( -dist+=count_ones(x))>1)goto exit_if;}}}{register int w,var,last;register pcube -mask;for(var=cube.num_binary_vars;var<cube.num_vars;var++){mask=cube.var_mask[ -var];last=cube.last_word[var];for(w=cube.first_word[var];w<=last;w++)if(p[w]&r[ -w]&mask[w])goto nextvar;if(++dist>1)goto exit_if;nextvar:;}} -#endif - if (dist == 0) - return FALSE; - else - (void) force_lower(new_lower, p, r); - exit_if: ; - } - return TRUE; -} - -/* - mincov -- transform the problem of expanding a cube to a maximally- - large prime implicant into the problem of selecting a minimum - cardinality cover over a family of sets. - - When we get to this point, we must unravel the remaining off-set. - This may be painful. -*/ - -void mincov(BB, RAISE, FREESET) -pcover BB; -pcube RAISE, FREESET; -{ - int expansion, nset, var, dist; - pset_family B; - register pcube xraise=cube.temp[0], xlower, p, last, plower; - -#ifdef RANDOM_MINCOV -#if defined(_POSIX_SOURCE) || defined(__SVR4) - dist = rand() % set_ord(FREESET); -#else - dist = random() % set_ord(FREESET); -#endif - for(var = 0; var < cube.size && dist >= 0; var++) { - if (is_in_set(FREESET, var)) { - dist--; - } - } - - set_insert(RAISE, var); - set_remove(FREESET, var); - (void) essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET); -#else - - /* Create B which are those cubes which we must avoid intersecting */ - B = new_cover(BB->active_count); - foreach_active_set(BB, last, p) { - plower = set_copy(GETSET(B, B->count++), cube.emptyset); - (void) force_lower(plower, p, RAISE); - } - - /* Determine how many sets it will blow up into after the unravel */ - nset = 0; - foreach_set(B, last, p) { - expansion = 1; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - if ((dist=set_dist(p, cube.var_mask[var])) > 1) { - expansion *= dist; - if (expansion > 500) goto heuristic_mincov; - } - } - nset += expansion; - if (nset > 500) goto heuristic_mincov; - } - - B = unravel(B, cube.num_binary_vars); - xlower = do_sm_minimum_cover(B); - - /* Add any remaining free parts to the raising set */ - (void) set_or(RAISE, RAISE, set_diff(xraise, FREESET, xlower)); - (void) set_copy(FREESET, cube.emptyset); /* free set is empty */ - BB->active_count = 0; /* BB satisfied */ - if (debug & EXPAND1) { - printf("MINCOV: \tRAISE=%s FREESET=%s\n", pc1(RAISE), pc2(FREESET)); - } - sf_free(B); - set_free(xlower); - return; - -heuristic_mincov: - sf_free(B); - /* most_frequent will pick first free part */ - set_insert(RAISE, most_frequent(/*CC*/ (pcover) NULL, FREESET)); - (void) set_diff(FREESET, FREESET, RAISE); - essen_parts(BB, /*CC*/ (pcover) NULL, RAISE, FREESET); - return; -#endif -} - -/* - find_all_primes -- find all of the primes which cover the - currently reduced BB -*/ -pcover find_all_primes(BB, RAISE, FREESET) -pcover BB; -register pcube RAISE, FREESET; -{ - register pset last, p, plower; - pset_family B, B1; - - if (BB->active_count == 0) { - B1 = new_cover(1); - p = GETSET(B1, B1->count++); - (void) set_copy(p, RAISE); - SET(p, PRIME); - } else { - B = new_cover(BB->active_count); - foreach_active_set(BB, last, p) { - plower = set_copy(GETSET(B, B->count++), cube.emptyset); - (void) force_lower(plower, p, RAISE); - } - B = sf_rev_contain(unravel(B, cube.num_binary_vars)); - B1 = exact_minimum_cover(B); - foreach_set(B1, last, p) { - INLINEset_diff(p, FREESET, p); - INLINEset_or(p, p, RAISE); - SET(p, PRIME); - } - free_cover(B); - } - return B1; -} - -/* - all_primes -- foreach cube in F, generate all of the primes - which cover the cube. -*/ - -pcover all_primes(F, R) -pcover F, R; -{ - register pcube last, p, RAISE, FREESET; - pcover Fall_primes, B1; - - FREESET = new_cube(); - RAISE = new_cube(); - Fall_primes = new_cover(F->count); - - foreach_set(F, last, p) { - if (TESTP(p, PRIME)) { - Fall_primes = sf_addset(Fall_primes, p); - } else { - /* Setup for call to essential parts */ - (void) set_copy(RAISE, p); - (void) set_diff(FREESET, cube.fullset, RAISE); - setup_BB_CC(R, /* CC */ (pcover) NULL); - essen_parts(R, /* CC */ (pcover) NULL, RAISE, FREESET); - - /* Find all of the primes, and add them to the prime set */ - B1 = find_all_primes(R, RAISE, FREESET); - Fall_primes = sf_append(Fall_primes, B1); - } - } - - set_free(RAISE); - set_free(FREESET); - return Fall_primes; -} diff --git a/src/misc/espresso/gasp.c b/src/misc/espresso/gasp.c deleted file mode 100644 index aa3254d3..00000000 --- a/src/misc/espresso/gasp.c +++ /dev/null @@ -1,228 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: gasp.c - - The "last_gasp" heuristic computes the reduction of each cube in - the cover (without replacement) and then performs an expansion of - these cubes. The cubes which expand to cover some other cube are - added to the original cover and irredundant finds a minimal subset. - - If one of the reduced cubes expands to cover some other reduced - cube, then the new prime thus generated is a candidate for reducing - the size of the cover. - - super_gasp is a variation on this strategy which extracts a minimal - subset from the set of all prime implicants which cover all - maximally reduced cubes. -*/ - -#include "espresso.h" - - -/* - * reduce_gasp -- compute the maximal reduction of each cube of F - * - * If a cube does not reduce, it remains prime; otherwise, it is marked - * as nonprime. If the cube is redundant (should NEVER happen here) we - * just crap out ... - * - * A cover with all of the cubes of F is returned. Those that did - * reduce are marked "NONPRIME"; those that reduced are marked "PRIME". - * The cubes are in the same order as in F. - */ -static pcover reduce_gasp(F, D) -pcover F, D; -{ - pcube p, last, cunder, *FD; - pcover G; - - G = new_cover(F->count); - FD = cube2list(F, D); - - /* Reduce cubes of F without replacement */ - foreach_set(F, last, p) { - cunder = reduce_cube(FD, p); - if (setp_empty(cunder)) { - fatal("empty reduction in reduce_gasp, shouldn't happen"); - } else if (setp_equal(cunder, p)) { - SET(cunder, PRIME); /* just to make sure */ - G = sf_addset(G, p); /* it did not reduce ... */ - } else { - RESET(cunder, PRIME); /* it reduced ... */ - G = sf_addset(G, cunder); - } - if (debug & GASP) { - printf("REDUCE_GASP: %s reduced to %s\n", pc1(p), pc2(cunder)); - } - free_cube(cunder); - } - - free_cubelist(FD); - return G; -} - -/* - * expand_gasp -- expand each nonprime cube of F into a prime implicant - * - * The gasp strategy differs in that only those cubes which expand to - * cover some other cube are saved; also, all cubes are expanded - * regardless of whether they become covered or not. - */ - -pcover expand_gasp(F, D, R, Foriginal) -INOUT pcover F; -IN pcover D; -IN pcover R; -IN pcover Foriginal; -{ - int c1index; - pcover G; - - /* Try to expand each nonprime and noncovered cube */ - G = new_cover(10); - for(c1index = 0; c1index < F->count; c1index++) { - expand1_gasp(F, D, R, Foriginal, c1index, &G); - } - G = sf_dupl(G); - G = expand(G, R, /*nonsparse*/ FALSE); /* Make them prime ! */ - return G; -} - - - -/* - * expand1 -- Expand a single cube against the OFF-set, using the gasp strategy - */ -void expand1_gasp(F, D, R, Foriginal, c1index, G) -pcover F; /* reduced cubes of ON-set */ -pcover D; /* DC-set */ -pcover R; /* OFF-set */ -pcover Foriginal; /* ON-set before reduction (same order as F) */ -int c1index; /* which index of F (or Freduced) to be checked */ -pcover *G; -{ - register int c2index; - register pcube p, last, c2under; - pcube RAISE, FREESET, temp, *FD, c2essential; - pcover F1; - - if (debug & EXPAND1) { - printf("\nEXPAND1_GASP: \t%s\n", pc1(GETSET(F, c1index))); - } - - RAISE = new_cube(); - FREESET = new_cube(); - temp = new_cube(); - - /* Initialize the OFF-set */ - R->active_count = R->count; - foreach_set(R, last, p) { - SET(p, ACTIVE); - } - /* Initialize the reduced ON-set, all nonprime cubes become active */ - F->active_count = F->count; - foreachi_set(F, c2index, c2under) { - if (c1index == c2index || TESTP(c2under, PRIME)) { - F->active_count--; - RESET(c2under, ACTIVE); - } else { - SET(c2under, ACTIVE); - } - } - - /* Initialize the raising and unassigned sets */ - (void) set_copy(RAISE, GETSET(F, c1index)); - (void) set_diff(FREESET, cube.fullset, RAISE); - - /* Determine parts which must be lowered */ - essen_parts(R, F, RAISE, FREESET); - - /* Determine parts which can always be raised */ - essen_raising(R, RAISE, FREESET); - - /* See which, if any, of the reduced cubes we can cover */ - foreachi_set(F, c2index, c2under) { - if (TESTP(c2under, ACTIVE)) { - /* See if this cube can be covered by an expansion */ - if (setp_implies(c2under, RAISE) || - feasibly_covered(R, c2under, RAISE, temp)) { - - /* See if c1under can expanded to cover c2 reduced against - * (F - c1) u c1under; if so, c2 can definitely be removed ! - */ - - /* Copy F and replace c1 with c1under */ - F1 = sf_save(Foriginal); - (void) set_copy(GETSET(F1, c1index), GETSET(F, c1index)); - - /* Reduce c2 against ((F - c1) u c1under) */ - FD = cube2list(F1, D); - c2essential = reduce_cube(FD, GETSET(F1, c2index)); - free_cubelist(FD); - sf_free(F1); - - /* See if c2essential is covered by an expansion of c1under */ - if (feasibly_covered(R, c2essential, RAISE, temp)) { - (void) set_or(temp, RAISE, c2essential); - RESET(temp, PRIME); /* cube not prime */ - *G = sf_addset(*G, temp); - } - set_free(c2essential); - } - } - } - - free_cube(RAISE); - free_cube(FREESET); - free_cube(temp); -} - -/* irred_gasp -- Add new primes to F and find an irredundant subset */ -pcover irred_gasp(F, D, G) -pcover F, D, G; /* G is disposed of */ -{ - if (G->count != 0) - F = irredundant(sf_append(F, G), D); - else - free_cover(G); - return F; -} - - -/* last_gasp */ -pcover last_gasp(F, D, R, cost) -pcover F, D, R; -cost_t *cost; -{ - pcover G, G1; - - EXECUTE(G = reduce_gasp(F, D), GREDUCE_TIME, G, *cost); - EXECUTE(G1 = expand_gasp(G, D, R, F), GEXPAND_TIME, G1, *cost); - free_cover(G); - EXECUTE(F = irred_gasp(F, D, G1), GIRRED_TIME, F, *cost); - return F; -} - - -/* super_gasp */ -pcover super_gasp(F, D, R, cost) -pcover F, D, R; -cost_t *cost; -{ - pcover G, G1; - - EXECUTE(G = reduce_gasp(F, D), GREDUCE_TIME, G, *cost); - EXECUTE(G1 = all_primes(G, R), GEXPAND_TIME, G1, *cost); - free_cover(G); - EXEC(G = sf_dupl(sf_append(F, G1)), "NEWPRIMES", G); - EXECUTE(F = irredundant(G, D), IRRED_TIME, F, *cost); - return F; -} diff --git a/src/misc/espresso/gimpel.c b/src/misc/espresso/gimpel.c deleted file mode 100644 index 648bb64a..00000000 --- a/src/misc/espresso/gimpel.c +++ /dev/null @@ -1,106 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "mincov_int.h" - - -/* - * check for: - * - * c1 c2 rest - * -- -- --- - * 1 1 0 0 0 0 <-- primary row - * 1 0 S1 <-- secondary row - * 0 1 T1 - * 0 1 T2 - * 0 1 Tn - * 0 0 R - */ - -int -gimpel_reduce(A, select, weight, lb, bound, depth, stats, best) -sm_matrix *A; -solution_t *select; -int *weight; -int lb; -int bound; -int depth; -stats_t *stats; -solution_t **best; -{ - register sm_row *prow, *save_sec; - register sm_col *c1, *c2; - register sm_element *p, *p1; - int c1_col_num, c2_col_num, primary_row_num, secondary_row_num; - int reduce_it; - - reduce_it = 0; - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - if (prow->length == 2) { - c1 = sm_get_col(A, prow->first_col->col_num); - c2 = sm_get_col(A, prow->last_col->col_num); - if (c1->length == 2) { - reduce_it = 1; - } else if (c2->length == 2) { - c1 = sm_get_col(A, prow->last_col->col_num); - c2 = sm_get_col(A, prow->first_col->col_num); - reduce_it = 1; - } - if (reduce_it) { - primary_row_num = prow->row_num; - secondary_row_num = c1->first_row->row_num; - if (secondary_row_num == primary_row_num) { - secondary_row_num = c1->last_row->row_num; - } - break; - } - } - } - - if (reduce_it) { - c1_col_num = c1->col_num; - c2_col_num = c2->col_num; - save_sec = sm_row_dup(sm_get_row(A, secondary_row_num)); - sm_row_remove(save_sec, c1_col_num); - - for(p = c2->first_row; p != 0; p = p->next_row) { - if (p->row_num != primary_row_num) { - /* merge rows S1 and T */ - for(p1 = save_sec->first_col; p1 != 0; p1 = p1->next_col) { - (void) sm_insert(A, p->row_num, p1->col_num); - } - } - } - - sm_delcol(A, c1_col_num); - sm_delcol(A, c2_col_num); - sm_delrow(A, primary_row_num); - sm_delrow(A, secondary_row_num); - - stats->gimpel_count++; - stats->gimpel++; - *best = sm_mincov(A, select, weight, lb-1, bound-1, depth, stats); - stats->gimpel--; - - if (*best != NIL(solution_t)) { - /* is secondary row covered ? */ - if (sm_row_intersects(save_sec, (*best)->row)) { - /* yes, actually select c2 */ - solution_add(*best, weight, c2_col_num); - } else { - solution_add(*best, weight, c1_col_num); - } - } - - sm_row_free(save_sec); - return 1; - } else { - return 0; - } -} diff --git a/src/misc/espresso/globals.c b/src/misc/espresso/globals.c deleted file mode 100644 index d04771e9..00000000 --- a/src/misc/espresso/globals.c +++ /dev/null @@ -1,76 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -/* - * Global Variable Declarations - */ - -unsigned int debug; /* debug parameter */ -bool verbose_debug; /* -v: whether to print a lot */ -char *total_name[TIME_COUNT]; /* basic function names */ -long total_time[TIME_COUNT]; /* time spent in basic fcts */ -int total_calls[TIME_COUNT]; /* # calls to each fct */ - -bool echo_comments; /* turned off by -eat option */ -bool echo_unknown_commands; /* always true ?? */ -bool force_irredundant; /* -nirr command line option */ -bool skip_make_sparse; -bool kiss; /* -kiss command line option */ -bool pos; /* -pos command line option */ -bool print_solution; /* -x command line option */ -bool recompute_onset; /* -onset command line option */ -bool remove_essential; /* -ness command line option */ -bool single_expand; /* -fast command line option */ -bool summary; /* -s command line option */ -bool trace; /* -t command line option */ -bool unwrap_onset; /* -nunwrap command line option */ -bool use_random_order; /* -random command line option */ -bool use_super_gasp; /* -strong command line option */ -char *filename; /* filename PLA was read from */ - -struct pla_types_struct pla_types[] = { - "-f", F_type, - "-r", R_type, - "-d", D_type, - "-fd", FD_type, - "-fr", FR_type, - "-dr", DR_type, - "-fdr", FDR_type, - "-fc", F_type | CONSTRAINTS_type, - "-rc", R_type | CONSTRAINTS_type, - "-dc", D_type | CONSTRAINTS_type, - "-fdc", FD_type | CONSTRAINTS_type, - "-frc", FR_type | CONSTRAINTS_type, - "-drc", DR_type | CONSTRAINTS_type, - "-fdrc", FDR_type | CONSTRAINTS_type, - "-pleasure", PLEASURE_type, - "-eqn", EQNTOTT_type, - "-eqntott", EQNTOTT_type, - "-kiss", KISS_type, - "-cons", CONSTRAINTS_type, - "-scons", SYMBOLIC_CONSTRAINTS_type, - 0, 0 -}; - - -struct cube_struct cube, temp_cube_save; -struct cdata_struct cdata, temp_cdata_save; - -int bit_count[256] = { - 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, - 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, - 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, - 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, - 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, - 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, - 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, - 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 -}; diff --git a/src/misc/espresso/hack.c b/src/misc/espresso/hack.c deleted file mode 100644 index 927f5341..00000000 --- a/src/misc/espresso/hack.c +++ /dev/null @@ -1,641 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -map_dcset(PLA) -pPLA PLA; -{ - int var, i; - pcover Tplus, Tminus, Tplusbar, Tminusbar; - pcover newf, term1, term2, dcset, dcsetbar; - pcube cplus, cminus, last, p; - - if (PLA->label == NIL(char *) || PLA->label[0] == NIL(char)) - return; - - /* try to find a binary variable named "DONT_CARE" */ - var = -1; - for(i = 0; i < cube.num_binary_vars * 2; i++) { - if (strncmp(PLA->label[i], "DONT_CARE", 9) == 0 || - strncmp(PLA->label[i], "DONTCARE", 8) == 0 || - strncmp(PLA->label[i], "dont_care", 9) == 0 || - strncmp(PLA->label[i], "dontcare", 8) == 0) { - var = i/2; - break; - } - } - if (var == -1) { - return; - } - - /* form the cofactor cubes for the don't-care variable */ - cplus = set_save(cube.fullset); - cminus = set_save(cube.fullset); - set_remove(cplus, var*2); - set_remove(cminus, var*2 + 1); - - /* form the don't-care set */ - EXEC(simp_comp(cofactor(cube1list(PLA->F), cplus), &Tplus, &Tplusbar), - "simpcomp+", Tplus); - EXEC(simp_comp(cofactor(cube1list(PLA->F), cminus), &Tminus, &Tminusbar), - "simpcomp-", Tminus); - EXEC(term1 = cv_intersect(Tplus, Tminusbar), "term1 ", term1); - EXEC(term2 = cv_intersect(Tminus, Tplusbar), "term2 ", term2); - EXEC(dcset = sf_union(term1, term2), "union ", dcset); - EXEC(simp_comp(cube1list(dcset), &PLA->D, &dcsetbar), "simplify", PLA->D); - EXEC(newf = cv_intersect(PLA->F, dcsetbar), "separate ", PLA->F); - free_cover(PLA->F); - PLA->F = newf; - free_cover(Tplus); - free_cover(Tminus); - free_cover(Tplusbar); - free_cover(Tminusbar); - free_cover(dcsetbar); - - /* remove any cubes dependent on the DONT_CARE variable */ - (void) sf_active(PLA->F); - foreach_set(PLA->F, last, p) { - if (! is_in_set(p, var*2) || ! is_in_set(p, var*2+1)) { - RESET(p, ACTIVE); - } - } - PLA->F = sf_inactive(PLA->F); - - /* resize the cube and delete the don't-care variable */ - setdown_cube(); - for(i = 2*var+2; i < cube.size; i++) { - PLA->label[i-2] = PLA->label[i]; - } - for(i = var+1; i < cube.num_vars; i++) { - cube.part_size[i-1] = cube.part_size[i]; - } - cube.num_binary_vars--; - cube.num_vars--; - cube_setup(); - PLA->F = sf_delc(PLA->F, 2*var, 2*var+1); - PLA->D = sf_delc(PLA->D, 2*var, 2*var+1); -} - -map_output_symbolic(PLA) -pPLA PLA; -{ - pset_family newF, newD; - pset compress; - symbolic_t *p1; - symbolic_list_t *p2; - int i, bit, tot_size, base, old_size; - - /* Remove the DC-set from the ON-set (is this necessary ??) */ - if (PLA->D->count > 0) { - sf_free(PLA->F); - PLA->F = complement(cube2list(PLA->D, PLA->R)); - } - - /* tot_size = width added for all symbolic variables */ - tot_size = 0; - for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) { - for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) { - if (p2->pos<0 || p2->pos>=cube.part_size[cube.output]) { - fatal("symbolic-output index out of range"); -/* } else if (p2->variable != cube.output) { - fatal("symbolic-output label must be an output");*/ - } - } - tot_size += 1 << p1->symbolic_list_length; - } - - /* adjust the indices to skip over new outputs */ - for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) { - for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) { - p2->pos += tot_size; - } - } - - /* resize the cube structure -- add enough for the one-hot outputs */ - old_size = cube.size; - cube.part_size[cube.output] += tot_size; - setdown_cube(); - cube_setup(); - - /* insert space in the output part for the one-hot output */ - base = cube.first_part[cube.output]; - PLA->F = sf_addcol(PLA->F, base, tot_size); - PLA->D = sf_addcol(PLA->D, base, tot_size); - PLA->R = sf_addcol(PLA->R, base, tot_size); - - /* do the real work */ - for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) { - newF = new_cover(100); - newD = new_cover(100); - find_inputs(NIL(set_family_t), PLA, p1->symbolic_list, base, 0, - &newF, &newD); -/* - * Not sure what this means - find_dc_inputs(PLA, p1->symbolic_list, - base, 1 << p1->symbolic_list_length, &newF, &newD); - */ - free_cover(PLA->F); - PLA->F = newF; -/* - * retain OLD DC-set -- but we've lost the don't-care arc information - * (it defaults to branch to the zero state) - free_cover(PLA->D); - PLA->D = newD; - */ - free_cover(newD); - base += 1 << p1->symbolic_list_length; - } - - /* delete the old outputs, and resize the cube */ - compress = set_full(newF->sf_size); - for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) { - for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) { - bit = cube.first_part[cube.output] + p2->pos; - set_remove(compress, bit); - } - } - cube.part_size[cube.output] -= newF->sf_size - set_ord(compress); - setdown_cube(); - cube_setup(); - PLA->F = sf_compress(PLA->F, compress); - PLA->D = sf_compress(PLA->D, compress); - if (cube.size != PLA->F->sf_size) fatal("error"); - - /* Quick minimization */ - PLA->F = sf_contain(PLA->F); - PLA->D = sf_contain(PLA->D); - for(i = 0; i < cube.num_vars; i++) { - PLA->F = d1merge(PLA->F, i); - PLA->D = d1merge(PLA->D, i); - } - PLA->F = sf_contain(PLA->F); - PLA->D = sf_contain(PLA->D); - - free_cover(PLA->R); - PLA->R = new_cover(0); - - symbolic_hack_labels(PLA, PLA->symbolic_output, - compress, cube.size, old_size, tot_size); - set_free(compress); -} - - -find_inputs(A, PLA, list, base, value, newF, newD) -pcover A; -pPLA PLA; -symbolic_list_t *list; -int base, value; -pcover *newF, *newD; -{ - pcover S, S1; - register pset last, p; - - /* - * A represents th 'input' values for which the outputs assume - * the integer value 'value - */ - if (list == NIL(symbolic_list_t)) { - /* - * Simulate these inputs against the on-set; then, insert into the - * new on-set a 1 in the proper position - */ - S = cv_intersect(A, PLA->F); - foreach_set(S, last, p) { - set_insert(p, base + value); - } - *newF = sf_append(*newF, S); - - /* - * 'simulate' these inputs against the don't-care set - S = cv_intersect(A, PLA->D); - *newD = sf_append(*newD, S); - */ - - } else { - /* intersect and recur with the OFF-set */ - S = cof_output(PLA->R, cube.first_part[cube.output] + list->pos); - if (A != NIL(set_family_t)) { - S1 = cv_intersect(A, S); - free_cover(S); - S = S1; - } - find_inputs(S, PLA, list->next, base, value*2, newF, newD); - free_cover(S); - - /* intersect and recur with the ON-set */ - S = cof_output(PLA->F, cube.first_part[cube.output] + list->pos); - if (A != NIL(set_family_t)) { - S1 = cv_intersect(A, S); - free_cover(S); - S = S1; - } - find_inputs(S, PLA, list->next, base, value*2 + 1, newF, newD); - free_cover(S); - } -} - - -#if 0 -find_dc_inputs(PLA, list, base, maxval, newF, newD) -pPLA PLA; -symbolic_list_t *list; -int base, maxval; -pcover *newF, *newD; -{ - pcover A, S, S1; - symbolic_list_t *p2; - register pset p, last; - register int i; - - /* painfully find the points for which the symbolic output is dc */ - A = NIL(set_family_t); - for(p2=list; p2!=NIL(symbolic_list_t); p2=p2->next) { - S = cof_output(PLA->D, cube.first_part[cube.output] + p2->pos); - if (A == NIL(set_family_t)) { - A = S; - } else { - S1 = cv_intersect(A, S); - free_cover(S); - free_cover(A); - A = S1; - } - } - - S = cv_intersect(A, PLA->F); - *newF = sf_append(*newF, S); - - S = cv_intersect(A, PLA->D); - foreach_set(S, last, p) { - for(i = base; i < base + maxval; i++) { - set_insert(p, i); - } - } - *newD = sf_append(*newD, S); - free_cover(A); -} -#endif - -map_symbolic(PLA) -pPLA PLA; -{ - symbolic_t *p1; - symbolic_list_t *p2; - int var, base, num_vars, num_binary_vars, *new_part_size; - int new_size, size_added, num_deleted_vars, num_added_vars, newvar; - pset compress; - - /* Verify legal values are in the symbolic lists */ - for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) { - for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) { - if (p2->variable < 0 || p2->variable >= cube.num_binary_vars) { - fatal(".symbolic requires binary variables"); - } - } - } - - /* - * size_added = width added for all symbolic variables - * num_deleted_vars = # binary variables to be deleted - * num_added_vars = # new mv variables - * compress = a cube which will be used to compress the set families - */ - size_added = 0; - num_added_vars = 0; - for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) { - size_added += 1 << p1->symbolic_list_length; - num_added_vars++; - } - compress = set_full(PLA->F->sf_size + size_added); - for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) { - for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) { - set_remove(compress, p2->variable*2); - set_remove(compress, p2->variable*2+1); - } - } - num_deleted_vars = ((PLA->F->sf_size + size_added) - set_ord(compress))/2; - - /* compute the new cube constants */ - num_vars = cube.num_vars - num_deleted_vars + num_added_vars; - num_binary_vars = cube.num_binary_vars - num_deleted_vars; - new_size = cube.size - num_deleted_vars*2 + size_added; - new_part_size = ALLOC(int, num_vars); - new_part_size[num_vars-1] = cube.part_size[cube.num_vars-1]; - for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) { - new_part_size[var-num_deleted_vars] = cube.part_size[var]; - } - - /* re-size the covers, opening room for the new mv variables */ - base = cube.first_part[cube.output]; - PLA->F = sf_addcol(PLA->F, base, size_added); - PLA->D = sf_addcol(PLA->D, base, size_added); - PLA->R = sf_addcol(PLA->R, base, size_added); - - /* compute the values for the new mv variables */ - newvar = (cube.num_vars - 1) - num_deleted_vars; - for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) { - PLA->F = map_symbolic_cover(PLA->F, p1->symbolic_list, base); - PLA->D = map_symbolic_cover(PLA->D, p1->symbolic_list, base); - PLA->R = map_symbolic_cover(PLA->R, p1->symbolic_list, base); - base += 1 << p1->symbolic_list_length; - new_part_size[newvar++] = 1 << p1->symbolic_list_length; - } - - /* delete the binary variables which disappear */ - PLA->F = sf_compress(PLA->F, compress); - PLA->D = sf_compress(PLA->D, compress); - PLA->R = sf_compress(PLA->R, compress); - - symbolic_hack_labels(PLA, PLA->symbolic, compress, - new_size, cube.size, size_added); - setdown_cube(); - FREE(cube.part_size); - cube.num_vars = num_vars; - cube.num_binary_vars = num_binary_vars; - cube.part_size = new_part_size; - cube_setup(); - set_free(compress); -} - - -pcover map_symbolic_cover(T, list, base) -pcover T; -symbolic_list_t *list; -int base; -{ - pset last, p; - foreach_set(T, last, p) { - form_bitvector(p, base, 0, list); - } - return T; -} - - -form_bitvector(p, base, value, list) -pset p; /* old cube, looking at binary variables */ -int base; /* where in mv cube the new variable starts */ -int value; /* current value for this recursion */ -symbolic_list_t *list; /* current place in the symbolic list */ -{ - if (list == NIL(symbolic_list_t)) { - set_insert(p, base + value); - } else { - switch(GETINPUT(p, list->variable)) { - case ZERO: - form_bitvector(p, base, value*2, list->next); - break; - case ONE: - form_bitvector(p, base, value*2+1, list->next); - break; - case TWO: - form_bitvector(p, base, value*2, list->next); - form_bitvector(p, base, value*2+1, list->next); - break; - default: - fatal("bad cube in form_bitvector"); - } - } -} - - -symbolic_hack_labels(PLA, list, compress, new_size, old_size, size_added) -pPLA PLA; -symbolic_t *list; -pset compress; -int new_size, old_size, size_added; -{ - int i, base; - char **oldlabel; - symbolic_t *p1; - symbolic_label_t *p3; - - /* hack with the labels */ - if ((oldlabel = PLA->label) == NIL(char *)) - return; - PLA->label = ALLOC(char *, new_size); - for(i = 0; i < new_size; i++) { - PLA->label[i] = NIL(char); - } - - /* copy the binary variable labels and unchanged mv variable labels */ - base = 0; - for(i = 0; i < cube.first_part[cube.output]; i++) { - if (is_in_set(compress, i)) { - PLA->label[base++] = oldlabel[i]; - } else { - if (oldlabel[i] != NIL(char)) { - FREE(oldlabel[i]); - } - } - } - - /* add the user-defined labels for the symbolic outputs */ - for(p1 = list; p1 != NIL(symbolic_t); p1 = p1->next) { - p3 = p1->symbolic_label; - for(i = 0; i < (1 << p1->symbolic_list_length); i++) { - if (p3 == NIL(symbolic_label_t)) { - PLA->label[base+i] = ALLOC(char, 10); - (void) sprintf(PLA->label[base+i], "X%d", i); - } else { - PLA->label[base+i] = p3->label; - p3 = p3->next; - } - } - base += 1 << p1->symbolic_list_length; - } - - /* copy the labels for the binary outputs which remain */ - for(i = cube.first_part[cube.output]; i < old_size; i++) { - if (is_in_set(compress, i + size_added)) { - PLA->label[base++] = oldlabel[i]; - } else { - if (oldlabel[i] != NIL(char)) { - FREE(oldlabel[i]); - } - } - } - FREE(oldlabel); -} - -static pcover fsm_simplify(F) -pcover F; -{ - pcover D, R; - D = new_cover(0); - R = complement(cube1list(F)); - F = espresso(F, D, R); - free_cover(D); - free_cover(R); - return F; -} - - -disassemble_fsm(PLA, verbose_mode) -pPLA PLA; -int verbose_mode; -{ - int nin, nstates, nout; - int before, after, present_state, next_state, i, j; - pcube next_state_mask, present_state_mask, state_mask, p, p1, last; - pcover go_nowhere, F, tF; - - /* We make the DISGUSTING assumption that the first 'n' outputs have - * been created by .symbolic-output, and represent a one-hot encoding - * of the next state. 'n' is the size of the second-to-last multiple- - * valued variable (i.e., before the outputs - */ - - if (cube.num_vars - cube.num_binary_vars != 2) { - (void) fprintf(stderr, - "use .symbolic and .symbolic-output to specify\n"); - (void) fprintf(stderr, - "the present state and next state field information\n"); - fatal("disassemble_pla: need two multiple-valued variables\n"); - } - - nin = cube.num_binary_vars; - nstates = cube.part_size[cube.num_binary_vars]; - nout = cube.part_size[cube.num_vars - 1]; - if (nout < nstates) { - (void) fprintf(stderr, - "use .symbolic and .symbolic-output to specify\n"); - (void) fprintf(stderr, - "the present state and next state field information\n"); - fatal("disassemble_pla: # outputs < # states\n"); - } - - - present_state = cube.first_part[cube.num_binary_vars]; - present_state_mask = new_cube(); - for(i = 0; i < nstates; i++) { - set_insert(present_state_mask, i + present_state); - } - - next_state = cube.first_part[cube.num_binary_vars+1]; - next_state_mask = new_cube(); - for(i = 0; i < nstates; i++) { - set_insert(next_state_mask, i + next_state); - } - - state_mask = set_or(new_cube(), next_state_mask, present_state_mask); - - F = new_cover(10); - - - /* - * check for arcs which go from ANY state to state #i - */ - for(i = 0; i < nstates; i++) { - tF = new_cover(10); - foreach_set(PLA->F, last, p) { - if (setp_implies(present_state_mask, p)) { /* from any state ! */ - if (is_in_set(p, next_state + i)) { - tF = sf_addset(tF, p); - } - } - } - before = tF->count; - if (before > 0) { - tF = fsm_simplify(tF); - /* don't allow the next state to disappear ... */ - foreach_set(tF, last, p) { - set_insert(p, next_state + i); - } - after = tF->count; - F = sf_append(F, tF); - if (verbose_mode) { - printf("# state EVERY to %d, before=%d after=%d\n", - i, before, after); - } - } - } - - - /* - * some 'arcs' may NOT have a next state -- handle these - * we must unravel the present state part - */ - go_nowhere = new_cover(10); - foreach_set(PLA->F, last, p) { - if (setp_disjoint(p, next_state_mask)) { /* no next state !! */ - go_nowhere = sf_addset(go_nowhere, p); - } - } - before = go_nowhere->count; - go_nowhere = unravel_range(go_nowhere, - cube.num_binary_vars, cube.num_binary_vars); - after = go_nowhere->count; - F = sf_append(F, go_nowhere); - if (verbose_mode) { - printf("# state ANY to NOWHERE, before=%d after=%d\n", before, after); - } - - - /* - * minimize cover for all arcs from state #i to state #j - */ - for(i = 0; i < nstates; i++) { - for(j = 0; j < nstates; j++) { - tF = new_cover(10); - foreach_set(PLA->F, last, p) { - /* not EVERY state */ - if (! setp_implies(present_state_mask, p)) { - if (is_in_set(p, present_state + i)) { - if (is_in_set(p, next_state + j)) { - p1 = set_save(p); - set_diff(p1, p1, state_mask); - set_insert(p1, present_state + i); - set_insert(p1, next_state + j); - tF = sf_addset(tF, p1); - set_free(p1); - } - } - } - } - before = tF->count; - if (before > 0) { - tF = fsm_simplify(tF); - /* don't allow the next state to disappear ... */ - foreach_set(tF, last, p) { - set_insert(p, next_state + j); - } - after = tF->count; - F = sf_append(F, tF); - if (verbose_mode) { - printf("# state %d to %d, before=%d after=%d\n", - i, j, before, after); - } - } - } - } - - - free_cube(state_mask); - free_cube(present_state_mask); - free_cube(next_state_mask); - - free_cover(PLA->F); - PLA->F = F; - free_cover(PLA->D); - PLA->D = new_cover(0); - - setdown_cube(); - FREE(cube.part_size); - cube.num_binary_vars = nin; - cube.num_vars = nin + 3; - cube.part_size = ALLOC(int, cube.num_vars); - cube.part_size[cube.num_binary_vars] = nstates; - cube.part_size[cube.num_binary_vars+1] = nstates; - cube.part_size[cube.num_binary_vars+2] = nout - nstates; - cube_setup(); - - foreach_set(PLA->F, last, p) { - kiss_print_cube(stdout, PLA, p, "~1"); - } -} diff --git a/src/misc/espresso/indep.c b/src/misc/espresso/indep.c deleted file mode 100644 index 10b363a0..00000000 --- a/src/misc/espresso/indep.c +++ /dev/null @@ -1,134 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "mincov_int.h" - -static sm_matrix *build_intersection_matrix(); - - -#if 0 -/* - * verify that all rows in 'indep' are actually independent ! - */ -static int -verify_indep_set(A, indep) -sm_matrix *A; -sm_row *indep; -{ - register sm_row *prow, *prow1; - register sm_element *p, *p1; - - for(p = indep->first_col; p != 0; p = p->next_col) { - prow = sm_get_row(A, p->col_num); - for(p1 = p->next_col; p1 != 0; p1 = p1->next_col) { - prow1 = sm_get_row(A, p1->col_num); - if (sm_row_intersects(prow, prow1)) { - return 0; - } - } - } - return 1; -} -#endif - -solution_t * -sm_maximal_independent_set(A, weight) -sm_matrix *A; -int *weight; -{ - register sm_row *best_row, *prow; - register sm_element *p; - int least_weight; - sm_row *save; - sm_matrix *B; - solution_t *indep; - - indep = solution_alloc(); - B = build_intersection_matrix(A); - - while (B->nrows > 0) { - /* Find the row which is disjoint from a maximum number of rows */ - best_row = B->first_row; - for(prow = B->first_row->next_row; prow != 0; prow = prow->next_row) { - if (prow->length < best_row->length) { - best_row = prow; - } - } - - /* Find which element in this row has least weight */ - if (weight == NIL(int)) { - least_weight = 1; - } else { - prow = sm_get_row(A, best_row->row_num); - least_weight = weight[prow->first_col->col_num]; - for(p = prow->first_col->next_col; p != 0; p = p->next_col) { - if (weight[p->col_num] < least_weight) { - least_weight = weight[p->col_num]; - } - } - } - indep->cost += least_weight; - (void) sm_row_insert(indep->row, best_row->row_num); - - /* Discard the rows which intersect this row */ - save = sm_row_dup(best_row); - for(p = save->first_col; p != 0; p = p->next_col) { - sm_delrow(B, p->col_num); - sm_delcol(B, p->col_num); - } - sm_row_free(save); - } - - sm_free(B); - -/* - if (! verify_indep_set(A, indep->row)) { - fail("sm_maximal_independent_set: row set is not independent"); - } -*/ - return indep; -} - -static sm_matrix * -build_intersection_matrix(A) -sm_matrix *A; -{ - register sm_row *prow, *prow1; - register sm_element *p, *p1; - register sm_col *pcol; - sm_matrix *B; - - /* Build row-intersection matrix */ - B = sm_alloc(); - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - - /* Clear flags on all rows we can reach from row 'prow' */ - for(p = prow->first_col; p != 0; p = p->next_col) { - pcol = sm_get_col(A, p->col_num); - for(p1 = pcol->first_row; p1 != 0; p1 = p1->next_row) { - prow1 = sm_get_row(A, p1->row_num); - prow1->flag = 0; - } - } - - /* Now record which rows can be reached */ - for(p = prow->first_col; p != 0; p = p->next_col) { - pcol = sm_get_col(A, p->col_num); - for(p1 = pcol->first_row; p1 != 0; p1 = p1->next_row) { - prow1 = sm_get_row(A, p1->row_num); - if (! prow1->flag) { - prow1->flag = 1; - (void) sm_insert(B, prow->row_num, prow1->row_num); - } - } - } - } - - return B; -} diff --git a/src/misc/espresso/irred.c b/src/misc/espresso/irred.c deleted file mode 100644 index 384e698f..00000000 --- a/src/misc/espresso/irred.c +++ /dev/null @@ -1,440 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -static void fcube_is_covered(); -static void ftautology(); -static bool ftaut_special_cases(); - - -static int Rp_current; - -/* - * irredundant -- Return a minimal subset of F - */ - -pcover -irredundant(F, D) -pcover F, D; -{ - mark_irredundant(F, D); - return sf_inactive(F); -} - - -/* - * mark_irredundant -- find redundant cubes, and mark them "INACTIVE" - */ - -void -mark_irredundant(F, D) -pcover F, D; -{ - pcover E, Rt, Rp; - pset p, p1, last; - sm_matrix *table; - sm_row *cover; - sm_element *pe; - - /* extract a minimum cover */ - irred_split_cover(F, D, &E, &Rt, &Rp); - table = irred_derive_table(D, E, Rp); - cover = sm_minimum_cover(table, NIL(int), /* heuristic */ 1, /* debug */ 0); - - /* mark the cubes for the result */ - foreach_set(F, last, p) { - RESET(p, ACTIVE); - RESET(p, RELESSEN); - } - foreach_set(E, last, p) { - p1 = GETSET(F, SIZE(p)); - assert(setp_equal(p1, p)); - SET(p1, ACTIVE); - SET(p1, RELESSEN); /* for essen(), mark as rel. ess. */ - } - sm_foreach_row_element(cover, pe) { - p1 = GETSET(F, pe->col_num); - SET(p1, ACTIVE); - } - - if (debug & IRRED) { - printf("# IRRED: F=%d E=%d R=%d Rt=%d Rp=%d Rc=%d Final=%d Bound=%d\n", - F->count, E->count, Rt->count+Rp->count, Rt->count, Rp->count, - cover->length, E->count + cover->length, 0); - } - - free_cover(E); - free_cover(Rt); - free_cover(Rp); - sm_free(table); - sm_row_free(cover); -} - -/* - * irred_split_cover -- find E, Rt, and Rp from the cover F, D - * - * E -- relatively essential cubes - * Rt -- totally redundant cubes - * Rp -- partially redundant cubes - */ - -void -irred_split_cover(F, D, E, Rt, Rp) -pcover F, D; -pcover *E, *Rt, *Rp; -{ - register pcube p, last; - register int index; - pcover R; - pcube *FD, *ED; - - /* number the cubes of F -- these numbers track into E, Rp, Rt, etc. */ - index = 0; - foreach_set(F, last, p) { - PUTSIZE(p, index); - index++; - } - - *E = new_cover(10); - *Rt = new_cover(10); - *Rp = new_cover(10); - R = new_cover(10); - - /* Split F into E and R */ - FD = cube2list(F, D); - foreach_set(F, last, p) { - if (cube_is_covered(FD, p)) { - R = sf_addset(R, p); - } else { - *E = sf_addset(*E, p); - } - if (debug & IRRED1) { - (void) printf("IRRED1: zr=%d ze=%d to-go=%d time=%s\n", - R->count, (*E)->count, F->count - (R->count + (*E)->count), - print_time(ptime())); - } - } - free_cubelist(FD); - - /* Split R into Rt and Rp */ - ED = cube2list(*E, D); - foreach_set(R, last, p) { - if (cube_is_covered(ED, p)) { - *Rt = sf_addset(*Rt, p); - } else { - *Rp = sf_addset(*Rp, p); - } - if (debug & IRRED1) { - (void) printf("IRRED1: zr=%d zrt=%d to-go=%d time=%s\n", - (*Rp)->count, (*Rt)->count, - R->count - ((*Rp)->count +(*Rt)->count), print_time(ptime())); - } - } - free_cubelist(ED); - - free_cover(R); -} - -/* - * irred_derive_table -- given the covers D, E and the set of - * partially redundant primes Rp, build a covering table showing - * possible selections of primes to cover Rp. - */ - -sm_matrix * -irred_derive_table(D, E, Rp) -pcover D, E, Rp; -{ - register pcube last, p, *list; - sm_matrix *table; - int size_last_dominance, i; - - /* Mark each cube in DE as not part of the redundant set */ - foreach_set(D, last, p) { - RESET(p, REDUND); - } - foreach_set(E, last, p) { - RESET(p, REDUND); - } - - /* Mark each cube in Rp as partially redundant */ - foreach_set(Rp, last, p) { - SET(p, REDUND); /* belongs to redundant set */ - } - - /* For each cube in Rp, find ways to cover its minterms */ - list = cube3list(D, E, Rp); - table = sm_alloc(); - size_last_dominance = 0; - i = 0; - foreach_set(Rp, last, p) { - Rp_current = SIZE(p); - fcube_is_covered(list, p, table); - RESET(p, REDUND); /* can now consider this cube redundant */ - if (debug & IRRED1) { - (void) printf("IRRED1: %d of %d to-go=%d, table=%dx%d time=%s\n", - i, Rp->count, Rp->count - i, - table->nrows, table->ncols, print_time(ptime())); - } - /* try to keep memory limits down by reducing table as we go along */ - if (table->nrows - size_last_dominance > 1000) { - (void) sm_row_dominance(table); - size_last_dominance = table->nrows; - if (debug & IRRED1) { - (void) printf("IRRED1: delete redundant rows, now %dx%d\n", - table->nrows, table->ncols); - } - } - i++; - } - free_cubelist(list); - - return table; -} - -/* cube_is_covered -- determine if a cubelist "covers" a single cube */ -bool -cube_is_covered(T, c) -pcube *T, c; -{ - return tautology(cofactor(T,c)); -} - - - -/* tautology -- answer the tautology question for T */ -bool -tautology(T) -pcube *T; /* T will be disposed of */ -{ - register pcube cl, cr; - register int best, result; - static int taut_level = 0; - - if (debug & TAUT) { - debug_print(T, "TAUTOLOGY", taut_level++); - } - - if ((result = taut_special_cases(T)) == MAYBE) { - cl = new_cube(); - cr = new_cube(); - best = binate_split_select(T, cl, cr, TAUT); - result = tautology(scofactor(T, cl, best)) && - tautology(scofactor(T, cr, best)); - free_cubelist(T); - free_cube(cl); - free_cube(cr); - } - - if (debug & TAUT) { - printf("exit TAUTOLOGY[%d]: %s\n", --taut_level, print_bool(result)); - } - return result; -} - -/* - * taut_special_cases -- check special cases for tautology - */ - -bool -taut_special_cases(T) -pcube *T; /* will be disposed if answer is determined */ -{ - register pcube *T1, *Tsave, p, ceil=cube.temp[0], temp=cube.temp[1]; - pcube *A, *B; - int var; - - /* Check for a row of all 1's which implies tautology */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (full_row(p, T[0])) { - free_cubelist(T); - return TRUE; - } - } - - /* Check for a column of all 0's which implies no tautology */ -start: - INLINEset_copy(ceil, T[0]); - for(T1 = T+2; (p = *T1++) != NULL; ) { - INLINEset_or(ceil, ceil, p); - } - if (! setp_equal(ceil, cube.fullset)) { - free_cubelist(T); - return FALSE; - } - - /* Collect column counts, determine unate variables, etc. */ - massive_count(T); - - /* If function is unate (and no row of all 1's), then no tautology */ - if (cdata.vars_unate == cdata.vars_active) { - free_cubelist(T); - return FALSE; - - /* If active in a single variable (and no column of 0's) then tautology */ - } else if (cdata.vars_active == 1) { - free_cubelist(T); - return TRUE; - - /* Check for unate variables, and reduce cover if there are any */ - } else if (cdata.vars_unate != 0) { - /* Form a cube "ceil" with full variables in the unate variables */ - (void) set_copy(ceil, cube.emptyset); - for(var = 0; var < cube.num_vars; var++) { - if (cdata.is_unate[var]) { - INLINEset_or(ceil, ceil, cube.var_mask[var]); - } - } - - /* Save only those cubes that are "full" in all unate variables */ - for(Tsave = T1 = T+2; (p = *T1++) != 0; ) { - if (setp_implies(ceil, set_or(temp, p, T[0]))) { - *Tsave++ = p; - } - } - *Tsave++ = NULL; - T[1] = (pcube) Tsave; - - if (debug & TAUT) { - printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n", - cdata.vars_unate, CUBELISTSIZE(T)); - } - goto start; - - /* Check for component reduction */ - } else if (cdata.var_zeros[cdata.best] < CUBELISTSIZE(T) / 2) { - if (cubelist_partition(T, &A, &B, debug & TAUT) == 0) { - return MAYBE; - } else { - free_cubelist(T); - if (tautology(A)) { - free_cubelist(B); - return TRUE; - } else { - return tautology(B); - } - } - } - - /* We tried as hard as we could, but must recurse from here on */ - return MAYBE; -} - -/* fcube_is_covered -- determine exactly how a cubelist "covers" a cube */ -static void -fcube_is_covered(T, c, table) -pcube *T, c; -sm_matrix *table; -{ - ftautology(cofactor(T,c), table); -} - - -/* ftautology -- find ways to make a tautology */ -static void -ftautology(T, table) -pcube *T; /* T will be disposed of */ -sm_matrix *table; -{ - register pcube cl, cr; - register int best; - static int ftaut_level = 0; - - if (debug & TAUT) { - debug_print(T, "FIND_TAUTOLOGY", ftaut_level++); - } - - if (ftaut_special_cases(T, table) == MAYBE) { - cl = new_cube(); - cr = new_cube(); - best = binate_split_select(T, cl, cr, TAUT); - - ftautology(scofactor(T, cl, best), table); - ftautology(scofactor(T, cr, best), table); - - free_cubelist(T); - free_cube(cl); - free_cube(cr); - } - - if (debug & TAUT) { - (void) printf("exit FIND_TAUTOLOGY[%d]: table is %d by %d\n", - --ftaut_level, table->nrows, table->ncols); - } -} - -static bool -ftaut_special_cases(T, table) -pcube *T; /* will be disposed if answer is determined */ -sm_matrix *table; -{ - register pcube *T1, *Tsave, p, temp = cube.temp[0], ceil = cube.temp[1]; - int var, rownum; - - /* Check for a row of all 1's in the essential cubes */ - for(T1 = T+2; (p = *T1++) != 0; ) { - if (! TESTP(p, REDUND)) { - if (full_row(p, T[0])) { - /* subspace is covered by essentials -- no new rows for table */ - free_cubelist(T); - return TRUE; - } - } - } - - /* Collect column counts, determine unate variables, etc. */ -start: - massive_count(T); - - /* If function is unate, find the rows of all 1's */ - if (cdata.vars_unate == cdata.vars_active) { - /* find which nonessentials cover this subspace */ - rownum = table->last_row ? table->last_row->row_num+1 : 0; - (void) sm_insert(table, rownum, Rp_current); - for(T1 = T+2; (p = *T1++) != 0; ) { - if (TESTP(p, REDUND)) { - /* See if a redundant cube covers this leaf */ - if (full_row(p, T[0])) { - (void) sm_insert(table, rownum, (int) SIZE(p)); - } - } - } - free_cubelist(T); - return TRUE; - - /* Perform unate reduction if there are any unate variables */ - } else if (cdata.vars_unate != 0) { - /* Form a cube "ceil" with full variables in the unate variables */ - (void) set_copy(ceil, cube.emptyset); - for(var = 0; var < cube.num_vars; var++) { - if (cdata.is_unate[var]) { - INLINEset_or(ceil, ceil, cube.var_mask[var]); - } - } - - /* Save only those cubes that are "full" in all unate variables */ - for(Tsave = T1 = T+2; (p = *T1++) != 0; ) { - if (setp_implies(ceil, set_or(temp, p, T[0]))) { - *Tsave++ = p; - } - } - *Tsave++ = 0; - T[1] = (pcube) Tsave; - - if (debug & TAUT) { - printf("UNATE_REDUCTION: %d unate variables, reduced to %d\n", - cdata.vars_unate, CUBELISTSIZE(T)); - } - goto start; - } - - /* Not much we can do about it */ - return MAYBE; -} diff --git a/src/misc/espresso/main.c b/src/misc/espresso/main.c deleted file mode 100644 index 0a511c0e..00000000 --- a/src/misc/espresso/main.c +++ /dev/null @@ -1,746 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - * Main driver for espresso - * - * Old style -do xxx, -out xxx, etc. are still supported. - */ - -#include "espresso.h" -#include "main.h" /* table definitions for options */ - -static FILE *last_fp; -static int input_type = FD_type; - - -main(argc, argv) -int argc; -char *argv[]; -{ - int i, j, first, last, strategy, out_type, option; - pPLA PLA, PLA1; - pcover F, Fold, Dold; - pset last1, p; - cost_t cost; - bool error, exact_cover; - long start; - extern char *util_optarg; - extern int util_optind; - - start = ptime(); - - error = FALSE; - init_runtime(); -#ifdef RANDOM - srandom(314973); -#endif - - option = 0; /* default -D: ESPRESSO */ - out_type = F_type; /* default -o: default is ON-set only */ - debug = 0; /* default -d: no debugging info */ - verbose_debug = FALSE; /* default -v: not verbose */ - print_solution = TRUE; /* default -x: print the solution (!) */ - summary = FALSE; /* default -s: no summary */ - trace = FALSE; /* default -t: no trace information */ - strategy = 0; /* default -S: strategy number */ - first = -1; /* default -R: select range */ - last = -1; - remove_essential = TRUE; /* default -e: */ - force_irredundant = TRUE; - unwrap_onset = TRUE; - single_expand = FALSE; - pos = FALSE; - recompute_onset = FALSE; - use_super_gasp = FALSE; - use_random_order = FALSE; - kiss = FALSE; - echo_comments = TRUE; - echo_unknown_commands = TRUE; - exact_cover = FALSE; /* for -qm option, the default */ - - backward_compatibility_hack(&argc, argv, &option, &out_type); - - - /* parse command line options*/ - while ((i = util_getopt(argc, argv, "D:S:de:o:r:stv:x")) != EOF) { - switch(i) { - case 'D': /* -Dcommand invokes a subcommand */ - for(j = 0; option_table[j].name != 0; j++) { - if (strcmp(util_optarg, option_table[j].name) == 0) { - option = j; - break; - } - } - if (option_table[j].name == 0) { - (void) fprintf(stderr, "%s: bad subcommand \"%s\"\n", - argv[0], util_optarg); - exit(1); - } - break; - - case 'o': /* -ooutput selects and output option */ - for(j = 0; pla_types[j].key != 0; j++) { - if (strcmp(util_optarg, pla_types[j].key+1) == 0) { - out_type = pla_types[j].value; - break; - } - } - if (pla_types[j].key == 0) { - (void) fprintf(stderr, "%s: bad output type \"%s\"\n", - argv[0], util_optarg); - exit(1); - } - break; - - case 'e': /* -eespresso selects an option for espresso */ - for(j = 0; esp_opt_table[j].name != 0; j++) { - if (strcmp(util_optarg, esp_opt_table[j].name) == 0) { - *(esp_opt_table[j].variable) = esp_opt_table[j].value; - break; - } - } - if (esp_opt_table[j].name == 0) { - (void) fprintf(stderr, "%s: bad espresso option \"%s\"\n", - argv[0], util_optarg); - exit(1); - } - break; - - case 'd': /* -d turns on (softly) all debug switches */ - debug = debug_table[0].value; - trace = TRUE; - summary = TRUE; - break; - - case 'v': /* -vdebug invokes a debug option */ - verbose_debug = TRUE; - for(j = 0; debug_table[j].name != 0; j++) { - if (strcmp(util_optarg, debug_table[j].name) == 0) { - debug |= debug_table[j].value; - break; - } - } - if (debug_table[j].name == 0) { - (void) fprintf(stderr, "%s: bad debug type \"%s\"\n", - argv[0], util_optarg); - exit(1); - } - break; - - case 't': - trace = TRUE; - break; - - case 's': - summary = TRUE; - break; - - case 'x': /* -x suppress printing of results */ - print_solution = FALSE; - break; - - case 'S': /* -S sets a strategy for several cmds */ - strategy = atoi(util_optarg); - break; - - case 'r': /* -r selects range (outputs or vars) */ - if (sscanf(util_optarg, "%d-%d", &first, &last) < 2) { - (void) fprintf(stderr, "%s: bad output range \"%s\"\n", - argv[0], util_optarg); - exit(1); - } - break; - - default: - usage(); - exit(1); - } - } - - /* provide version information and summaries */ - if (summary || trace) { - /* echo command line and arguments */ - printf("#"); - for(i = 0; i < argc; i++) { - printf(" %s", argv[i]); - } - printf("\n"); - printf("# %s\n", VERSION); - } - - /* the remaining arguments are argv[util_optind ... argc-1] */ - PLA = PLA1 = NIL(PLA_t); - switch(option_table[option].num_plas) { - case 2: - if (util_optind+2 < argc) fatal("trailing arguments on command line"); - getPLA(util_optind++, argc, argv, option, &PLA, out_type); - getPLA(util_optind++, argc, argv, option, &PLA1, out_type); - break; - case 1: - if (util_optind+1 < argc) fatal("trailing arguments on command line"); - getPLA(util_optind++, argc, argv, option, &PLA, out_type); - break; - } - if (util_optind < argc) fatal("trailing arguments on command line"); - - if (summary || trace) { - if (PLA != NIL(PLA_t)) PLA_summary(PLA); - if (PLA1 != NIL(PLA_t)) PLA_summary(PLA1); - } - -/* - * Now a case-statement to decide what to do - */ - - switch(option_table[option].key) { - - -/******************** Espresso operations ********************/ - - case KEY_ESPRESSO: - Fold = sf_save(PLA->F); - PLA->F = espresso(PLA->F, PLA->D, PLA->R); - EXECUTE(error=verify(PLA->F,Fold,PLA->D), VERIFY_TIME, PLA->F, cost); - if (error) { - print_solution = FALSE; - PLA->F = Fold; - (void) check_consistency(PLA); - } else { - free_cover(Fold); - } - break; - - case KEY_MANY_ESPRESSO: { - int pla_type; - do { - EXEC(PLA->F=espresso(PLA->F,PLA->D,PLA->R),"ESPRESSO ",PLA->F); - if (print_solution) { - fprint_pla(stdout, PLA, out_type); - (void) fflush(stdout); - } - pla_type = PLA->pla_type; - free_PLA(PLA); - setdown_cube(); - FREE(cube.part_size); - } while (read_pla(last_fp, TRUE, TRUE, pla_type, &PLA) != EOF); - exit(0); - } - - case KEY_simplify: - EXEC(PLA->F = simplify(cube1list(PLA->F)), "SIMPLIFY ", PLA->F); - break; - - case KEY_so: /* minimize all functions as single-output */ - if (strategy < 0 || strategy > 1) { - strategy = 0; - } - so_espresso(PLA, strategy); - break; - - case KEY_so_both: /* minimize all functions as single-output */ - if (strategy < 0 || strategy > 1) { - strategy = 0; - } - so_both_espresso(PLA, strategy); - break; - - case KEY_expand: /* execute expand */ - EXECUTE(PLA->F=expand(PLA->F,PLA->R,FALSE),EXPAND_TIME, PLA->F, cost); - break; - - case KEY_irred: /* extract minimal irredundant subset */ - EXECUTE(PLA->F = irredundant(PLA->F, PLA->D), IRRED_TIME, PLA->F, cost); - break; - - case KEY_reduce: /* perform reduction */ - EXECUTE(PLA->F = reduce(PLA->F, PLA->D), REDUCE_TIME, PLA->F, cost); - break; - - case KEY_essen: /* check for essential primes */ - foreach_set(PLA->F, last1, p) { - SET(p, RELESSEN); - RESET(p, NONESSEN); - } - EXECUTE(F = essential(&(PLA->F), &(PLA->D)), ESSEN_TIME, PLA->F, cost); - free_cover(F); - break; - - case KEY_super_gasp: - PLA->F = super_gasp(PLA->F, PLA->D, PLA->R, &cost); - break; - - case KEY_gasp: - PLA->F = last_gasp(PLA->F, PLA->D, PLA->R, &cost); - break; - - case KEY_make_sparse: /* make_sparse step of Espresso */ - PLA->F = make_sparse(PLA->F, PLA->D, PLA->R); - break; - - case KEY_exact: - exact_cover = TRUE; - - case KEY_qm: - Fold = sf_save(PLA->F); - PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, exact_cover); - EXECUTE(error=verify(PLA->F,Fold,PLA->D), VERIFY_TIME, PLA->F, cost); - if (error) { - print_solution = FALSE; - PLA->F = Fold; - (void) check_consistency(PLA); - } - free_cover(Fold); - break; - - case KEY_primes: /* generate all prime implicants */ - EXEC(PLA->F = primes_consensus(cube2list(PLA->F, PLA->D)), - "PRIMES ", PLA->F); - break; - - case KEY_map: /* print out a Karnaugh map of function */ - map(PLA->F); - print_solution = FALSE; - break; - - - -/******************** Output phase and bit pairing ********************/ - - case KEY_opo: /* sasao output phase assignment */ - phase_assignment(PLA, strategy); - break; - - case KEY_opoall: /* try all phase assignments (!) */ - if (first < 0 || first >= cube.part_size[cube.output]) { - first = 0; - } - if (last < 0 || last >= cube.part_size[cube.output]) { - last = cube.part_size[cube.output] - 1; - } - opoall(PLA, first, last, strategy); - break; - - case KEY_pair: /* find an optimal pairing */ - find_optimal_pairing(PLA, strategy); - break; - - case KEY_pairall: /* try all pairings !! */ - pair_all(PLA, strategy); - break; - - - -/******************** Simple cover operations ********************/ - - case KEY_echo: /* echo the PLA */ - break; - - case KEY_taut: /* tautology check */ - printf("ON-set is%sa tautology\n", - tautology(cube1list(PLA->F)) ? " " : " not "); - print_solution = FALSE; - break; - - case KEY_contain: /* single cube containment */ - PLA->F = sf_contain(PLA->F); - break; - - case KEY_intersect: /* cover intersection */ - PLA->F = cv_intersect(PLA->F, PLA1->F); - break; - - case KEY_union: /* cover union */ - PLA->F = sf_union(PLA->F, PLA1->F); - break; - - case KEY_disjoint: /* make cover disjoint */ - PLA->F = make_disjoint(PLA->F); - break; - - case KEY_dsharp: /* cover disjoint-sharp */ - PLA->F = cv_dsharp(PLA->F, PLA1->F); - break; - - case KEY_sharp: /* cover sharp */ - PLA->F = cv_sharp(PLA->F, PLA1->F); - break; - - case KEY_lexsort: /* lexical sort order */ - PLA->F = lex_sort(PLA->F); - break; - - case KEY_stats: /* print info on size */ - if (! summary) PLA_summary(PLA); - print_solution = FALSE; - break; - - case KEY_minterms: /* explode into minterms */ - if (first < 0 || first >= cube.num_vars) { - first = 0; - } - if (last < 0 || last >= cube.num_vars) { - last = cube.num_vars - 1; - } - PLA->F = sf_dupl(unravel_range(PLA->F, first, last)); - break; - - case KEY_d1merge: /* distance-1 merge */ - if (first < 0 || first >= cube.num_vars) { - first = 0; - } - if (last < 0 || last >= cube.num_vars) { - last = cube.num_vars - 1; - } - for(i = first; i <= last; i++) { - PLA->F = d1merge(PLA->F, i); - } - break; - - case KEY_d1merge_in: /* distance-1 merge inputs only */ - for(i = 0; i < cube.num_binary_vars; i++) { - PLA->F = d1merge(PLA->F, i); - } - break; - - case KEY_PLA_verify: /* check two PLAs for equivalence */ - EXECUTE(error = PLA_verify(PLA, PLA1), VERIFY_TIME, PLA->F, cost); - if (error) { - printf("PLA comparison failed; the PLA's are not equivalent\n"); - exit(1); - } else { - printf("PLA's compared equal\n"); - exit(0); - } - break; /* silly */ - - case KEY_verify: /* check two covers for equivalence */ - Fold = PLA->F; Dold = PLA->D; F = PLA1->F; - EXECUTE(error=verify(F, Fold, Dold), VERIFY_TIME, PLA->F, cost); - if (error) { - printf("PLA comparison failed; the PLA's are not equivalent\n"); - exit(1); - } else { - printf("PLA's compared equal\n"); - exit(0); - } - break; /* silly */ - - case KEY_check: /* check consistency */ - (void) check_consistency(PLA); - print_solution = FALSE; - break; - - case KEY_mapdc: /* compute don't care set */ - map_dcset(PLA); - out_type = FD_type; - break; - - case KEY_equiv: - find_equiv_outputs(PLA); - print_solution = FALSE; - break; - - case KEY_separate: /* remove PLA->D from PLA->F */ - PLA->F = complement(cube2list(PLA->D, PLA->R)); - break; - - case KEY_xor: { - pcover T1 = cv_intersect(PLA->F, PLA1->R); - pcover T2 = cv_intersect(PLA1->F, PLA->R); - free_cover(PLA->F); - PLA->F = sf_contain(sf_join(T1, T2)); - free_cover(T1); - free_cover(T2); - break; - } - - case KEY_fsm: { - disassemble_fsm(PLA, summary); - print_solution = FALSE; - break; - } - - case KEY_test: { - pcover T, E; - T = sf_join(PLA->D, PLA->R); - E = new_cover(10); - sf_free(PLA->F); - EXECUTE(PLA->F = complement(cube1list(T)), COMPL_TIME, PLA->F, cost); - EXECUTE(PLA->F = expand(PLA->F, T, FALSE), EXPAND_TIME, PLA->F, cost); - EXECUTE(PLA->F = irredundant(PLA->F, E), IRRED_TIME, PLA->F, cost); - sf_free(T); - T = sf_join(PLA->F, PLA->R); - EXECUTE(PLA->D = expand(PLA->D, T, FALSE), EXPAND_TIME, PLA->D, cost); - EXECUTE(PLA->D = irredundant(PLA->D, E), IRRED_TIME, PLA->D, cost); - sf_free(T); - sf_free(E); - break; - } - - - } - - /* Print a runtime summary if trace mode enabled */ - if (trace) { - runtime(); - } - - /* Print total runtime */ - if (summary || trace) { - print_trace(PLA->F, option_table[option].name, ptime()-start); - } - - /* Output the solution */ - if (print_solution) { - EXECUTE(fprint_pla(stdout, PLA, out_type), WRITE_TIME, PLA->F, cost); - } - - /* Crash and burn if there was a verify error */ - if (error) { - fatal("cover verification failed"); - } - - /* cleanup all used memory */ - free_PLA(PLA); - FREE(cube.part_size); - setdown_cube(); /* free the cube/cdata structure data */ - sf_cleanup(); /* free unused set structures */ - sm_cleanup(); /* sparse matrix cleanup */ - - exit(0); -} - - -getPLA(opt, argc, argv, option, PLA, out_type) -int opt; -int argc; -char *argv[]; -int option; -pPLA *PLA; -int out_type; -{ - FILE *fp; - int needs_dcset, needs_offset; - char *fname; - - if (opt >= argc) { - fp = stdin; - fname = "(stdin)"; - } else { - fname = argv[opt]; - if (strcmp(fname, "-") == 0) { - fp = stdin; - } else if ((fp = fopen(argv[opt], "r")) == NULL) { - (void) fprintf(stderr, "%s: Unable to open %s\n", argv[0], fname); - exit(1); - } - } - if (option_table[option].key == KEY_echo) { - needs_dcset = (out_type & D_type) != 0; - needs_offset = (out_type & R_type) != 0; - } else { - needs_dcset = option_table[option].needs_dcset; - needs_offset = option_table[option].needs_offset; - } - - if (read_pla(fp, needs_dcset, needs_offset, input_type, PLA) == EOF) { - (void) fprintf(stderr, "%s: Unable to find PLA on file %s\n", argv[0], fname); - exit(1); - } - (*PLA)->filename = util_strsav(fname); - filename = (*PLA)->filename; -/* (void) fclose(fp);*/ -/* hackto support -Dmany */ - last_fp = fp; -} - - -runtime() -{ - int i; - long total = 1, temp; - - for(i = 0; i < TIME_COUNT; i++) { - total += total_time[i]; - } - for(i = 0; i < TIME_COUNT; i++) { - if (total_calls[i] != 0) { - temp = 100 * total_time[i]; - printf("# %s\t%2d call(s) for %s (%2ld.%01ld%%)\n", - total_name[i], total_calls[i], print_time(total_time[i]), - temp/total, (10 * (temp%total)) / total); - } - } -} - - -init_runtime() -{ - total_name[READ_TIME] = "READ "; - total_name[WRITE_TIME] = "WRITE "; - total_name[COMPL_TIME] = "COMPL "; - total_name[REDUCE_TIME] = "REDUCE "; - total_name[EXPAND_TIME] = "EXPAND "; - total_name[ESSEN_TIME] = "ESSEN "; - total_name[IRRED_TIME] = "IRRED "; - total_name[GREDUCE_TIME] = "REDUCE_GASP"; - total_name[GEXPAND_TIME] = "EXPAND_GASP"; - total_name[GIRRED_TIME] = "IRRED_GASP "; - total_name[MV_REDUCE_TIME] ="MV_REDUCE "; - total_name[RAISE_IN_TIME] = "RAISE_IN "; - total_name[VERIFY_TIME] = "VERIFY "; - total_name[PRIMES_TIME] = "PRIMES "; - total_name[MINCOV_TIME] = "MINCOV "; -} - - -subcommands() -{ - int i, col; - printf(" "); - col = 16; - for(i = 0; option_table[i].name != 0; i++) { - if ((col + strlen(option_table[i].name) + 1) > 76) { - printf(",\n "); - col = 16; - } else if (i != 0) { - printf(", "); - } - printf("%s", option_table[i].name); - col += strlen(option_table[i].name) + 2; - } - printf("\n"); -} - - -usage() -{ - printf("%s\n\n", VERSION); - printf("SYNOPSIS: espresso [options] [file]\n\n"); - printf(" -d Enable debugging\n"); - printf(" -e[opt] Select espresso option:\n"); - printf(" fast, ness, nirr, nunwrap, onset, pos, strong,\n"); - printf(" eat, eatdots, kiss, random\n"); - printf(" -o[type] Select output format:\n"); - printf(" f, fd, fr, fdr, pleasure, eqntott, kiss, cons\n"); - printf(" -rn-m Select range for subcommands:\n"); - printf(" d1merge: first and last variables (0 ... m-1)\n"); - printf(" minterms: first and last variables (0 ... m-1)\n"); - printf(" opoall: first and last outputs (0 ... m-1)\n"); - printf(" -s Provide short execution summary\n"); - printf(" -t Provide longer execution trace\n"); - printf(" -x Suppress printing of solution\n"); - printf(" -v[type] Verbose debugging detail (-v '' for all)\n"); - printf(" -D[cmd] Execute subcommand 'cmd':\n"); - subcommands(); - printf(" -Sn Select strategy for subcommands:\n"); - printf(" opo: bit2=exact bit1=repeated bit0=skip sparse\n"); - printf(" opoall: 0=minimize, 1=exact\n"); - printf(" pair: 0=algebraic, 1=strongd, 2=espresso, 3=exact\n"); - printf(" pairall: 0=minimize, 1=exact, 2=opo\n"); - printf(" so_espresso: 0=minimize, 1=exact\n"); - printf(" so_both: 0=minimize, 1=exact\n"); -} - -/* - * Hack for backward compatibility (ACK! ) - */ - -backward_compatibility_hack(argc, argv, option, out_type) -int *argc; -char **argv; -int *option; -int *out_type; -{ - int i, j; - - /* Scan the argument list for something to do (default is ESPRESSO) */ - *option = 0; - for(i = 1; i < (*argc)-1; i++) { - if (strcmp(argv[i], "-do") == 0) { - for(j = 0; option_table[j].name != 0; j++) - if (strcmp(argv[i+1], option_table[j].name) == 0) { - *option = j; - delete_arg(argc, argv, i+1); - delete_arg(argc, argv, i); - break; - } - if (option_table[j].name == 0) { - (void) fprintf(stderr, - "espresso: bad keyword \"%s\" following -do\n",argv[i+1]); - exit(1); - } - break; - } - } - - for(i = 1; i < (*argc)-1; i++) { - if (strcmp(argv[i], "-out") == 0) { - for(j = 0; pla_types[j].key != 0; j++) - if (strcmp(pla_types[j].key+1, argv[i+1]) == 0) { - *out_type = pla_types[j].value; - delete_arg(argc, argv, i+1); - delete_arg(argc, argv, i); - break; - } - if (pla_types[j].key == 0) { - (void) fprintf(stderr, - "espresso: bad keyword \"%s\" following -out\n",argv[i+1]); - exit(1); - } - break; - } - } - - for(i = 1; i < (*argc); i++) { - if (argv[i][0] == '-') { - for(j = 0; esp_opt_table[j].name != 0; j++) { - if (strcmp(argv[i]+1, esp_opt_table[j].name) == 0) { - delete_arg(argc, argv, i); - *(esp_opt_table[j].variable) = esp_opt_table[j].value; - break; - } - } - } - } - - if (check_arg(argc, argv, "-fdr")) input_type = FDR_type; - if (check_arg(argc, argv, "-fr")) input_type = FR_type; - if (check_arg(argc, argv, "-f")) input_type = F_type; -} - - -/* delete_arg -- delete an argument from the argument list */ -delete_arg(argc, argv, num) -int *argc, num; -register char *argv[]; -{ - register int i; - (*argc)--; - for(i = num; i < *argc; i++) { - argv[i] = argv[i+1]; - } -} - - -/* check_arg -- scan argv for an argument, and return TRUE if found */ -bool check_arg(argc, argv, s) -int *argc; -register char *argv[], *s; -{ - register int i; - for(i = 1; i < *argc; i++) { - if (strcmp(argv[i], s) == 0) { - delete_arg(argc, argv, i); - return TRUE; - } - } - return FALSE; -} diff --git a/src/misc/espresso/main.h b/src/misc/espresso/main.h deleted file mode 100644 index 00657f39..00000000 --- a/src/misc/espresso/main.h +++ /dev/null @@ -1,122 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -enum keys { - KEY_ESPRESSO, KEY_PLA_verify, KEY_check, KEY_contain, KEY_d1merge, - KEY_disjoint, KEY_dsharp, KEY_echo, KEY_essen, KEY_exact, KEY_expand, - KEY_gasp, KEY_intersect, KEY_irred, KEY_lexsort, KEY_make_sparse, - KEY_map, KEY_mapdc, KEY_minterms, KEY_opo, KEY_opoall, - KEY_pair, KEY_pairall, KEY_primes, KEY_qm, KEY_reduce, KEY_sharp, - KEY_simplify, KEY_so, KEY_so_both, KEY_stats, KEY_super_gasp, KEY_taut, - KEY_test, KEY_equiv, KEY_union, KEY_verify, KEY_MANY_ESPRESSO, - KEY_separate, KEY_xor, KEY_d1merge_in, KEY_fsm, - KEY_unknown -}; - -/* Lookup table for program options */ -struct { - char *name; - enum keys key; - int num_plas; - bool needs_offset; - bool needs_dcset; -} option_table [] = { - /* ways to minimize functions */ - "ESPRESSO", KEY_ESPRESSO, 1, TRUE, TRUE, /* must be first */ - "many", KEY_MANY_ESPRESSO, 1, TRUE, TRUE, - "exact", KEY_exact, 1, TRUE, TRUE, - "qm", KEY_qm, 1, TRUE, TRUE, - "single_output", KEY_so, 1, TRUE, TRUE, - "so", KEY_so, 1, TRUE, TRUE, - "so_both", KEY_so_both, 1, TRUE, TRUE, - "simplify", KEY_simplify, 1, FALSE, FALSE, - "echo", KEY_echo, 1, FALSE, FALSE, - - /* output phase assignment and assignment of inputs to two-bit decoders */ - "opo", KEY_opo, 1, TRUE, TRUE, - "opoall", KEY_opoall, 1, TRUE, TRUE, - "pair", KEY_pair, 1, TRUE, TRUE, - "pairall", KEY_pairall, 1, TRUE, TRUE, - - /* Ways to check covers */ - "check", KEY_check, 1, TRUE, TRUE, - "stats", KEY_stats, 1, FALSE, FALSE, - "verify", KEY_verify, 2, FALSE, TRUE, - "PLAverify", KEY_PLA_verify, 2, FALSE, TRUE, - - /* hacks */ - "equiv", KEY_equiv, 1, TRUE, TRUE, - "map", KEY_map, 1, FALSE, FALSE, - "mapdc", KEY_mapdc, 1, FALSE, FALSE, - "fsm", KEY_fsm, 1, FALSE, TRUE, - - /* the basic boolean operations on covers */ - "contain", KEY_contain, 1, FALSE, FALSE, - "d1merge", KEY_d1merge, 1, FALSE, FALSE, - "d1merge_in", KEY_d1merge_in, 1, FALSE, FALSE, - "disjoint", KEY_disjoint, 1, TRUE, FALSE, - "dsharp", KEY_dsharp, 2, FALSE, FALSE, - "intersect", KEY_intersect, 2, FALSE, FALSE, - "minterms", KEY_minterms, 1, FALSE, FALSE, - "primes", KEY_primes, 1, FALSE, TRUE, - "separate", KEY_separate, 1, TRUE, TRUE, - "sharp", KEY_sharp, 2, FALSE, FALSE, - "union", KEY_union, 2, FALSE, FALSE, - "xor", KEY_xor, 2, TRUE, TRUE, - - /* debugging only -- call each step of the espresso algorithm */ - "essen", KEY_essen, 1, FALSE, TRUE, - "expand", KEY_expand, 1, TRUE, FALSE, - "gasp", KEY_gasp, 1, TRUE, TRUE, - "irred", KEY_irred, 1, FALSE, TRUE, - "make_sparse", KEY_make_sparse, 1, TRUE, TRUE, - "reduce", KEY_reduce, 1, FALSE, TRUE, - "taut", KEY_taut, 1, FALSE, FALSE, - "super_gasp", KEY_super_gasp, 1, TRUE, TRUE, - "lexsort", KEY_lexsort, 1, FALSE, FALSE, - "test", KEY_test, 1, TRUE, TRUE, - 0, KEY_unknown, 0, FALSE, FALSE /* must be last */ -}; - - -struct { - char *name; - int value; -} debug_table[] = { - "", EXPAND + ESSEN + IRRED + REDUCE + SPARSE + GASP + SHARP + MINCOV, - "compl", COMPL, "essen", ESSEN, - "expand", EXPAND, "expand1", EXPAND1|EXPAND, - "irred", IRRED, "irred1", IRRED1|IRRED, - "reduce", REDUCE, "reduce1", REDUCE1|REDUCE, - "mincov", MINCOV, "mincov1", MINCOV1|MINCOV, - "sparse", SPARSE, "sharp", SHARP, - "taut", TAUT, "gasp", GASP, - "exact", EXACT, - 0, -}; - - -struct { - char *name; - int *variable; - int value; -} esp_opt_table[] = { - "eat", &echo_comments, FALSE, - "eatdots", &echo_unknown_commands, FALSE, - "fast", &single_expand, TRUE, - "kiss", &kiss, TRUE, - "ness", &remove_essential, FALSE, - "nirr", &force_irredundant, FALSE, - "nunwrap", &unwrap_onset, FALSE, - "onset", &recompute_onset, TRUE, - "pos", &pos, TRUE, - "random", &use_random_order, TRUE, - "strong", &use_super_gasp, TRUE, - 0, -}; diff --git a/src/misc/espresso/map.c b/src/misc/espresso/map.c deleted file mode 100644 index 5ccf264c..00000000 --- a/src/misc/espresso/map.c +++ /dev/null @@ -1,115 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -static pcube Gcube; -static pset Gminterm; - -pset minterms(T) -pcover T; -{ - int size, var; - register pcube last; - - size = 1; - for(var = 0; var < cube.num_vars; var++) - size *= cube.part_size[var]; - Gminterm = set_new(size); - - foreach_set(T, last, Gcube) - explode(cube.num_vars-1, 0); - - return Gminterm; -} - - -void explode(var, z) -int var, z; -{ - int i, last = cube.last_part[var]; - for(i=cube.first_part[var], z *= cube.part_size[var]; i<=last; i++, z++) - if (is_in_set(Gcube, i)) - if (var == 0) - set_insert(Gminterm, z); - else - explode(var-1, z); -} - - -static int mapindex[16][16] = { - 0, 1, 3, 2, 16, 17, 19, 18, 80, 81, 83, 82, 64, 65, 67, 66, - 4, 5, 7, 6, 20, 21, 23, 22, 84, 85, 87, 86, 68, 69, 71, 70, - 12, 13, 15, 14, 28, 29, 31, 30, 92, 93, 95, 94, 76, 77, 79, 78, - 8, 9, 11, 10, 24, 25, 27, 26, 88, 89, 91, 90, 72, 73, 75, 74, - - 32, 33, 35, 34, 48, 49, 51, 50, 112,113,115,114, 96, 97, 99, 98, - 36, 37, 39, 38, 52, 53, 55, 54, 116,117,119,118, 100,101,103,102, - 44, 45, 47, 46, 60, 61, 63, 62, 124,125,127,126, 108,109,111,110, - 40, 41, 43, 42, 56, 57, 59, 58, 120,121,123,122, 104,105,107,106, - - - 160,161,163,162, 176,177,179,178, 240,241,243,242, 224,225,227,226, - 164,165,167,166, 180,181,183,182, 244,245,247,246, 228,229,231,230, - 172,173,175,174, 188,189,191,190, 252,253,255,254, 236,237,239,238, - 168,169,171,170, 184,185,187,186, 248,249,251,250, 232,233,235,234, - - 128,129,131,130, 144,145,147,146, 208,209,211,210, 192,193,195,194, - 132,133,135,134, 148,149,151,150, 212,213,215,214, 196,197,199,198, - 140,141,143,142, 156,157,159,158, 220,221,223,222, 204,205,207,206, - 136,137,139,138, 152,153,155,154, 216,217,219,218, 200,201,203,202 -}; - -#define POWER2(n) (1 << n) -void map(T) -pcover T; -{ - int j, k, l, other_input_offset, output_offset, outnum, ind; - int largest_input_ind, numout; - char c; - pset m; - bool some_output; - - m = minterms(T); - largest_input_ind = POWER2(cube.num_binary_vars); - numout = cube.part_size[cube.num_vars-1]; - - for(outnum = 0; outnum < numout; outnum++) { - output_offset = outnum * largest_input_ind; - printf("\n\nOutput space # %d\n", outnum); - for(l = 0; l <= MAX(cube.num_binary_vars - 8, 0); l++) { - other_input_offset = l * 256; - for(k = 0; k < 16; k++) { - some_output = FALSE; - for(j = 0; j < 16; j++) { - ind = mapindex[k][j] + other_input_offset; - if (ind < largest_input_ind) { - c = is_in_set(m, ind+output_offset) ? '1' : '.'; - putchar(c); - some_output = TRUE; - } - if ((j+1)%4 == 0) - putchar(' '); - if ((j+1)%8 == 0) - printf(" "); - } - if (some_output) - putchar('\n'); - if ((k+1)%4 == 0) { - if (k != 15 && mapindex[k+1][0] >= largest_input_ind) - break; - putchar('\n'); - } - if ((k+1)%8 == 0) - putchar('\n'); - } - } - } - set_free(m); -} diff --git a/src/misc/espresso/matrix.c b/src/misc/espresso/matrix.c deleted file mode 100644 index 747fe54f..00000000 --- a/src/misc/espresso/matrix.c +++ /dev/null @@ -1,574 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -//#include "port.h" -#include "sparse_int.h" - -/* - * free-lists are only used if 'FAST_AND_LOOSE' is set; this is because - * we lose the debugging capability of libmm_t which trashes objects when - * they are free'd. However, FAST_AND_LOOSE is much faster if matrices - * are created and freed frequently. - */ - -#ifdef FAST_AND_LOOSE -sm_element *sm_element_freelist; -sm_row *sm_row_freelist; -sm_col *sm_col_freelist; -#endif - - -sm_matrix * -sm_alloc() -{ - register sm_matrix *A; - - A = ALLOC(sm_matrix, 1); - A->rows = NIL(sm_row *); - A->cols = NIL(sm_col *); - A->nrows = A->ncols = 0; - A->rows_size = A->cols_size = 0; - A->first_row = A->last_row = NIL(sm_row); - A->first_col = A->last_col = NIL(sm_col); - A->user_word = NIL(char); /* for our user ... */ - return A; -} - - -sm_matrix * -sm_alloc_size(row, col) -int row, col; -{ - register sm_matrix *A; - - A = sm_alloc(); - sm_resize(A, row, col); - return A; -} - - -void -sm_free(A) -sm_matrix *A; -{ -#ifdef FAST_AND_LOOSE - register sm_row *prow; - - if (A->first_row != 0) { - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - /* add the elements to the free list of elements */ - prow->last_col->next_col = sm_element_freelist; - sm_element_freelist = prow->first_col; - } - - /* Add the linked list of rows to the row-free-list */ - A->last_row->next_row = sm_row_freelist; - sm_row_freelist = A->first_row; - - /* Add the linked list of cols to the col-free-list */ - A->last_col->next_col = sm_col_freelist; - sm_col_freelist = A->first_col; - } -#else - register sm_row *prow, *pnext_row; - register sm_col *pcol, *pnext_col; - - for(prow = A->first_row; prow != 0; prow = pnext_row) { - pnext_row = prow->next_row; - sm_row_free(prow); - } - for(pcol = A->first_col; pcol != 0; pcol = pnext_col) { - pnext_col = pcol->next_col; - pcol->first_row = pcol->last_row = NIL(sm_element); - sm_col_free(pcol); - } -#endif - - /* Free the arrays to map row/col numbers into pointers */ - FREE(A->rows); - FREE(A->cols); - FREE(A); -} - - -sm_matrix * -sm_dup(A) -sm_matrix *A; -{ - register sm_row *prow; - register sm_element *p; - register sm_matrix *B; - - B = sm_alloc(); - if (A->last_row != 0) { - sm_resize(B, A->last_row->row_num, A->last_col->col_num); - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - for(p = prow->first_col; p != 0; p = p->next_col) { - (void) sm_insert(B, p->row_num, p->col_num); - } - } - } - return B; -} - - -void -sm_resize(A, row, col) -register sm_matrix *A; -int row, col; -{ - register int i, new_size; - - if (row >= A->rows_size) { - new_size = MAX(A->rows_size*2, row+1); - A->rows = REALLOC(sm_row *, A->rows, new_size); - for(i = A->rows_size; i < new_size; i++) { - A->rows[i] = NIL(sm_row); - } - A->rows_size = new_size; - } - - if (col >= A->cols_size) { - new_size = MAX(A->cols_size*2, col+1); - A->cols = REALLOC(sm_col *, A->cols, new_size); - for(i = A->cols_size; i < new_size; i++) { - A->cols[i] = NIL(sm_col); - } - A->cols_size = new_size; - } -} - - -/* - * insert -- insert a value into the matrix - */ -sm_element * -sm_insert(A, row, col) -register sm_matrix *A; -register int row, col; -{ - register sm_row *prow; - register sm_col *pcol; - register sm_element *element; - sm_element *save_element; - - if (row >= A->rows_size || col >= A->cols_size) { - sm_resize(A, row, col); - } - - prow = A->rows[row]; - if (prow == NIL(sm_row)) { - prow = A->rows[row] = sm_row_alloc(); - prow->row_num = row; - sorted_insert(sm_row, A->first_row, A->last_row, A->nrows, - next_row, prev_row, row_num, row, prow); - } - - pcol = A->cols[col]; - if (pcol == NIL(sm_col)) { - pcol = A->cols[col] = sm_col_alloc(); - pcol->col_num = col; - sorted_insert(sm_col, A->first_col, A->last_col, A->ncols, - next_col, prev_col, col_num, col, pcol); - } - - /* get a new item, save its address */ - sm_element_alloc(element); - save_element = element; - - /* insert it into the row list */ - sorted_insert(sm_element, prow->first_col, prow->last_col, - prow->length, next_col, prev_col, col_num, col, element); - - /* if it was used, also insert it into the column list */ - if (element == save_element) { - sorted_insert(sm_element, pcol->first_row, pcol->last_row, - pcol->length, next_row, prev_row, row_num, row, element); - } else { - /* otherwise, it was already in matrix -- free element we allocated */ - sm_element_free(save_element); - } - return element; -} - - -sm_element * -sm_find(A, rownum, colnum) -sm_matrix *A; -int rownum, colnum; -{ - sm_row *prow; - sm_col *pcol; - - prow = sm_get_row(A, rownum); - if (prow == NIL(sm_row)) { - return NIL(sm_element); - } else { - pcol = sm_get_col(A, colnum); - if (pcol == NIL(sm_col)) { - return NIL(sm_element); - } - if (prow->length < pcol->length) { - return sm_row_find(prow, colnum); - } else { - return sm_col_find(pcol, rownum); - } - } -} - - -void -sm_remove(A, rownum, colnum) -sm_matrix *A; -int rownum, colnum; -{ - sm_remove_element(A, sm_find(A, rownum, colnum)); -} - - - -void -sm_remove_element(A, p) -register sm_matrix *A; -register sm_element *p; -{ - register sm_row *prow; - register sm_col *pcol; - - if (p == 0) return; - - /* Unlink the element from its row */ - prow = sm_get_row(A, p->row_num); - dll_unlink(p, prow->first_col, prow->last_col, - next_col, prev_col, prow->length); - - /* if no more elements in the row, discard the row header */ - if (prow->first_col == NIL(sm_element)) { - sm_delrow(A, p->row_num); - } - - /* Unlink the element from its column */ - pcol = sm_get_col(A, p->col_num); - dll_unlink(p, pcol->first_row, pcol->last_row, - next_row, prev_row, pcol->length); - - /* if no more elements in the column, discard the column header */ - if (pcol->first_row == NIL(sm_element)) { - sm_delcol(A, p->col_num); - } - - sm_element_free(p); -} - -void -sm_delrow(A, i) -sm_matrix *A; -int i; -{ - register sm_element *p, *pnext; - sm_col *pcol; - sm_row *prow; - - prow = sm_get_row(A, i); - if (prow != NIL(sm_row)) { - /* walk across the row */ - for(p = prow->first_col; p != 0; p = pnext) { - pnext = p->next_col; - - /* unlink the item from the column (and delete it) */ - pcol = sm_get_col(A, p->col_num); - sm_col_remove_element(pcol, p); - - /* discard the column if it is now empty */ - if (pcol->first_row == NIL(sm_element)) { - sm_delcol(A, pcol->col_num); - } - } - - /* discard the row -- we already threw away the elements */ - A->rows[i] = NIL(sm_row); - dll_unlink(prow, A->first_row, A->last_row, - next_row, prev_row, A->nrows); - prow->first_col = prow->last_col = NIL(sm_element); - sm_row_free(prow); - } -} - -void -sm_delcol(A, i) -sm_matrix *A; -int i; -{ - register sm_element *p, *pnext; - sm_row *prow; - sm_col *pcol; - - pcol = sm_get_col(A, i); - if (pcol != NIL(sm_col)) { - /* walk down the column */ - for(p = pcol->first_row; p != 0; p = pnext) { - pnext = p->next_row; - - /* unlink the element from the row (and delete it) */ - prow = sm_get_row(A, p->row_num); - sm_row_remove_element(prow, p); - - /* discard the row if it is now empty */ - if (prow->first_col == NIL(sm_element)) { - sm_delrow(A, prow->row_num); - } - } - - /* discard the column -- we already threw away the elements */ - A->cols[i] = NIL(sm_col); - dll_unlink(pcol, A->first_col, A->last_col, - next_col, prev_col, A->ncols); - pcol->first_row = pcol->last_row = NIL(sm_element); - sm_col_free(pcol); - } -} - -void -sm_copy_row(dest, dest_row, prow) -register sm_matrix *dest; -int dest_row; -sm_row *prow; -{ - register sm_element *p; - - for(p = prow->first_col; p != 0; p = p->next_col) { - (void) sm_insert(dest, dest_row, p->col_num); - } -} - - -void -sm_copy_col(dest, dest_col, pcol) -register sm_matrix *dest; -int dest_col; -sm_col *pcol; -{ - register sm_element *p; - - for(p = pcol->first_row; p != 0; p = p->next_row) { - (void) sm_insert(dest, dest_col, p->row_num); - } -} - - -sm_row * -sm_longest_row(A) -sm_matrix *A; -{ - register sm_row *large_row, *prow; - register int max_length; - - max_length = 0; - large_row = NIL(sm_row); - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - if (prow->length > max_length) { - max_length = prow->length; - large_row = prow; - } - } - return large_row; -} - - -sm_col * -sm_longest_col(A) -sm_matrix *A; -{ - register sm_col *large_col, *pcol; - register int max_length; - - max_length = 0; - large_col = NIL(sm_col); - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) { - if (pcol->length > max_length) { - max_length = pcol->length; - large_col = pcol; - } - } - return large_col; -} - -int -sm_num_elements(A) -sm_matrix *A; -{ - register sm_row *prow; - register int num; - - num = 0; - sm_foreach_row(A, prow) { - num += prow->length; - } - return num; -} - -int -sm_read(fp, A) -FILE *fp; -sm_matrix **A; -{ - int i, j, err; - - *A = sm_alloc(); - while (! feof(fp)) { - err = fscanf(fp, "%d %d", &i, &j); - if (err == EOF) { - return 1; - } else if (err != 2) { - return 0; - } - (void) sm_insert(*A, i, j); - } - return 1; -} - - -int -sm_read_compressed(fp, A) -FILE *fp; -sm_matrix **A; -{ - int i, j, k, nrows, ncols; - unsigned long x; - - *A = sm_alloc(); - if (fscanf(fp, "%d %d", &nrows, &ncols) != 2) { - return 0; - } - sm_resize(*A, nrows, ncols); - - for(i = 0; i < nrows; i++) { - if (fscanf(fp, "%lx", &x) != 1) { - return 0; - } - for(j = 0; j < ncols; j += 32) { - if (fscanf(fp, "%lx", &x) != 1) { - return 0; - } - for(k = j; x != 0; x >>= 1, k++) { - if (x & 1) { - (void) sm_insert(*A, i, k); - } - } - } - } - return 1; -} - - -void -sm_write(fp, A) -FILE *fp; -sm_matrix *A; -{ - register sm_row *prow; - register sm_element *p; - - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - for(p = prow->first_col; p != 0; p = p->next_col) { - (void) fprintf(fp, "%d %d\n", p->row_num, p->col_num); - } - } -} - -void -sm_print(fp, A) -FILE *fp; -sm_matrix *A; -{ - register sm_row *prow; - register sm_col *pcol; - int c; - - if (A->last_col->col_num >= 100) { - (void) fprintf(fp, " "); - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) { - (void) fprintf(fp, "%d", (pcol->col_num / 100)%10); - } - putc('\n', fp); - } - - if (A->last_col->col_num >= 10) { - (void) fprintf(fp, " "); - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) { - (void) fprintf(fp, "%d", (pcol->col_num / 10)%10); - } - putc('\n', fp); - } - - (void) fprintf(fp, " "); - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) { - (void) fprintf(fp, "%d", pcol->col_num % 10); - } - putc('\n', fp); - - (void) fprintf(fp, " "); - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) { - (void) fprintf(fp, "-"); - } - putc('\n', fp); - - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - (void) fprintf(fp, "%3d:", prow->row_num); - - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) { - c = sm_row_find(prow, pcol->col_num) ? '1' : '.'; - putc(c, fp); - } - putc('\n', fp); - } -} - - -void -sm_dump(A, s, max) -sm_matrix *A; -char *s; -int max; -{ - FILE *fp = stdout; - - (void) fprintf(fp, "%s %d rows by %d cols\n", s, A->nrows, A->ncols); - if (A->nrows < max) { - sm_print(fp, A); - } -} - -void -sm_cleanup() -{ -#ifdef FAST_AND_LOOSE - register sm_element *p, *pnext; - register sm_row *prow, *pnextrow; - register sm_col *pcol, *pnextcol; - - for(p = sm_element_freelist; p != 0; p = pnext) { - pnext = p->next_col; - FREE(p); - } - sm_element_freelist = 0; - - for(prow = sm_row_freelist; prow != 0; prow = pnextrow) { - pnextrow = prow->next_row; - FREE(prow); - } - sm_row_freelist = 0; - - for(pcol = sm_col_freelist; pcol != 0; pcol = pnextcol) { - pnextcol = pcol->next_col; - FREE(pcol); - } - sm_col_freelist = 0; -#endif -} diff --git a/src/misc/espresso/mincov.c b/src/misc/espresso/mincov.c deleted file mode 100644 index ee18a3f1..00000000 --- a/src/misc/espresso/mincov.c +++ /dev/null @@ -1,378 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "mincov_int.h" - -/* - * mincov.c - */ - -#define USE_GIMPEL -#define USE_INDEP_SET - -static int select_column(); -static void select_essential(); -static int verify_cover(); - -#define fail(why) {\ - (void) fprintf(stderr, "Fatal error: file %s, line %d\n%s\n",\ - __FILE__, __LINE__, why);\ - (void) fflush(stdout);\ - abort();\ -} - -sm_row * -sm_minimum_cover(A, weight, heuristic, debug_level) -sm_matrix *A; -int *weight; -int heuristic; /* set to 1 for a heuristic covering */ -int debug_level; /* how deep in the recursion to provide info */ -{ - stats_t stats; - solution_t *best, *select; - sm_row *prow, *sol; - sm_col *pcol; - sm_matrix *dup_A; - int nelem, bound; - double sparsity; - - /* Avoid sillyness */ - if (A->nrows <= 0) { - return sm_row_alloc(); /* easy to cover */ - } - - /* Initialize debugging structure */ - stats.start_time = util_cpu_time(); - stats.debug = debug_level > 0; - stats.max_print_depth = debug_level; - stats.max_depth = -1; - stats.nodes = 0; - stats.component = stats.comp_count = 0; - stats.gimpel = stats.gimpel_count = 0; - stats.no_branching = heuristic != 0; - stats.lower_bound = -1; - - /* Check the matrix sparsity */ - nelem = 0; - sm_foreach_row(A, prow) { - nelem += prow->length; - } - sparsity = (double) nelem / (double) (A->nrows * A->ncols); - - /* Determine an upper bound on the solution */ - bound = 1; - sm_foreach_col(A, pcol) { - bound += WEIGHT(weight, pcol->col_num); - } - - /* Perform the covering */ - select = solution_alloc(); - dup_A = sm_dup(A); - best = sm_mincov(dup_A, select, weight, 0, bound, 0, &stats); - sm_free(dup_A); - solution_free(select); - - if (stats.debug) { - if (stats.no_branching) { - (void) printf("**** heuristic covering ...\n"); - (void) printf("lower bound = %d\n", stats.lower_bound); - } - (void) printf("matrix = %d by %d with %d elements (%4.3f%%)\n", - A->nrows, A->ncols, nelem, sparsity * 100.0); - (void) printf("cover size = %d elements\n", best->row->length); - (void) printf("cover cost = %d\n", best->cost); - (void) printf("time = %s\n", - util_print_time(util_cpu_time() - stats.start_time)); - (void) printf("components = %d\n", stats.comp_count); - (void) printf("gimpel = %d\n", stats.gimpel_count); - (void) printf("nodes = %d\n", stats.nodes); - (void) printf("max_depth = %d\n", stats.max_depth); - } - - sol = sm_row_dup(best->row); - if (! verify_cover(A, sol)) { - fail("mincov: internal error -- cover verification failed\n"); - } - solution_free(best); - return sol; -} - -/* - * Find the best cover for 'A' (given that 'select' already selected); - * - * - abort search if a solution cannot be found which beats 'bound' - * - * - if any solution meets 'lower_bound', then it is the optimum solution - * and can be returned without further work. - */ - -solution_t * -sm_mincov(A, select, weight, lb, bound, depth, stats) -sm_matrix *A; -solution_t *select; -int *weight; -int lb; -int bound; -int depth; -stats_t *stats; -{ - sm_matrix *A1, *A2, *L, *R; - sm_element *p; - solution_t *select1, *select2, *best, *best1, *best2, *indep; - int pick, lb_new, debug; - - /* Start out with some debugging information */ - stats->nodes++; - if (depth > stats->max_depth) stats->max_depth = depth; - debug = stats->debug && (depth <= stats->max_print_depth); - - /* Apply row dominance, column dominance, and select essentials */ - select_essential(A, select, weight, bound); - if (select->cost >= bound) { - return NIL(solution_t); - } - - /* See if gimpel's reduction technique applies ... */ -#ifdef USE_GIMPEL - if ( weight == NIL(int)) { /* hack until we fix it */ - if (gimpel_reduce(A, select, weight, lb, bound, depth, stats, &best)) { - return best; - } - } -#endif - -#ifdef USE_INDEP_SET - /* Determine bound from here to final solution using independent-set */ - indep = sm_maximal_independent_set(A, weight); - - /* make sure the lower bound is monotonically increasing */ - lb_new = MAX(select->cost + indep->cost, lb); - pick = select_column(A, weight, indep); - solution_free(indep); -#else - lb_new = select->cost + (A->nrows > 0); - pick = select_column(A, weight, NIL(solution_t)); -#endif - - if (depth == 0) { - stats->lower_bound = lb_new + stats->gimpel; - } - - if (debug) { - (void) printf("ABSMIN[%2d]%s", depth, stats->component ? "*" : " "); - (void) printf(" %3dx%3d sel=%3d bnd=%3d lb=%3d %12s ", - A->nrows, A->ncols, select->cost + stats->gimpel, - bound + stats->gimpel, lb_new + stats->gimpel, - util_print_time(util_cpu_time()-stats->start_time)); - } - - /* Check for bounding based on no better solution possible */ - if (lb_new >= bound) { - if (debug) (void) printf("bounded\n"); - best = NIL(solution_t); - - - /* Check for new best solution */ - } else if (A->nrows == 0) { - best = solution_dup(select); - if (debug) (void) printf("BEST\n"); - if (stats->debug && stats->component == 0) { - (void) printf("new 'best' solution %d at level %d (time is %s)\n", - best->cost + stats->gimpel, depth, - util_print_time(util_cpu_time() - stats->start_time)); - } - - - /* Check for a partition of the problem */ - } else if (sm_block_partition(A, &L, &R)) { - /* Make L the smaller problem */ - if (L->ncols > R->ncols) { - A1 = L; - L = R; - R = A1; - } - if (debug) (void) printf("comp %d %d\n", L->nrows, R->nrows); - stats->comp_count++; - - /* Solve problem for L */ - select1 = solution_alloc(); - stats->component++; - best1 = sm_mincov(L, select1, weight, 0, - bound-select->cost, depth+1, stats); - stats->component--; - solution_free(select1); - sm_free(L); - - /* Add best solution to the selected set */ - if (best1 == NIL(solution_t)) { - best = NIL(solution_t); - } else { - for(p = best1->row->first_col; p != 0; p = p->next_col) { - solution_add(select, weight, p->col_num); - } - solution_free(best1); - - /* recur for the remaining block */ - best = sm_mincov(R, select, weight, lb_new, bound, depth+1, stats); - } - sm_free(R); - - /* We've tried as hard as possible, but now we must split and recur */ - } else { - if (debug) (void) printf("pick=%d\n", pick); - - /* Assume we choose this column to be in the covering set */ - A1 = sm_dup(A); - select1 = solution_dup(select); - solution_accept(select1, A1, weight, pick); - best1 = sm_mincov(A1, select1, weight, lb_new, bound, depth+1, stats); - solution_free(select1); - sm_free(A1); - - /* Update the upper bound if we found a better solution */ - if (best1 != NIL(solution_t) && bound > best1->cost) { - bound = best1->cost; - } - - /* See if this is a heuristic covering (no branching) */ - if (stats->no_branching) { - return best1; - } - - /* Check for reaching lower bound -- if so, don't actually branch */ - if (best1 != NIL(solution_t) && best1->cost == lb_new) { - return best1; - } - - /* Now assume we cannot have that column */ - A2 = sm_dup(A); - select2 = solution_dup(select); - solution_reject(select2, A2, weight, pick); - best2 = sm_mincov(A2, select2, weight, lb_new, bound, depth+1, stats); - solution_free(select2); - sm_free(A2); - - best = solution_choose_best(best1, best2); - } - - return best; -} - -static int -select_column(A, weight, indep) -sm_matrix *A; -int *weight; -solution_t *indep; -{ - register sm_col *pcol; - register sm_row *prow, *indep_cols; - register sm_element *p, *p1; - double w, best; - int best_col; - - indep_cols = sm_row_alloc(); - if (indep != NIL(solution_t)) { - /* Find which columns are in the independent sets */ - for(p = indep->row->first_col; p != 0; p = p->next_col) { - prow = sm_get_row(A, p->col_num); - for(p1 = prow->first_col; p1 != 0; p1 = p1->next_col) { - (void) sm_row_insert(indep_cols, p1->col_num); - } - } - } else { - /* select out of all columns */ - sm_foreach_col(A, pcol) { - (void) sm_row_insert(indep_cols, pcol->col_num); - } - } - - /* Find the best column */ - best_col = -1; - best = -1; - - /* Consider only columns which are in some independent row */ - sm_foreach_row_element(indep_cols, p1) { - pcol = sm_get_col(A, p1->col_num); - - /* Compute the total 'value' of all things covered by the column */ - w = 0.0; - for(p = pcol->first_row; p != 0; p = p->next_row) { - prow = sm_get_row(A, p->row_num); - w += 1.0 / ((double) prow->length - 1.0); - } - - /* divide this by the relative cost of choosing this column */ - w = w / (double) WEIGHT(weight, pcol->col_num); - - /* maximize this ratio */ - if (w > best) { - best_col = pcol->col_num; - best = w; - } - } - - sm_row_free(indep_cols); - return best_col; -} - -static void -select_essential(A, select, weight, bound) -sm_matrix *A; -solution_t *select; -int *weight; -int bound; /* must beat this solution */ -{ - register sm_element *p; - register sm_row *prow, *essen; - int delcols, delrows, essen_count; - - do { - /* Check for dominated columns */ - delcols = sm_col_dominance(A, weight); - - /* Find the rows with only 1 element (the essentials) */ - essen = sm_row_alloc(); - sm_foreach_row(A, prow) { - if (prow->length == 1) { - (void) sm_row_insert(essen, prow->first_col->col_num); - } - } - - /* Select all of the elements */ - sm_foreach_row_element(essen, p) { - solution_accept(select, A, weight, p->col_num); - /* Make sure solution still looks good */ - if (select->cost >= bound) { - sm_row_free(essen); - return; - } - } - essen_count = essen->length; - sm_row_free(essen); - - /* Check for dominated rows */ - delrows = sm_row_dominance(A); - - } while (delcols > 0 || delrows > 0 || essen_count > 0); -} - -static int -verify_cover(A, cover) -sm_matrix *A; -sm_row *cover; -{ - sm_row *prow; - - sm_foreach_row(A, prow) { - if (! sm_row_intersects(prow, cover)) { - return 0; - } - } - return 1; -} diff --git a/src/misc/espresso/mincov.h b/src/misc/espresso/mincov.h deleted file mode 100644 index 95310774..00000000 --- a/src/misc/espresso/mincov.h +++ /dev/null @@ -1,11 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* exported */ -extern sm_row *sm_minimum_cover(); diff --git a/src/misc/espresso/mincov_int.h b/src/misc/espresso/mincov_int.h deleted file mode 100644 index e81850f2..00000000 --- a/src/misc/espresso/mincov_int.h +++ /dev/null @@ -1,55 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -//#include "port.h" -//#include "utility.h" -#include "sparse.h" -#include "mincov.h" - -#include "util_hack.h" // added - - -typedef struct stats_struct stats_t; -struct stats_struct { - int debug; /* 1 if debugging is enabled */ - int max_print_depth; /* dump stats for levels up to this level */ - int max_depth; /* deepest the recursion has gone */ - int nodes; /* total nodes visited */ - int component; /* currently solving a component */ - int comp_count; /* number of components detected */ - int gimpel_count; /* number of times Gimpel reduction applied */ - int gimpel; /* currently inside Gimpel reduction */ - long start_time; /* cpu time when the covering started */ - int no_branching; - int lower_bound; -}; - - - -typedef struct solution_struct solution_t; -struct solution_struct { - sm_row *row; - int cost; -}; - - -extern solution_t *solution_alloc(); -extern void solution_free(); -extern solution_t *solution_dup(); -extern void solution_accept(); -extern void solution_reject(); -extern void solution_add(); -extern solution_t *solution_choose_best(); - -extern solution_t *sm_maximal_independent_set(); -extern solution_t *sm_mincov(); -extern int gimpel_reduce(); - - -#define WEIGHT(weight, col) (weight == NIL(int) ? 1 : weight[col]) diff --git a/src/misc/espresso/module.make b/src/misc/espresso/module.make deleted file mode 100644 index 53ce982a..00000000 --- a/src/misc/espresso/module.make +++ /dev/null @@ -1,39 +0,0 @@ -SRC += src/misc/espresso/cofactor.c \ - src/misc/espresso/cols.c \ - src/misc/espresso/compl.c \ - src/misc/espresso/contain.c \ - src/misc/espresso/cubehack.c \ - src/misc/espresso/cubestr.c \ - src/misc/espresso/cvrin.c \ - src/misc/espresso/cvrm.c \ - src/misc/espresso/cvrmisc.c \ - src/misc/espresso/cvrout.c \ - src/misc/espresso/dominate.c \ - src/misc/espresso/equiv.c \ - src/misc/espresso/espresso.c \ - src/misc/espresso/essen.c \ - src/misc/espresso/exact.c \ - src/misc/espresso/expand.c \ - src/misc/espresso/gasp.c \ - src/misc/espresso/gimpel.c \ - src/misc/espresso/globals.c \ - src/misc/espresso/hack.c \ - src/misc/espresso/indep.c \ - src/misc/espresso/irred.c \ - src/misc/espresso/map.c \ - src/misc/espresso/matrix.c \ - src/misc/espresso/mincov.c \ - src/misc/espresso/opo.c \ - src/misc/espresso/pair.c \ - src/misc/espresso/part.c \ - src/misc/espresso/primes.c \ - src/misc/espresso/reduce.c \ - src/misc/espresso/rows.c \ - src/misc/espresso/set.c \ - src/misc/espresso/setc.c \ - src/misc/espresso/sharp.c \ - src/misc/espresso/sminterf.c \ - src/misc/espresso/solution.c \ - src/misc/espresso/sparse.c \ - src/misc/espresso/unate.c \ - src/misc/espresso/verify.c diff --git a/src/misc/espresso/opo.c b/src/misc/espresso/opo.c deleted file mode 100644 index 8daa0771..00000000 --- a/src/misc/espresso/opo.c +++ /dev/null @@ -1,624 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -/* - * Phase assignment technique (T. Sasao): - * - * 1. create a function with 2*m outputs which implements the - * original function and its complement for each output - * - * 2. minimize this function - * - * 3. choose the minimum number of prime implicants from the - * result of step 2 which are needed to realize either a function - * or its complement for each output - * - * Step 3 is performed in a rather crude way -- by simply multiplying - * out a large expression of the form: - * - * I = (ab + cdef)(acd + bgh) ... - * - * which is a product of m expressions where each expression has two - * product terms -- one representing which primes are needed for the - * function, and one representing which primes are needed for the - * complement. The largest product term resulting shows which primes - * to keep to implement one function or the other for each output. - * For problems with many outputs, this may grind to a - * halt. - * - * Untried: form complement of I and use unate_complement ... - * - * I have unsuccessfully tried several modifications to the basic - * algorithm. The first is quite simple: use Sasao's technique, but - * only commit to a single output at a time (rather than all - * outputs). The goal would be that the later minimizations can "take - * into account" the partial assignment at each step. This is - * expensive (m+1 minimizations rather than 2), and the results are - * discouraging. - * - * The second modification is rather complicated. The result from the - * minimization in step 2 is guaranteed to be minimal. Hence, for - * each output, the set of primes with a 1 in that output are both - * necessary and sufficient to implement the function. Espresso - * achieves the minimality using the routine MAKE_SPARSE. The - * modification is to prevent MAKE_SPARSE from running. Hence, there - * are potentially many subsets of the set of primes with a 1 in a - * column which can be used to implement that output. We use - * IRREDUNDANT to enumerate all possible subsets and then proceed as - * before. - */ - -static int opo_no_make_sparse; -static int opo_repeated; -static int opo_exact; -static void minimize(); - -void phase_assignment(PLA, opo_strategy) -pPLA PLA; -int opo_strategy; -{ - opo_no_make_sparse = opo_strategy % 2; - skip_make_sparse = opo_no_make_sparse; - opo_repeated = (opo_strategy / 2) % 2; - opo_exact = (opo_strategy / 4) % 2; - - /* Determine a phase assignment */ - if (PLA->phase != NULL) { - FREE(PLA->phase); - } - - if (opo_repeated) { - PLA->phase = set_save(cube.fullset); - repeated_phase_assignment(PLA); - } else { - PLA->phase = find_phase(PLA, 0, (pcube) NULL); - } - - /* Now minimize with this assignment */ - skip_make_sparse = FALSE; - (void) set_phase(PLA); - minimize(PLA); -} - -/* - * repeated_phase_assignment -- an alternate strategy which commits - * to a single phase assignment a step at a time. Performs m + 1 - * minimizations ! - */ -void repeated_phase_assignment(PLA) -pPLA PLA; -{ - int i; - pcube phase; - - for(i = 0; i < cube.part_size[cube.output]; i++) { - - /* Find best assignment for all undecided outputs */ - phase = find_phase(PLA, i, PLA->phase); - - /* Commit for only a single output ... */ - if (! is_in_set(phase, cube.first_part[cube.output] + i)) { - set_remove(PLA->phase, cube.first_part[cube.output] + i); - } - - if (trace || summary) { - printf("\nOPO loop for output #%d\n", i); - printf("PLA->phase is %s\n", pc1(PLA->phase)); - printf("phase is %s\n", pc1(phase)); - } - set_free(phase); - } -} - - -/* - * find_phase -- find a phase assignment for the PLA for all outputs starting - * with output number first_output. - */ -pcube find_phase(PLA, first_output, phase1) -pPLA PLA; -int first_output; -pcube phase1; -{ - pcube phase; - pPLA PLA1; - - phase = set_save(cube.fullset); - - /* setup the double-phase characteristic function, resize the cube */ - PLA1 = new_PLA(); - PLA1->F = sf_save(PLA->F); - PLA1->R = sf_save(PLA->R); - PLA1->D = sf_save(PLA->D); - if (phase1 != NULL) { - PLA1->phase = set_save(phase1); - (void) set_phase(PLA1); - } - EXEC_S(output_phase_setup(PLA1, first_output), "OPO-SETUP ", PLA1->F); - - /* minimize the double-phase function */ - minimize(PLA1); - - /* set the proper phases according to what gives a minimum solution */ - EXEC_S(PLA1->F = opo(phase, PLA1->F, PLA1->D, PLA1->R, first_output), - "OPO ", PLA1->F); - free_PLA(PLA1); - - /* set the cube structure to reflect the old size */ - setdown_cube(); - cube.part_size[cube.output] -= - (cube.part_size[cube.output] - first_output) / 2; - cube_setup(); - - return phase; -} - -/* - * opo -- multiply the expression out to determine a minimum subset of - * primes. - */ - -/*ARGSUSED*/ -pcover opo(phase, T, D, R, first_output) -pcube phase; -pcover T, D, R; -int first_output; -{ - int offset, output, i, last_output, ind; - pset pdest, select, p, p1, last, last1, not_covered, tmp; - pset_family temp, T1, T2; - - /* must select all primes for outputs [0 .. first_output-1] */ - select = set_full(T->count); - for(output = 0; output < first_output; output++) { - ind = cube.first_part[cube.output] + output; - foreachi_set(T, i, p) { - if (is_in_set(p, ind)) { - set_remove(select, i); - } - } - } - - /* Recursively perform the intersections */ - offset = (cube.part_size[cube.output] - first_output) / 2; - last_output = first_output + offset - 1; - temp = opo_recur(T, D, select, offset, first_output, last_output); - - /* largest set is on top -- select primes which are inferred from it */ - pdest = temp->data; - T1 = new_cover(T->count); - foreachi_set(T, i, p) { - if (! is_in_set(pdest, i)) { - T1 = sf_addset(T1, p); - } - } - - set_free(select); - sf_free(temp); - - /* finding phases is difficult -- see which functions are not covered */ - T2 = complement(cube1list(T1)); - not_covered = new_cube(); - tmp = new_cube(); - foreach_set(T, last, p) { - foreach_set(T2, last1, p1) { - if (cdist0(p, p1)) { - (void) set_or(not_covered, not_covered, set_and(tmp, p, p1)); - } - } - } - free_cover(T); - free_cover(T2); - set_free(tmp); - - /* Now reflect the phase choice in a single cube */ - for(output = first_output; output <= last_output; output++) { - ind = cube.first_part[cube.output] + output; - if (is_in_set(not_covered, ind)) { - if (is_in_set(not_covered, ind + offset)) { - fatal("error in output phase assignment"); - } else { - set_remove(phase, ind); - } - } - } - set_free(not_covered); - return T1; -} - -pset_family opo_recur(T, D, select, offset, first, last) -pcover T, D; -pcube select; -int offset, first, last; -{ - static int level = 0; - int middle; - pset_family sl, sr, temp; - - level++; - if (first == last) { -#if 0 - if (opo_no_make_sparse) { - temp = form_cover_table(T, D, select, first, first + offset); - } else { - temp = opo_leaf(T, select, first, first + offset); - } -#else - temp = opo_leaf(T, select, first, first + offset); -#endif - } else { - middle = (first + last) / 2; - sl = opo_recur(T, D, select, offset, first, middle); - sr = opo_recur(T, D, select, offset, middle+1, last); - temp = unate_intersect(sl, sr, level == 1); - if (trace) { - printf("# OPO[%d]: %4d = %4d x %4d, time = %s\n", level - 1, - temp->count, sl->count, sr->count, print_time(ptime())); - (void) fflush(stdout); - } - free_cover(sl); - free_cover(sr); - } - level--; - return temp; -} - - -pset_family opo_leaf(T, select, out1, out2) -register pcover T; -pset select; -int out1, out2; -{ - register pset_family temp; - register pset p, pdest; - register int i; - - out1 += cube.first_part[cube.output]; - out2 += cube.first_part[cube.output]; - - /* Allocate space for the result */ - temp = sf_new(2, T->count); - - /* Find which primes are needed for the ON-set of this fct */ - pdest = GETSET(temp, temp->count++); - (void) set_copy(pdest, select); - foreachi_set(T, i, p) { - if (is_in_set(p, out1)) { - set_remove(pdest, i); - } - } - - /* Find which primes are needed for the OFF-set of this fct */ - pdest = GETSET(temp, temp->count++); - (void) set_copy(pdest, select); - foreachi_set(T, i, p) { - if (is_in_set(p, out2)) { - set_remove(pdest, i); - } - } - - return temp; -} - -#if 0 -pset_family form_cover_table(F, D, select, f, fbar) -pcover F, D; -pset select; -int f, fbar; /* indices of f and fbar in the output part */ -{ - register int i; - register pcube p; - pset_family f_table, fbar_table; - - /* setup required for fcube_is_covered */ - Rp_size = F->count; - Rp_start = set_new(Rp_size); - foreachi_set(F, i, p) { - PUTSIZE(p, i); - } - foreachi_set(D, i, p) { - RESET(p, REDUND); - } - - f_table = find_covers(F, D, select, f); - fbar_table = find_covers(F, D, select, fbar); - f_table = sf_append(f_table, fbar_table); - - set_free(Rp_start); - return f_table; -} - - -pset_family find_covers(F, D, select, n) -pcover F, D; -register pset select; -int n; -{ - register pset p, last, new; - pcover F1; - pcube *Flist; - pset_family f_table, table; - int i; - - n += cube.first_part[cube.output]; - - /* save cubes in this output, and remove the output variable */ - F1 = new_cover(F->count); - foreach_set(F, last, p) - if (is_in_set(p, n)) { - new = GETSET(F1, F1->count++); - set_or(new, p, cube.var_mask[cube.output]); - PUTSIZE(new, SIZE(p)); - SET(new, REDUND); - } - - /* Find ways (sop form) to fail to cover output indexed by n */ - Flist = cube2list(F1, D); - table = sf_new(10, Rp_size); - foreach_set(F1, last, p) { - set_fill(Rp_start, Rp_size); - set_remove(Rp_start, SIZE(p)); - table = sf_append(table, fcube_is_covered(Flist, p)); - RESET(p, REDUND); - } - set_fill(Rp_start, Rp_size); - foreach_set(table, last, p) { - set_diff(p, Rp_start, p); - } - - /* complement this to get possible ways to cover the function */ - for(i = 0; i < Rp_size; i++) { - if (! is_in_set(select, i)) { - p = set_new(Rp_size); - set_insert(p, i); - table = sf_addset(table, p); - set_free(p); - } - } - f_table = unate_compl(table); - - /* what a pain, but we need bitwise complement of this */ - set_fill(Rp_start, Rp_size); - foreach_set(f_table, last, p) { - set_diff(p, Rp_start, p); - } - - free_cubelist(Flist); - sf_free(F1); - return f_table; -} -#endif - -/* - * Take a PLA (ON-set, OFF-set and DC-set) and create the - * "double-phase characteristic function" which is merely a new - * function which has twice as many outputs and realizes both the - * function and the complement. - * - * The cube structure is assumed to represent the PLA upon entering. - * It will be modified to represent the double-phase function upon - * exit. - * - * Only the outputs numbered starting with "first_output" are - * duplicated in the output part - */ - -output_phase_setup(PLA, first_output) -INOUT pPLA PLA; -int first_output; -{ - pcover F, R, D; - pcube mask, mask1, last; - int first_part, offset; - bool save; - register pcube p, pr, pf; - register int i, last_part; - - if (cube.output == -1) - fatal("output_phase_setup: must have an output"); - - F = PLA->F; - D = PLA->D; - R = PLA->R; - first_part = cube.first_part[cube.output] + first_output; - last_part = cube.last_part[cube.output]; - offset = cube.part_size[cube.output] - first_output; - - /* Change the output size, setup the cube structure */ - setdown_cube(); - cube.part_size[cube.output] += offset; - cube_setup(); - - /* Create a mask to select that part of the cube which isn't changing */ - mask = set_save(cube.fullset); - for(i = first_part; i < cube.size; i++) - set_remove(mask, i); - mask1 = set_save(mask); - for(i = cube.first_part[cube.output]; i < first_part; i++) { - set_remove(mask1, i); - } - - PLA->F = new_cover(F->count + R->count); - PLA->R = new_cover(F->count + R->count); - PLA->D = new_cover(D->count); - - foreach_set(F, last, p) { - pf = GETSET(PLA->F, (PLA->F)->count++); - pr = GETSET(PLA->R, (PLA->R)->count++); - INLINEset_and(pf, mask, p); - INLINEset_and(pr, mask1, p); - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - set_insert(pf, i); - save = FALSE; - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - save = TRUE, set_insert(pr, i+offset); - if (! save) PLA->R->count--; - } - - foreach_set(R, last, p) { - pf = GETSET(PLA->F, (PLA->F)->count++); - pr = GETSET(PLA->R, (PLA->R)->count++); - INLINEset_and(pf, mask1, p); - INLINEset_and(pr, mask, p); - save = FALSE; - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - save = TRUE, set_insert(pf, i+offset); - if (! save) PLA->F->count--; - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) - set_insert(pr, i); - } - - foreach_set(D, last, p) { - pf = GETSET(PLA->D, (PLA->D)->count++); - INLINEset_and(pf, mask, p); - for(i = first_part; i <= last_part; i++) - if (is_in_set(p, i)) { - set_insert(pf, i); - set_insert(pf, i+offset); - } - } - - free_cover(F); - free_cover(D); - free_cover(R); - set_free(mask); - set_free(mask1); -} - -/* - * set_phase -- given a "cube" which describes which phases of the output - * are to be implemented, compute the appropriate on-set and off-set - */ -pPLA set_phase(PLA) -INOUT pPLA PLA; -{ - pcover F1, R1; - register pcube last, p, outmask; - register pcube temp=cube.temp[0], phase=PLA->phase, phase1=cube.temp[1]; - - outmask = cube.var_mask[cube.num_vars - 1]; - set_diff(phase1, outmask, phase); - set_or(phase1, set_diff(temp, cube.fullset, outmask), phase1); - F1 = new_cover((PLA->F)->count + (PLA->R)->count); - R1 = new_cover((PLA->F)->count + (PLA->R)->count); - - foreach_set(PLA->F, last, p) { - if (! setp_disjoint(set_and(temp, p, phase), outmask)) - set_copy(GETSET(F1, F1->count++), temp); - if (! setp_disjoint(set_and(temp, p, phase1), outmask)) - set_copy(GETSET(R1, R1->count++), temp); - } - foreach_set(PLA->R, last, p) { - if (! setp_disjoint(set_and(temp, p, phase), outmask)) - set_copy(GETSET(R1, R1->count++), temp); - if (! setp_disjoint(set_and(temp, p, phase1), outmask)) - set_copy(GETSET(F1, F1->count++), temp); - } - free_cover(PLA->F); - free_cover(PLA->R); - PLA->F = F1; - PLA->R = R1; - return PLA; -} - -#define POW2(x) (1 << (x)) - -void opoall(PLA, first_output, last_output, opo_strategy) -pPLA PLA; -int first_output, last_output; -int opo_strategy; -{ - pcover F, D, R, best_F, best_D, best_R; - int i, j, ind, num; - pcube bestphase; - - opo_exact = opo_strategy; - - if (PLA->phase != NULL) { - set_free(PLA->phase); - } - - bestphase = set_save(cube.fullset); - best_F = sf_save(PLA->F); - best_D = sf_save(PLA->D); - best_R = sf_save(PLA->R); - - for(i = 0; i < POW2(last_output - first_output + 1); i++) { - - /* save the initial PLA covers */ - F = sf_save(PLA->F); - D = sf_save(PLA->D); - R = sf_save(PLA->R); - - /* compute the phase cube for this iteration */ - PLA->phase = set_save(cube.fullset); - num = i; - for(j = last_output; j >= first_output; j--) { - if (num % 2 == 0) { - ind = cube.first_part[cube.output] + j; - set_remove(PLA->phase, ind); - } - num /= 2; - } - - /* set the phase and minimize */ - (void) set_phase(PLA); - printf("# phase is %s\n", pc1(PLA->phase)); - summary = TRUE; - minimize(PLA); - - /* see if this is the best so far */ - if (PLA->F->count < best_F->count) { - /* save new best solution */ - set_copy(bestphase, PLA->phase); - sf_free(best_F); - sf_free(best_D); - sf_free(best_R); - best_F = PLA->F; - best_D = PLA->D; - best_R = PLA->R; - } else { - /* throw away the solution */ - free_cover(PLA->F); - free_cover(PLA->D); - free_cover(PLA->R); - } - set_free(PLA->phase); - - /* restore the initial PLA covers */ - PLA->F = F; - PLA->D = D; - PLA->R = R; - } - - /* one more minimization to restore the best answer */ - PLA->phase = bestphase; - sf_free(PLA->F); - sf_free(PLA->D); - sf_free(PLA->R); - PLA->F = best_F; - PLA->D = best_D; - PLA->R = best_R; -} - -static void minimize(PLA) -pPLA PLA; -{ - if (opo_exact) { - EXEC_S(PLA->F = minimize_exact(PLA->F,PLA->D,PLA->R,1), "EXACT", PLA->F); - } else { - EXEC_S(PLA->F = espresso(PLA->F, PLA->D, PLA->R), "ESPRESSO ",PLA->F); - } -} diff --git a/src/misc/espresso/pair.c b/src/misc/espresso/pair.c deleted file mode 100644 index a8077176..00000000 --- a/src/misc/espresso/pair.c +++ /dev/null @@ -1,675 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -void set_pair(PLA) -pPLA PLA; -{ - set_pair1(PLA, TRUE); -} - -void set_pair1(PLA, adjust_labels) -pPLA PLA; -bool adjust_labels; -{ - int i, var, *paired, newvar; - int old_num_vars, old_num_binary_vars, old_size, old_mv_start; - int *new_part_size, new_num_vars, new_num_binary_vars, new_mv_start; - ppair pair = PLA->pair; - char scratch[1000], **oldlabel, *var1, *var1bar, *var2, *var2bar; - - if (adjust_labels) - makeup_labels(PLA); - - /* Check the pair structure for valid entries and see which binary - variables are left unpaired - */ - paired = ALLOC(bool, cube.num_binary_vars); - for(var = 0; var < cube.num_binary_vars; var++) - paired[var] = FALSE; - for(i = 0; i < pair->cnt; i++) - if ((pair->var1[i] > 0 && pair->var1[i] <= cube.num_binary_vars) && - (pair->var2[i] > 0 && pair->var2[i] <= cube.num_binary_vars)) { - paired[pair->var1[i]-1] = TRUE; - paired[pair->var2[i]-1] = TRUE; - } else - fatal("can only pair binary-valued variables"); - - PLA->F = delvar(pairvar(PLA->F, pair), paired); - PLA->R = delvar(pairvar(PLA->R, pair), paired); - PLA->D = delvar(pairvar(PLA->D, pair), paired); - - /* Now painfully adjust the cube size */ - old_size = cube.size; - old_num_vars = cube.num_vars; - old_num_binary_vars = cube.num_binary_vars; - old_mv_start = cube.first_part[cube.num_binary_vars]; - /* Create the new cube.part_size vector and setup the cube structure */ - new_num_binary_vars = 0; - for(var = 0; var < old_num_binary_vars; var++) - new_num_binary_vars += (paired[var] == FALSE); - new_num_vars = new_num_binary_vars + pair->cnt; - new_num_vars += old_num_vars - old_num_binary_vars; - new_part_size = ALLOC(int, new_num_vars); - for(var = 0; var < pair->cnt; var++) - new_part_size[new_num_binary_vars + var] = 4; - for(var = 0; var < old_num_vars - old_num_binary_vars; var++) - new_part_size[new_num_binary_vars + pair->cnt + var] = - cube.part_size[old_num_binary_vars + var]; - setdown_cube(); - FREE(cube.part_size); - cube.num_vars = new_num_vars; - cube.num_binary_vars = new_num_binary_vars; - cube.part_size = new_part_size; - cube_setup(); - - /* hack with the labels to get them correct */ - if (adjust_labels) { - oldlabel = PLA->label; - PLA->label = ALLOC(char *, cube.size); - for(var = 0; var < pair->cnt; var++) { - newvar = cube.num_binary_vars*2 + var*4; - var1 = oldlabel[ (pair->var1[var]-1) * 2 + 1]; - var2 = oldlabel[ (pair->var2[var]-1) * 2 + 1]; - var1bar = oldlabel[ (pair->var1[var]-1) * 2]; - var2bar = oldlabel[ (pair->var2[var]-1) * 2]; - (void) sprintf(scratch, "%s+%s", var1bar, var2bar); - PLA->label[newvar] = util_strsav(scratch); - (void) sprintf(scratch, "%s+%s", var1bar, var2); - PLA->label[newvar+1] = util_strsav(scratch); - (void) sprintf(scratch, "%s+%s", var1, var2bar); - PLA->label[newvar+2] = util_strsav(scratch); - (void) sprintf(scratch, "%s+%s", var1, var2); - PLA->label[newvar+3] = util_strsav(scratch); - } - /* Copy the old labels for the unpaired binary vars */ - i = 0; - for(var = 0; var < old_num_binary_vars; var++) { - if (paired[var] == FALSE) { - PLA->label[2*i] = oldlabel[2*var]; - PLA->label[2*i+1] = oldlabel[2*var+1]; - oldlabel[2*var] = oldlabel[2*var+1] = (char *) NULL; - i++; - } - } - /* Copy the old labels for the remaining unpaired vars */ - new_mv_start = cube.num_binary_vars*2 + pair->cnt*4; - for(i = old_mv_start; i < old_size; i++) { - PLA->label[new_mv_start + i - old_mv_start] = oldlabel[i]; - oldlabel[i] = (char *) NULL; - } - /* free remaining entries in oldlabel */ - for(i = 0; i < old_size; i++) - if (oldlabel[i] != (char *) NULL) - FREE(oldlabel[i]); - FREE(oldlabel); - } - - /* the paired variables should not be sparse (cf. mv_reduce/raise_in)*/ - for(var = 0; var < pair->cnt; var++) - cube.sparse[cube.num_binary_vars + var] = 0; - FREE(paired); -} - -pcover pairvar(A, pair) -pcover A; -ppair pair; -{ - register pcube last, p; - register int val, p1, p2, b1, b0; - int insert_col, pairnum; - - insert_col = cube.first_part[cube.num_vars - 1]; - - /* stretch the cover matrix to make room for the paired variables */ - A = sf_delcol(A, insert_col, -4*pair->cnt); - - /* compute the paired values */ - foreach_set(A, last, p) { - for(pairnum = 0; pairnum < pair->cnt; pairnum++) { - p1 = cube.first_part[pair->var1[pairnum] - 1]; - p2 = cube.first_part[pair->var2[pairnum] - 1]; - b1 = is_in_set(p, p2+1); - b0 = is_in_set(p, p2); - val = insert_col + pairnum * 4; - if (/* a0 */ is_in_set(p, p1)) { - if (b0) - set_insert(p, val + 3); - if (b1) - set_insert(p, val + 2); - } - if (/* a1 */ is_in_set(p, p1+1)) { - if (b0) - set_insert(p, val + 1); - if (b1) - set_insert(p, val); - } - } - } - return A; -} - - -/* delvar -- delete variables from A, minimize the number of column shifts */ -pcover delvar(A, paired) -pcover A; -bool paired[]; -{ - bool run; - int first_run, run_length, var, offset = 0; - - run = FALSE; run_length = 0; - for(var = 0; var < cube.num_binary_vars; var++) - if (paired[var]) - if (run) - run_length += cube.part_size[var]; - else { - run = TRUE; - first_run = cube.first_part[var]; - run_length = cube.part_size[var]; - } - else - if (run) { - A = sf_delcol(A, first_run-offset, run_length); - run = FALSE; - offset += run_length; - } - if (run) - A = sf_delcol(A, first_run-offset, run_length); - return A; -} - -/* - find_optimal_pairing -- find which binary variables should be paired - to maximally reduce the number of terms - - This is essentially the technique outlined by T. Sasao in the - Trans. on Comp., Oct 1984. We estimate the cost of pairing each - pair individually using 1 of 4 strategies: (1) algebraic division - of F by the pair (exactly T. Sasao technique); (2) strong division - of F by the paired variables (using REDUCE/EXPAND/ IRREDUNDANT from - espresso); (3) full minimization using espresso; (4) exact - minimization. These are in order of both increasing accuracy and - increasing difficulty (!) - - Once the n squared pairs have been evaluated, T. Sasao proposes a - graph covering of nodes by disjoint edges. For now, I solve this - problem exhaustively (complexity = (n-1)*(n-3)*...*3*1 for n - variables when n is even). Note that solving this problem exactly - is the same as evaluating the cost function for all possible - pairings. - - n pairs - - 1, 2 1 - 3, 4 3 - 5, 6 15 - 7, 8 105 - 9,10 945 - 11,12 10,395 - 13,14 135,135 - 15,16 2,027,025 - 17,18 34,459,425 - 19,20 654,729,075 -*/ -void find_optimal_pairing(PLA, strategy) -pPLA PLA; -int strategy; -{ - int i, j, **cost_array; - - cost_array = find_pairing_cost(PLA, strategy); - - if (summary) { - printf(" "); - for(i = 0; i < cube.num_binary_vars; i++) - printf("%3d ", i+1); - printf("\n"); - for(i = 0; i < cube.num_binary_vars; i++) { - printf("%3d ", i+1); - for(j = 0; j < cube.num_binary_vars; j++) - printf("%3d ", cost_array[i][j]); - printf("\n"); - } - } - - if (cube.num_binary_vars <= 14) { - PLA->pair = pair_best_cost(cost_array); - } else { - (void) greedy_best_cost(cost_array, &(PLA->pair)); - } - printf("# "); - print_pair(PLA->pair); - - for(i = 0; i < cube.num_binary_vars; i++) - FREE(cost_array[i]); - FREE(cost_array); - - set_pair(PLA); - EXEC_S(PLA->F=espresso(PLA->F,PLA->D,PLA->R),"ESPRESSO ",PLA->F); -} - -int **find_pairing_cost(PLA, strategy) -pPLA PLA; -int strategy; -{ - int var1, var2, **cost_array; - int i, j, xnum_binary_vars, xnum_vars, *xpart_size, cost; - pcover T, Fsave, Dsave, Rsave; - pset mask; -/* char *s;*/ - - /* data is returned in the cost array */ - cost_array = ALLOC(int *, cube.num_binary_vars); - for(i = 0; i < cube.num_binary_vars; i++) - cost_array[i] = ALLOC(int, cube.num_binary_vars); - for(i = 0; i < cube.num_binary_vars; i++) - for(j = 0; j < cube.num_binary_vars; j++) - cost_array[i][j] = 0; - - /* Setup the pair structure for pairing variables together */ - PLA->pair = pair_new(1); - PLA->pair->cnt = 1; - - for(var1 = 0; var1 < cube.num_binary_vars-1; var1++) { - for(var2 = var1+1; var2 < cube.num_binary_vars; var2++) { - /* if anything but simple strategy, perform setup */ - if (strategy > 0) { - /* save the original covers */ - Fsave = sf_save(PLA->F); - Dsave = sf_save(PLA->D); - Rsave = sf_save(PLA->R); - - /* save the original cube structure */ - xnum_binary_vars = cube.num_binary_vars; - xnum_vars = cube.num_vars; - xpart_size = ALLOC(int, cube.num_vars); - for(i = 0; i < cube.num_vars; i++) - xpart_size[i] = cube.part_size[i]; - - /* pair two variables together */ - PLA->pair->var1[0] = var1 + 1; - PLA->pair->var2[0] = var2 + 1; - set_pair1(PLA, /* adjust_labels */ FALSE); - } - - - /* decide how to best estimate worth of this pairing */ - switch(strategy) { - case 3: - /*s = "exact minimization";*/ - PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1); - cost = Fsave->count - PLA->F->count; - break; - case 2: - /*s = "full minimization";*/ - PLA->F = espresso(PLA->F, PLA->D, PLA->R); - cost = Fsave->count - PLA->F->count; - break; - case 1: - /*s = "strong division";*/ - PLA->F = reduce(PLA->F, PLA->D); - PLA->F = expand(PLA->F, PLA->R, FALSE); - PLA->F = irredundant(PLA->F, PLA->D); - cost = Fsave->count - PLA->F->count; - break; - case 0: - /*s = "weak division";*/ - mask = new_cube(); - set_or(mask, cube.var_mask[var1], cube.var_mask[var2]); - T = dist_merge(sf_save(PLA->F), mask); - cost = PLA->F->count - T->count; - sf_free(T); - set_free(mask); - } - - cost_array[var1][var2] = cost; - - if (strategy > 0) { - /* restore the original cube structure -- free the new ones */ - setdown_cube(); - FREE(cube.part_size); - cube.num_binary_vars = xnum_binary_vars; - cube.num_vars = xnum_vars; - cube.part_size = xpart_size; - cube_setup(); - - /* restore the original cover(s) -- free the new ones */ - sf_free(PLA->F); - sf_free(PLA->D); - sf_free(PLA->R); - PLA->F = Fsave; - PLA->D = Dsave; - PLA->R = Rsave; - } - } - } - - pair_free(PLA->pair); - PLA->pair = NULL; - return cost_array; -} - -static int best_cost; -static int **cost_array; -static ppair best_pair; -static pset best_phase; -static pPLA global_PLA; -static pcover best_F, best_D, best_R; -static int pair_minim_strategy; - - -print_pair(pair) -ppair pair; -{ - int i; - - printf("pair is"); - for(i = 0; i < pair->cnt; i++) - printf (" (%d %d)", pair->var1[i], pair->var2[i]); - printf("\n"); -} - - -int greedy_best_cost(cost_array_local, pair_p) -int **cost_array_local; -ppair *pair_p; -{ - int i, j, besti, bestj, maxcost, total_cost; - pset cand; - ppair pair; - - pair = pair_new(cube.num_binary_vars); - cand = set_full(cube.num_binary_vars); - total_cost = 0; - - while (set_ord(cand) >= 2) { - maxcost = -1; - for(i = 0; i < cube.num_binary_vars; i++) { - if (is_in_set(cand, i)) { - for(j = i+1; j < cube.num_binary_vars; j++) { - if (is_in_set(cand, j)) { - if (cost_array_local[i][j] > maxcost) { - maxcost = cost_array_local[i][j]; - besti = i; - bestj = j; - } - } - } - } - } - pair->var1[pair->cnt] = besti+1; - pair->var2[pair->cnt] = bestj+1; - pair->cnt++; - set_remove(cand, besti); - set_remove(cand, bestj); - total_cost += maxcost; - } - set_free(cand); - *pair_p = pair; - return total_cost; -} - - -ppair pair_best_cost(cost_array_local) -int **cost_array_local; -{ - ppair pair; - pset candidate; - - best_cost = -1; - best_pair = NULL; - cost_array = cost_array_local; - - pair = pair_new(cube.num_binary_vars); - candidate = set_full(cube.num_binary_vars); - generate_all_pairs(pair, cube.num_binary_vars, candidate, find_best_cost); - pair_free(pair); - set_free(candidate); - return best_pair; -} - - -int find_best_cost(pair) -register ppair pair; -{ - register int i, cost; - - cost = 0; - for(i = 0; i < pair->cnt; i++) - cost += cost_array[pair->var1[i]-1][pair->var2[i]-1]; - if (cost > best_cost) { - best_cost = cost; - best_pair = pair_save(pair, pair->cnt); - } - if ((debug & MINCOV) && trace) { - printf("cost is %d ", cost); - print_pair(pair); - } -} - -/* - pair_all: brute-force approach to try all possible pairings - - pair_strategy is: - 2) for espresso - 3) for minimize_exact - 4) for phase assignment -*/ - -pair_all(PLA, pair_strategy) -pPLA PLA; -int pair_strategy; -{ - ppair pair; - pset candidate; - - global_PLA = PLA; - pair_minim_strategy = pair_strategy; - best_cost = PLA->F->count + 1; - best_pair = NULL; - best_phase = NULL; - best_F = best_D = best_R = NULL; - pair = pair_new(cube.num_binary_vars); - candidate = set_fill(set_new(cube.num_binary_vars), cube.num_binary_vars); - - generate_all_pairs(pair, cube.num_binary_vars, candidate, minimize_pair); - - pair_free(pair); - set_free(candidate); - - PLA->pair = best_pair; - PLA->phase = best_phase; -/* not really necessary - if (phase != NULL) - (void) set_phase(PLA->phase); -*/ - set_pair(PLA); - printf("# "); - print_pair(PLA->pair); - - sf_free(PLA->F); - sf_free(PLA->D); - sf_free(PLA->R); - PLA->F = best_F; - PLA->D = best_D; - PLA->R = best_R; -} - - -/* - * minimize_pair -- called as each pair is generated - */ -int minimize_pair(pair) -ppair pair; -{ - pcover Fsave, Dsave, Rsave; - int i, xnum_binary_vars, xnum_vars, *xpart_size; - - /* save the original covers */ - Fsave = sf_save(global_PLA->F); - Dsave = sf_save(global_PLA->D); - Rsave = sf_save(global_PLA->R); - - /* save the original cube structure */ - xnum_binary_vars = cube.num_binary_vars; - xnum_vars = cube.num_vars; - xpart_size = ALLOC(int, cube.num_vars); - for(i = 0; i < cube.num_vars; i++) - xpart_size[i] = cube.part_size[i]; - - /* setup the paired variables */ - global_PLA->pair = pair; - set_pair1(global_PLA, /* adjust_labels */ FALSE); - - /* call the minimizer */ - if (summary) - print_pair(pair); - switch(pair_minim_strategy) { - case 2: - EXEC_S(phase_assignment(global_PLA,0), "OPO ", global_PLA->F); - if (summary) - printf("# phase is %s\n", pc1(global_PLA->phase)); - break; - case 1: - EXEC_S(global_PLA->F = minimize_exact(global_PLA->F, global_PLA->D, - global_PLA->R, 1), "EXACT ", global_PLA->F); - break; - case 0: - EXEC_S(global_PLA->F = espresso(global_PLA->F, global_PLA->D, - global_PLA->R), "ESPRESSO ", global_PLA->F); - break; - default: - break; - } - - /* see if we have a new best solution */ - if (global_PLA->F->count < best_cost) { - best_cost = global_PLA->F->count; - best_pair = pair_save(pair, pair->cnt); - best_phase = global_PLA->phase!=NULL?set_save(global_PLA->phase):NULL; - if (best_F != NULL) sf_free(best_F); - if (best_D != NULL) sf_free(best_D); - if (best_R != NULL) sf_free(best_R); - best_F = sf_save(global_PLA->F); - best_D = sf_save(global_PLA->D); - best_R = sf_save(global_PLA->R); - } - - /* restore the original cube structure -- free the new ones */ - setdown_cube(); - FREE(cube.part_size); - cube.num_binary_vars = xnum_binary_vars; - cube.num_vars = xnum_vars; - cube.part_size = xpart_size; - cube_setup(); - - /* restore the original cover(s) -- free the new ones */ - sf_free(global_PLA->F); - sf_free(global_PLA->D); - sf_free(global_PLA->R); - global_PLA->F = Fsave; - global_PLA->D = Dsave; - global_PLA->R = Rsave; - global_PLA->pair = NULL; - global_PLA->phase = NULL; -} - -generate_all_pairs(pair, n, candidate, action) -ppair pair; -int n; -pset candidate; -int (*action)(); -{ - int i, j; - pset recur_candidate; - ppair recur_pair; - - if (set_ord(candidate) < 2) { - (*action)(pair); - return; - } - - recur_pair = pair_save(pair, n); - recur_candidate = set_save(candidate); - - /* Find first variable still in the candidate set */ - for(i = 0; i < n; i++) - if (is_in_set(candidate, i)) - break; - - /* Try all pairs of i with other variables */ - for(j = i+1; j < n; j++) - if (is_in_set(candidate, j)) { - /* pair (i j) -- remove from candidate set for future pairings */ - set_remove(recur_candidate, i); - set_remove(recur_candidate, j); - - /* add to the pair array */ - recur_pair->var1[recur_pair->cnt] = i+1; - recur_pair->var2[recur_pair->cnt] = j+1; - recur_pair->cnt++; - - /* recur looking for the end ... */ - generate_all_pairs(recur_pair, n, recur_candidate, action); - - /* now break this pair, and restore candidate set */ - recur_pair->cnt--; - set_insert(recur_candidate, i); - set_insert(recur_candidate, j); - } - - /* if odd, generate all pairs which do NOT include i */ - if ((set_ord(candidate) % 2) == 1) { - set_remove(recur_candidate, i); - generate_all_pairs(recur_pair, n, recur_candidate, action); - } - - pair_free(recur_pair); - set_free(recur_candidate); -} - -ppair pair_new(n) -register int n; -{ - register ppair pair1; - - pair1 = ALLOC(pair_t, 1); - pair1->cnt = 0; - pair1->var1 = ALLOC(int, n); - pair1->var2 = ALLOC(int, n); - return pair1; -} - - -ppair pair_save(pair, n) -register ppair pair; -register int n; -{ - register int k; - register ppair pair1; - - pair1 = pair_new(n); - pair1->cnt = pair->cnt; - for(k = 0; k < pair->cnt; k++) { - pair1->var1[k] = pair->var1[k]; - pair1->var2[k] = pair->var2[k]; - } - return pair1; -} - - -int pair_free(pair) -register ppair pair; -{ - FREE(pair->var1); - FREE(pair->var2); - FREE(pair); -} diff --git a/src/misc/espresso/part.c b/src/misc/espresso/part.c deleted file mode 100644 index 42843aeb..00000000 --- a/src/misc/espresso/part.c +++ /dev/null @@ -1,122 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "mincov_int.h" - -static int visit_col(); - -static void -copy_row(A, prow) -register sm_matrix *A; -register sm_row *prow; -{ - register sm_element *p; - - for(p = prow->first_col; p != 0; p = p->next_col) { - (void) sm_insert(A, p->row_num, p->col_num); - } -} - - -static int -visit_row(A, prow, rows_visited, cols_visited) -sm_matrix *A; -sm_row *prow; -int *rows_visited; -int *cols_visited; -{ - sm_element *p; - sm_col *pcol; - - if (! prow->flag) { - prow->flag = 1; - (*rows_visited)++; - if (*rows_visited == A->nrows) { - return 1; - } - for(p = prow->first_col; p != 0; p = p->next_col) { - pcol = sm_get_col(A, p->col_num); - if (! pcol->flag) { - if (visit_col(A, pcol, rows_visited, cols_visited)) { - return 1; - } - } - } - } - return 0; -} - - -static int -visit_col(A, pcol, rows_visited, cols_visited) -sm_matrix *A; -sm_col *pcol; -int *rows_visited; -int *cols_visited; -{ - sm_element *p; - sm_row *prow; - - if (! pcol->flag) { - pcol->flag = 1; - (*cols_visited)++; - if (*cols_visited == A->ncols) { - return 1; - } - for(p = pcol->first_row; p != 0; p = p->next_row) { - prow = sm_get_row(A, p->row_num); - if (! prow->flag) { - if (visit_row(A, prow, rows_visited, cols_visited)) { - return 1; - } - } - } - } - return 0; -} - -int -sm_block_partition(A, L, R) -sm_matrix *A; -sm_matrix **L, **R; -{ - int cols_visited, rows_visited; - register sm_row *prow; - register sm_col *pcol; - - /* Avoid the trivial case */ - if (A->nrows == 0) { - return 0; - } - - /* Reset the visited flags for each row and column */ - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - prow->flag = 0; - } - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) { - pcol->flag = 0; - } - - cols_visited = rows_visited = 0; - if (visit_row(A, A->first_row, &rows_visited, &cols_visited)) { - /* we found all of the rows */ - return 0; - } else { - *L = sm_alloc(); - *R = sm_alloc(); - for(prow = A->first_row; prow != 0; prow = prow->next_row) { - if (prow->flag) { - copy_row(*L, prow); - } else { - copy_row(*R, prow); - } - } - return 1; - } -} diff --git a/src/misc/espresso/primes.c b/src/misc/espresso/primes.c deleted file mode 100644 index 3e40da27..00000000 --- a/src/misc/espresso/primes.c +++ /dev/null @@ -1,170 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - -static bool primes_consensus_special_cases(); -static pcover primes_consensus_merge(); -static pcover and_with_cofactor(); - - -/* primes_consensus -- generate primes using consensus */ -pcover primes_consensus(T) -pcube *T; /* T will be disposed of */ -{ - register pcube cl, cr; - register int best; - pcover Tnew, Tl, Tr; - - if (primes_consensus_special_cases(T, &Tnew) == MAYBE) { - cl = new_cube(); - cr = new_cube(); - best = binate_split_select(T, cl, cr, COMPL); - - Tl = primes_consensus(scofactor(T, cl, best)); - Tr = primes_consensus(scofactor(T, cr, best)); - Tnew = primes_consensus_merge(Tl, Tr, cl, cr); - - free_cube(cl); - free_cube(cr); - free_cubelist(T); - } - - return Tnew; -} - -static bool -primes_consensus_special_cases(T, Tnew) -pcube *T; /* will be disposed if answer is determined */ -pcover *Tnew; /* returned only if answer determined */ -{ - register pcube *T1, p, ceil, cof=T[0]; - pcube last; - pcover A; - - /* Check for no cubes in the cover */ - if (T[2] == NULL) { - *Tnew = new_cover(0); - free_cubelist(T); - return TRUE; - } - - /* Check for only a single cube in the cover */ - if (T[3] == NULL) { - *Tnew = sf_addset(new_cover(1), set_or(cof, cof, T[2])); - free_cubelist(T); - return TRUE; - } - - /* Check for a row of all 1's (implies function is a tautology) */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (full_row(p, cof)) { - *Tnew = sf_addset(new_cover(1), cube.fullset); - free_cubelist(T); - return TRUE; - } - } - - /* Check for a column of all 0's which can be factored out */ - ceil = set_save(cof); - for(T1 = T+2; (p = *T1++) != NULL; ) { - INLINEset_or(ceil, ceil, p); - } - if (! setp_equal(ceil, cube.fullset)) { - p = new_cube(); - (void) set_diff(p, cube.fullset, ceil); - (void) set_or(cof, cof, p); - free_cube(p); - - A = primes_consensus(T); - foreach_set(A, last, p) { - INLINEset_and(p, p, ceil); - } - *Tnew = A; - set_free(ceil); - return TRUE; - } - set_free(ceil); - - /* Collect column counts, determine unate variables, etc. */ - massive_count(T); - - /* If single active variable not factored out above, then tautology ! */ - if (cdata.vars_active == 1) { - *Tnew = sf_addset(new_cover(1), cube.fullset); - free_cubelist(T); - return TRUE; - - /* Check for unate cover */ - } else if (cdata.vars_unate == cdata.vars_active) { - A = cubeunlist(T); - *Tnew = sf_contain(A); - free_cubelist(T); - return TRUE; - - /* Not much we can do about it */ - } else { - return MAYBE; - } -} - -static pcover -primes_consensus_merge(Tl, Tr, cl, cr) -pcover Tl, Tr; -pcube cl, cr; -{ - register pcube pl, pr, lastl, lastr, pt; - pcover T, Tsave; - - Tl = and_with_cofactor(Tl, cl); - Tr = and_with_cofactor(Tr, cr); - - T = sf_new(500, Tl->sf_size); - pt = T->data; - Tsave = sf_contain(sf_join(Tl, Tr)); - - foreach_set(Tl, lastl, pl) { - foreach_set(Tr, lastr, pr) { - if (cdist01(pl, pr) == 1) { - consensus(pt, pl, pr); - if (++T->count >= T->capacity) { - Tsave = sf_union(Tsave, sf_contain(T)); - T = sf_new(500, Tl->sf_size); - pt = T->data; - } else { - pt += T->wsize; - } - } - } - } - free_cover(Tl); - free_cover(Tr); - - Tsave = sf_union(Tsave, sf_contain(T)); - return Tsave; -} - - -static pcover -and_with_cofactor(A, cof) -pset_family A; -register pset cof; -{ - register pset last, p; - - foreach_set(A, last, p) { - INLINEset_and(p, p, cof); - if (cdist(p, cube.fullset) > 0) { - RESET(p, ACTIVE); - } else { - SET(p, ACTIVE); - } - } - return sf_inactive(A); -} diff --git a/src/misc/espresso/reduce.c b/src/misc/espresso/reduce.c deleted file mode 100644 index 00e4507f..00000000 --- a/src/misc/espresso/reduce.c +++ /dev/null @@ -1,258 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: reduce.c - purpose: Perform the Espresso-II reduction step - - Reduction is a technique used to explore larger regions of the - optimization space. We replace each cube of F with a smaller - cube while still maintaining a cover of the same logic function. -*/ - -#include "espresso.h" - -static bool toggle = TRUE; - - -/* - reduce -- replace each cube in F with its reduction - - The reduction of a cube is the smallest cube contained in the cube - which can replace the cube in the original cover without changing - the cover. This is equivalent to the super cube of all of the - essential points in the cube. This can be computed directly. - - The problem is that the order in which the cubes are reduced can - greatly affect the final result. We alternate between two ordering - strategies: - - (1) Order the cubes in ascending order of distance from the - largest cube breaking ties by ordering cubes of equal distance - in descending order of size (sort_reduce) - - (2) Order the cubes in descending order of the inner-product of - the cube and the column sums (mini_sort) - - The real workhorse of this section is the routine SCCC which is - used to find the Smallest Cube Containing the Complement of a cover. - Reduction as proposed by Espresso-II takes a cube and computes its - maximal reduction as the intersection between the cube and the - smallest cube containing the complement of (F u D - {c}) cofactored - against c. - - As usual, the unate-recursive paradigm is used to compute SCCC. - The SCCC of a unate cover is trivial to compute, and thus we perform - Shannon Cofactor expansion attempting to drive the cover to be unate - as fast as possible. -*/ - -pcover reduce(F, D) -INOUT pcover F; -IN pcover D; -{ - register pcube last, p, cunder, *FD; - - /* Order the cubes */ - if (use_random_order) - F = random_order(F); - else { - F = toggle ? sort_reduce(F) : mini_sort(F, descend); - toggle = ! toggle; - } - - /* Try to reduce each cube */ - FD = cube2list(F, D); - foreach_set(F, last, p) { - cunder = reduce_cube(FD, p); /* reduce the cube */ - if (setp_equal(cunder, p)) { /* see if it actually did */ - SET(p, ACTIVE); /* cube remains active */ - SET(p, PRIME); /* cube remains prime ? */ - } else { - if (debug & REDUCE) { - printf("REDUCE: %s to %s %s\n", - pc1(p), pc2(cunder), print_time(ptime())); - } - set_copy(p, cunder); /* save reduced version */ - RESET(p, PRIME); /* cube is no longer prime */ - if (setp_empty(cunder)) - RESET(p, ACTIVE); /* if null, kill the cube */ - else - SET(p, ACTIVE); /* cube is active */ - } - free_cube(cunder); - } - free_cubelist(FD); - - /* Delete any cubes of F which reduced to the empty cube */ - return sf_inactive(F); -} - -/* reduce_cube -- find the maximal reduction of a cube */ -pcube reduce_cube(FD, p) -IN pcube *FD, p; -{ - pcube cunder; - - cunder = sccc(cofactor(FD, p)); - return set_and(cunder, cunder, p); -} - - -/* sccc -- find Smallest Cube Containing the Complement of a cover */ -pcube sccc(T) -INOUT pcube *T; /* T will be disposed of */ -{ - pcube r; - register pcube cl, cr; - register int best; - static int sccc_level = 0; - - if (debug & REDUCE1) { - debug_print(T, "SCCC", sccc_level++); - } - - if (sccc_special_cases(T, &r) == MAYBE) { - cl = new_cube(); - cr = new_cube(); - best = binate_split_select(T, cl, cr, REDUCE1); - r = sccc_merge(sccc(scofactor(T, cl, best)), - sccc(scofactor(T, cr, best)), cl, cr); - free_cubelist(T); - } - - if (debug & REDUCE1) - printf("SCCC[%d]: result is %s\n", --sccc_level, pc1(r)); - return r; -} - - -pcube sccc_merge(left, right, cl, cr) -INOUT register pcube left, right; /* will be disposed of ... */ -INOUT register pcube cl, cr; /* will be disposed of ... */ -{ - INLINEset_and(left, left, cl); - INLINEset_and(right, right, cr); - INLINEset_or(left, left, right); - free_cube(right); - free_cube(cl); - free_cube(cr); - return left; -} - - -/* - sccc_cube -- find the smallest cube containing the complement of a cube - - By DeMorgan's law and the fact that the smallest cube containing a - cover is the "or" of the positional cubes, it is simple to see that - the SCCC is the universe if the cube has more than two active - variables. If there is only a single active variable, then the - SCCC is merely the bitwise complement of the cube in that - variable. A last special case is no active variables, in which - case the SCCC is empty. - - This is "anded" with the incoming cube result. -*/ -pcube sccc_cube(result, p) -register pcube result, p; -{ - register pcube temp=cube.temp[0], mask; - int var; - - if ((var = cactive(p)) >= 0) { - mask = cube.var_mask[var]; - INLINEset_xor(temp, p, mask); - INLINEset_and(result, result, temp); - } - return result; -} - -/* - * sccc_special_cases -- check the special cases for sccc - */ - -bool sccc_special_cases(T, result) -INOUT pcube *T; /* will be disposed if answer is determined */ -OUT pcube *result; /* returned only if answer determined */ -{ - register pcube *T1, p, temp = cube.temp[1], ceil, cof = T[0]; - pcube *A, *B; - - /* empty cover => complement is universe => SCCC is universe */ - if (T[2] == NULL) { - *result = set_save(cube.fullset); - free_cubelist(T); - return TRUE; - } - - /* row of 1's => complement is empty => SCCC is empty */ - for(T1 = T+2; (p = *T1++) != NULL; ) { - if (full_row(p, cof)) { - *result = new_cube(); - free_cubelist(T); - return TRUE; - } - } - - /* Collect column counts, determine unate variables, etc. */ - massive_count(T); - - /* If cover is unate (or single cube), apply simple rules to find SCCCU */ - if (cdata.vars_unate == cdata.vars_active || T[3] == NULL) { - *result = set_save(cube.fullset); - for(T1 = T+2; (p = *T1++) != NULL; ) { - (void) sccc_cube(*result, set_or(temp, p, cof)); - } - free_cubelist(T); - return TRUE; - } - - /* Check for column of 0's (which can be easily factored( */ - ceil = set_save(cof); - for(T1 = T+2; (p = *T1++) != NULL; ) { - INLINEset_or(ceil, ceil, p); - } - if (! setp_equal(ceil, cube.fullset)) { - *result = sccc_cube(set_save(cube.fullset), ceil); - if (setp_equal(*result, cube.fullset)) { - free_cube(ceil); - } else { - *result = sccc_merge(sccc(cofactor(T,ceil)), - set_save(cube.fullset), ceil, *result); - } - free_cubelist(T); - return TRUE; - } - free_cube(ceil); - - /* Single active column at this point => tautology => SCCC is empty */ - if (cdata.vars_active == 1) { - *result = new_cube(); - free_cubelist(T); - return TRUE; - } - - /* Check for components */ - if (cdata.var_zeros[cdata.best] < CUBELISTSIZE(T)/2) { - if (cubelist_partition(T, &A, &B, debug & REDUCE1) == 0) { - return MAYBE; - } else { - free_cubelist(T); - *result = sccc(A); - ceil = sccc(B); - (void) set_and(*result, *result, ceil); - set_free(ceil); - return TRUE; - } - } - - /* Not much we can do about it */ - return MAYBE; -} diff --git a/src/misc/espresso/rows.c b/src/misc/espresso/rows.c deleted file mode 100644 index bf0c0baa..00000000 --- a/src/misc/espresso/rows.c +++ /dev/null @@ -1,314 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -//#include "port.h" -#include "sparse_int.h" - - -/* - * allocate a new row vector - */ -sm_row * -sm_row_alloc() -{ - register sm_row *prow; - -#ifdef FAST_AND_LOOSE - if (sm_row_freelist == NIL(sm_row)) { - prow = ALLOC(sm_row, 1); - } else { - prow = sm_row_freelist; - sm_row_freelist = prow->next_row; - } -#else - prow = ALLOC(sm_row, 1); -#endif - - prow->row_num = 0; - prow->length = 0; - prow->first_col = prow->last_col = NIL(sm_element); - prow->next_row = prow->prev_row = NIL(sm_row); - prow->flag = 0; - prow->user_word = NIL(char); /* for our user ... */ - return prow; -} - - -/* - * free a row vector -- for FAST_AND_LOOSE, this is real cheap for rows; - * however, freeing a column must still walk down the column discarding - * the elements one-by-one; that is the only use for the extra '-DCOLS' - * compile flag ... - */ -void -sm_row_free(prow) -register sm_row *prow; -{ -#if defined(FAST_AND_LOOSE) && ! defined(COLS) - if (prow->first_col != NIL(sm_element)) { - /* Add the linked list of row items to the free list */ - prow->last_col->next_col = sm_element_freelist; - sm_element_freelist = prow->first_col; - } - - /* Add the row to the free list of rows */ - prow->next_row = sm_row_freelist; - sm_row_freelist = prow; -#else - register sm_element *p, *pnext; - - for(p = prow->first_col; p != 0; p = pnext) { - pnext = p->next_col; - sm_element_free(p); - } - FREE(prow); -#endif -} - - -/* - * duplicate an existing row - */ -sm_row * -sm_row_dup(prow) -register sm_row *prow; -{ - register sm_row *pnew; - register sm_element *p; - - pnew = sm_row_alloc(); - for(p = prow->first_col; p != 0; p = p->next_col) { - (void) sm_row_insert(pnew, p->col_num); - } - return pnew; -} - - -/* - * insert an element into a row vector - */ -sm_element * -sm_row_insert(prow, col) -register sm_row *prow; -register int col; -{ - register sm_element *test, *element; - - /* get a new item, save its address */ - sm_element_alloc(element); - test = element; - sorted_insert(sm_element, prow->first_col, prow->last_col, prow->length, - next_col, prev_col, col_num, col, test); - - /* if item was not used, free it */ - if (element != test) { - sm_element_free(element); - } - - /* either way, return the current new value */ - return test; -} - - -/* - * remove an element from a row vector - */ -void -sm_row_remove(prow, col) -register sm_row *prow; -register int col; -{ - register sm_element *p; - - for(p = prow->first_col; p != 0 && p->col_num < col; p = p->next_col) - ; - if (p != 0 && p->col_num == col) { - dll_unlink(p, prow->first_col, prow->last_col, - next_col, prev_col, prow->length); - sm_element_free(p); - } -} - - -/* - * find an element (if it is in the row vector) - */ -sm_element * -sm_row_find(prow, col) -sm_row *prow; -int col; -{ - register sm_element *p; - - for(p = prow->first_col; p != 0 && p->col_num < col; p = p->next_col) - ; - if (p != 0 && p->col_num == col) { - return p; - } else { - return NIL(sm_element); - } -} - -/* - * return 1 if row p2 contains row p1; 0 otherwise - */ -int -sm_row_contains(p1, p2) -sm_row *p1, *p2; -{ - register sm_element *q1, *q2; - - q1 = p1->first_col; - q2 = p2->first_col; - while (q1 != 0) { - if (q2 == 0 || q1->col_num < q2->col_num) { - return 0; - } else if (q1->col_num == q2->col_num) { - q1 = q1->next_col; - q2 = q2->next_col; - } else { - q2 = q2->next_col; - } - } - return 1; -} - - -/* - * return 1 if row p1 and row p2 share an element in common - */ -int -sm_row_intersects(p1, p2) -sm_row *p1, *p2; -{ - register sm_element *q1, *q2; - - q1 = p1->first_col; - q2 = p2->first_col; - if (q1 == 0 || q2 == 0) return 0; - for(;;) { - if (q1->col_num < q2->col_num) { - if ((q1 = q1->next_col) == 0) { - return 0; - } - } else if (q1->col_num > q2->col_num) { - if ((q2 = q2->next_col) == 0) { - return 0; - } - } else { - return 1; - } - } -} - - -/* - * compare two rows, lexical ordering - */ -int -sm_row_compare(p1, p2) -sm_row *p1, *p2; -{ - register sm_element *q1, *q2; - - q1 = p1->first_col; - q2 = p2->first_col; - while(q1 != 0 && q2 != 0) { - if (q1->col_num != q2->col_num) { - return q1->col_num - q2->col_num; - } - q1 = q1->next_col; - q2 = q2->next_col; - } - - if (q1 != 0) { - return 1; - } else if (q2 != 0) { - return -1; - } else { - return 0; - } -} - - -/* - * return the intersection - */ -sm_row * -sm_row_and(p1, p2) -sm_row *p1, *p2; -{ - register sm_element *q1, *q2; - register sm_row *result; - - result = sm_row_alloc(); - q1 = p1->first_col; - q2 = p2->first_col; - if (q1 == 0 || q2 == 0) return result; - for(;;) { - if (q1->col_num < q2->col_num) { - if ((q1 = q1->next_col) == 0) { - return result; - } - } else if (q1->col_num > q2->col_num) { - if ((q2 = q2->next_col) == 0) { - return result; - } - } else { - (void) sm_row_insert(result, q1->col_num); - if ((q1 = q1->next_col) == 0) { - return result; - } - if ((q2 = q2->next_col) == 0) { - return result; - } - } - } -} - -int -sm_row_hash(prow, modulus) -sm_row *prow; -int modulus; -{ - register int sum; - register sm_element *p; - - sum = 0; - for(p = prow->first_col; p != 0; p = p->next_col) { - sum = (sum*17 + p->col_num) % modulus; - } - return sum; -} - -/* - * remove an element from a row vector (given a pointer to the element) - */ -void -sm_row_remove_element(prow, p) -register sm_row *prow; -register sm_element *p; -{ - dll_unlink(p, prow->first_col, prow->last_col, - next_col, prev_col, prow->length); - sm_element_free(p); -} - - -void -sm_row_print(fp, prow) -FILE *fp; -sm_row *prow; -{ - sm_element *p; - - for(p = prow->first_col; p != 0; p = p->next_col) { - (void) fprintf(fp, " %d", p->col_num); - } -} diff --git a/src/misc/espresso/set.c b/src/misc/espresso/set.c deleted file mode 100644 index fce88288..00000000 --- a/src/misc/espresso/set.c +++ /dev/null @@ -1,820 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - * set.c -- routines for maniuplating sets and set families - */ - -/* LINTLIBRARY */ - -#include "espresso.h" -static pset_family set_family_garbage = NULL; - -static int intcpy(d, s, n) -register unsigned int *d, *s; -register long n; -{ - register int i; - for(i = 0; i < n; i++) { - *d++ = *s++; - } -} - - -/* bit_index -- find first bit (from LSB) in a word (MSB=bit n, LSB=bit 0) */ -int bit_index(a) -register unsigned int a; -{ - register int i; - if (a == 0) - return -1; - for(i = 0; (a & 1) == 0; a >>= 1, i++) - ; - return i; -} - - -/* set_ord -- count number of elements in a set */ -int set_ord(a) -register pset a; -{ - register int i, sum = 0; - register unsigned int val; - for(i = LOOP(a); i > 0; i--) - if ((val = a[i]) != 0) - sum += count_ones(val); - return sum; -} - -/* set_dist -- distance between two sets (# elements in common) */ -int set_dist(a, b) -register pset a, b; -{ - register int i, sum = 0; - register unsigned int val; - for(i = LOOP(a); i > 0; i--) - if ((val = a[i] & b[i]) != 0) - sum += count_ones(val); - return sum; -} - -/* set_clear -- make "r" the empty set of "size" elements */ -pset set_clear(r, size) -register pset r; -int size; -{ - register int i = LOOPINIT(size); - *r = i; do r[i] = 0; while (--i > 0); - return r; -} - -/* set_fill -- make "r" the universal set of "size" elements */ -pset set_fill(r, size) -register pset r; -register int size; -{ - register int i = LOOPINIT(size); - *r = i; - r[i] = ~ (unsigned) 0; - r[i] >>= i * BPI - size; - while (--i > 0) - r[i] = ~ (unsigned) 0; - return r; -} - -/* set_copy -- copy set a into set r */ -pset set_copy(r, a) -register pset r, a; -{ - register int i = LOOPCOPY(a); - do r[i] = a[i]; while (--i >= 0); - return r; -} - -/* set_and -- compute intersection of sets "a" and "b" */ -pset set_and(r, a, b) -register pset r, a, b; -{ - register int i = LOOP(a); - PUTLOOP(r,i); do r[i] = a[i] & b[i]; while (--i > 0); - return r; -} - -/* set_or -- compute union of sets "a" and "b" */ -pset set_or(r, a, b) -register pset r, a, b; -{ - register int i = LOOP(a); - PUTLOOP(r,i); do r[i] = a[i] | b[i]; while (--i > 0); - return r; -} - -/* set_diff -- compute difference of sets "a" and "b" */ -pset set_diff(r, a, b) -register pset r, a, b; -{ - register int i = LOOP(a); - PUTLOOP(r,i); do r[i] = a[i] & ~b[i]; while (--i > 0); - return r; -} - -/* set_xor -- compute exclusive-or of sets "a" and "b" */ -pset set_xor(r, a, b) -register pset r, a, b; -{ - register int i = LOOP(a); -#ifdef IBM_WATC - PUTLOOP(r,i); do r[i] = (a[i]&~b[i]) | (~a[i]&b[i]); while (--i > 0); -#else - PUTLOOP(r,i); do r[i] = a[i] ^ b[i]; while (--i > 0); -#endif - return r; -} - -/* set_merge -- compute "a" & "mask" | "b" & ~ "mask" */ -pset set_merge(r, a, b, mask) -register pset r, a, b, mask; -{ - register int i = LOOP(a); - PUTLOOP(r,i); do r[i] = (a[i]&mask[i]) | (b[i]&~mask[i]); while (--i > 0); - return r; -} - -/* set_andp -- compute intersection of sets "a" and "b" , TRUE if nonempty */ -bool set_andp(r, a, b) -register pset r, a, b; -{ - register int i = LOOP(a); - register unsigned int x = 0; - PUTLOOP(r,i); do {r[i] = a[i] & b[i]; x |= r[i];} while (--i > 0); - return x != 0; -} - -/* set_orp -- compute union of sets "a" and "b" , TRUE if nonempty */ -bool set_orp(r, a, b) -register pset r, a, b; -{ - register int i = LOOP(a); - register unsigned int x = 0; - PUTLOOP(r,i); do {r[i] = a[i] | b[i]; x |= r[i];} while (--i > 0); - return x != 0; -} - -/* setp_empty -- check if the set "a" is empty */ -bool setp_empty(a) -register pset a; -{ - register int i = LOOP(a); - do if (a[i]) return FALSE; while (--i > 0); - return TRUE; -} - -/* setp_full -- check if the set "a" is the full set of "size" elements */ -bool setp_full(a, size) -register pset a; -register int size; -{ - register int i = LOOP(a); - register unsigned int test; - test = ~ (unsigned) 0; - test >>= i * BPI - size; - if (a[i] != test) - return FALSE; - while (--i > 0) - if (a[i] != (~(unsigned) 0)) - return FALSE; - return TRUE; -} - -/* setp_equal -- check if the set "a" equals set "b" */ -bool setp_equal(a, b) -register pset a, b; -{ - register int i = LOOP(a); - do if (a[i] != b[i]) return FALSE; while (--i > 0); - return TRUE; -} - -/* setp_disjoint -- check if intersection of "a" and "b" is empty */ -bool setp_disjoint(a, b) -register pset a, b; -{ - register int i = LOOP(a); - do if (a[i] & b[i]) return FALSE; while (--i > 0); - return TRUE; -} - -/* setp_implies -- check if "a" implies "b" ("b" contains "a") */ -bool setp_implies(a, b) -register pset a, b; -{ - register int i = LOOP(a); - do if (a[i] & ~b[i]) return FALSE; while (--i > 0); - return TRUE; -} - -/* sf_or -- form the "or" of all sets in a set family */ -pset sf_or(A) -pset_family A; -{ - register pset or, last, p; - - or = set_new(A->sf_size); - foreach_set(A, last, p) - INLINEset_or(or, or, p); - return or; -} - -/* sf_and -- form the "and" of all sets in a set family */ -pset sf_and(A) -pset_family A; -{ - register pset and, last, p; - - and = set_fill(set_new(A->sf_size), A->sf_size); - foreach_set(A, last, p) - INLINEset_and(and, and, p); - return and; -} - -/* sf_active -- make all members of the set family active */ -pset_family sf_active(A) -pset_family A; -{ - register pset p, last; - foreach_set(A, last, p) { - SET(p, ACTIVE); - } - A->active_count = A->count; - return A; -} - - -/* sf_inactive -- remove all inactive cubes in a set family */ -pset_family sf_inactive(A) -pset_family A; -{ - register pset p, last, pdest; - - pdest = A->data; - foreach_set(A, last, p) { - if (TESTP(p, ACTIVE)) { - if (pdest != p) { - INLINEset_copy(pdest, p); - } - pdest += A->wsize; - } else { - A->count--; - } - } - return A; -} - - -/* sf_copy -- copy a set family */ -pset_family sf_copy(R, A) -pset_family R, A; -{ - R->sf_size = A->sf_size; - R->wsize = A->wsize; -/*R->capacity = A->count;*/ -/*R->data = REALLOC(unsigned int, R->data, (long) R->capacity * R->wsize);*/ - R->count = A->count; - R->active_count = A->active_count; - intcpy(R->data, A->data, (long) A->wsize * A->count); - return R; -} - - -/* sf_join -- join A and B into a single set_family */ -pset_family sf_join(A, B) -pset_family A, B; -{ - pset_family R; - long asize = A->count * A->wsize; - long bsize = B->count * B->wsize; - - if (A->sf_size != B->sf_size) fatal("sf_join: sf_size mismatch"); - R = sf_new(A->count + B->count, A->sf_size); - R->count = A->count + B->count; - R->active_count = A->active_count + B->active_count; - intcpy(R->data, A->data, asize); - intcpy(R->data + asize, B->data, bsize); - return R; -} - - -/* sf_append -- append the sets of B to the end of A, and dispose of B */ -pset_family sf_append(A, B) -pset_family A, B; -{ - long asize = A->count * A->wsize; - long bsize = B->count * B->wsize; - - if (A->sf_size != B->sf_size) fatal("sf_append: sf_size mismatch"); - A->capacity = A->count + B->count; - A->data = REALLOC(unsigned int, A->data, (long) A->capacity * A->wsize); - intcpy(A->data + asize, B->data, bsize); - A->count += B->count; - A->active_count += B->active_count; - sf_free(B); - return A; -} - - -/* sf_new -- allocate "num" sets of "size" elements each */ -pset_family sf_new(num, size) -int num, size; -{ - pset_family A; - if (set_family_garbage == NULL) { - A = ALLOC(set_family_t, 1); - } else { - A = set_family_garbage; - set_family_garbage = A->next; - } - A->sf_size = size; - A->wsize = SET_SIZE(size); - A->capacity = num; - A->data = ALLOC(unsigned int, (long) A->capacity * A->wsize); - A->count = 0; - A->active_count = 0; - return A; -} - - -/* sf_save -- create a duplicate copy of a set family */ -pset_family sf_save(A) -register pset_family A; -{ - return sf_copy(sf_new(A->count, A->sf_size), A); -} - - -/* sf_free -- free the storage allocated for a set family */ -void sf_free(A) -pset_family A; -{ - FREE(A->data); - A->next = set_family_garbage; - set_family_garbage = A; -} - - -/* sf_cleanup -- free all of the set families from the garbage list */ -void sf_cleanup() -{ - register pset_family p, pnext; - for(p = set_family_garbage; p != (pset_family) NULL; p = pnext) { - pnext = p->next; - FREE(p); - } - set_family_garbage = (pset_family) NULL; -} - - -/* sf_addset -- add a set to the end of a set family */ -pset_family sf_addset(A, s) -pset_family A; -pset s; -{ - register pset p; - - if (A->count >= A->capacity) { - A->capacity = A->capacity + A->capacity/2 + 1; - A->data = REALLOC(unsigned int, A->data, (long) A->capacity * A->wsize); - } - p = GETSET(A, A->count++); - INLINEset_copy(p, s); - return A; -} - -/* sf_delset -- delete a set from a set family */ -void sf_delset(A, i) -pset_family A; -int i; -{ (void) set_copy(GETSET(A,i), GETSET(A, --A->count));} - -/* sf_print -- print a set_family as a set (list the element numbers) */ -void sf_print(A) -pset_family A; -{ - char *ps1(); - register pset p; - register int i; - foreachi_set(A, i, p) - printf("A[%d] = %s\n", i, ps1(p)); -} - -/* sf_bm_print -- print a set_family as a bit-matrix */ -void sf_bm_print(A) -pset_family A; -{ - char *pbv1(); - register pset p; - register int i; - foreachi_set(A, i, p) - printf("[%4d] %s\n", i, pbv1(p, A->sf_size)); -} - - -/* sf_write -- output a set family in an unintelligable manner */ -void sf_write(fp, A) -FILE *fp; -pset_family A; -{ - register pset p, last; - (void) fprintf(fp, "%d %d\n", A->count, A->sf_size); - foreach_set(A, last, p) - set_write(fp, p); - (void) fflush(fp); -} - - -/* sf_read -- read a set family written by sf_write */ -pset_family sf_read(fp) -FILE *fp; -{ - int i, j; - register pset p, last; - pset_family A; - - (void) fscanf(fp, "%d %d\n", &i, &j); - A = sf_new(i, j); - A->count = i; - foreach_set(A, last, p) { - (void) fscanf(fp, "%x", p); - for(j = 1; j <= LOOP(p); j++) - (void) fscanf(fp, "%x", p+j); - } - return A; -} - - -/* set_write -- output a set in an unintelligable manner */ -void set_write(fp, a) -register FILE *fp; -register pset a; -{ - register int n = LOOP(a), j; - - for(j = 0; j <= n; j++) { - (void) fprintf(fp, "%x ", a[j]); - if ((j+1) % 8 == 0 && j != n) - (void) fprintf(fp, "\n\t"); - } - (void) fprintf(fp, "\n"); -} - - -/* sf_bm_read -- read a set family written by sf_bm_print (almost) */ -pset_family sf_bm_read(fp) -FILE *fp; -{ - int i, j, rows, cols; - register pset pdest; - pset_family A; - - (void) fscanf(fp, "%d %d\n", &rows, &cols); - A = sf_new(rows, cols); - for(i = 0; i < rows; i++) { - pdest = GETSET(A, A->count++); - (void) set_clear(pdest, A->sf_size); - for(j = 0; j < cols; j++) { - switch(getc(fp)) { - case '0': - break; - case '1': - set_insert(pdest, j); - break; - default: - fatal("Error reading set family"); - } - } - if (getc(fp) != '\n') { - fatal("Error reading set family (at end of line)"); - } - } - return A; -} - - - -/* ps1 -- convert a set into a printable string */ -#define largest_string 120 -static char s1[largest_string]; -char *ps1(a) -register pset a; -{ - register int i, num, l, len = 0, n = NELEM(a); - char temp[20]; - bool first = TRUE; - - s1[len++] = '['; - for(i = 0; i < n; i++) - if (is_in_set(a,i)) { - if (! first) - s1[len++] = ','; - first = FALSE; num = i; - /* Generate digits (reverse order) */ - l = 0; do temp[l++] = num % 10 + '0'; while ((num /= 10) > 0); - /* Copy them back in correct order */ - do s1[len++] = temp[--l]; while (l > 0); - if (len > largest_string-15) { - s1[len++] = '.'; s1[len++] = '.'; s1[len++] = '.'; - break; - } - } - - s1[len++] = ']'; - s1[len++] = '\0'; - return s1; -} - -/* pbv1 -- print bit-vector */ -char *pbv1(s, n) -pset s; -int n; -{ - register int i; - for(i = 0; i < n; i++) - s1[i] = is_in_set(s,i) ? '1' : '0'; - s1[n] = '\0'; - return s1; -} - - -/* set_adjcnt -- adjust the counts for a set by "weight" */ -void -set_adjcnt(a, count, weight) -register pset a; -register int *count, weight; -{ - register int i, base; - register unsigned int val; - - for(i = LOOP(a); i > 0; ) { - for(val = a[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) { - if (val & 1) { - count[base] += weight; - } - } - } -} - - - -/* sf_count -- perform a column sum over a set family */ -int *sf_count(A) -pset_family A; -{ - register pset p, last; - register int i, base, *count; - register unsigned int val; - - count = ALLOC(int, A->sf_size); - for(i = A->sf_size - 1; i >= 0; i--) { - count[i] = 0; - } - - foreach_set(A, last, p) { - for(i = LOOP(p); i > 0; ) { - for(val = p[i], base = --i << LOGBPI; val != 0; base++, val >>= 1) { - if (val & 1) { - count[base]++; - } - } - } - } - return count; -} - - -/* sf_count_restricted -- perform a column sum over a set family, restricting - * to only the columns which are in r; also, the columns are weighted by the - * number of elements which are in each row - */ -int *sf_count_restricted(A, r) -pset_family A; -register pset r; -{ - register pset p; - register int i, base, *count; - register unsigned int val; - int weight; - pset last; - - count = ALLOC(int, A->sf_size); - for(i = A->sf_size - 1; i >= 0; i--) { - count[i] = 0; - } - - /* Loop for each set */ - foreach_set(A, last, p) { - weight = 1024 / (set_ord(p) - 1); - for(i = LOOP(p); i > 0; ) { - for(val=p[i]&r[i], base= --i<<LOGBPI; val!=0; base++, val >>= 1) { - if (val & 1) { - count[base] += weight; - } - } - } - } - return count; -} - - -/* - * sf_delc -- delete columns first ... last of A - */ -pset_family sf_delc(A, first, last) -pset_family A; -int first, last; -{ - return sf_delcol(A, first, last-first + 1); -} - - -/* - * sf_addcol -- add columns to a set family; includes a quick check to see - * if there is already enough room (and hence, can avoid copying) - */ -pset_family sf_addcol(A, firstcol, n) -pset_family A; -int firstcol, n; -{ - int maxsize; - - /* Check if adding columns at the end ... */ - if (firstcol == A->sf_size) { - /* If so, check if there is already enough room */ - maxsize = BPI * LOOPINIT(A->sf_size); - if ((A->sf_size + n) <= maxsize) { - A->sf_size += n; - return A; - } - } - return sf_delcol(A, firstcol, -n); -} - -/* - * sf_delcol -- add/delete columns to/from a set family - * - * if n > 0 then n columns starting from firstcol are deleted if n < 0 - * then n blank columns are inserted starting at firstcol - * (i.e., the first new column number is firstcol) - * - * This is done by copying columns in the array which is a relatively - * slow operation. - */ -pset_family sf_delcol(A, firstcol, n) -pset_family A; -register int firstcol, n; -{ - register pset p, last, pdest; - register int i; - pset_family B; - - B = sf_new(A->count, A->sf_size - n); - foreach_set(A, last, p) { - pdest = GETSET(B, B->count++); - INLINEset_clear(pdest, B->sf_size); - for(i = 0; i < firstcol; i++) - if (is_in_set(p, i)) - set_insert(pdest, i); - for(i = n > 0 ? firstcol + n : firstcol; i < A->sf_size; i++) - if (is_in_set(p, i)) - set_insert(pdest, i - n); - } - sf_free(A); - return B; -} - - -/* - * sf_copy_col -- copy column "srccol" from "src" to column "dstcol" of "dst" - */ -pset_family sf_copy_col(dst, dstcol, src, srccol) -pset_family dst, src; -int dstcol, srccol; -{ - register pset last, p, pdest; - register int word_test, word_set; - unsigned int bit_set, bit_test; - - /* CHEAT! form these constants outside the loop */ - word_test = WHICH_WORD(srccol); - bit_test = 1 << WHICH_BIT(srccol); - word_set = WHICH_WORD(dstcol); - bit_set = 1 << WHICH_BIT(dstcol); - - pdest = dst->data; - foreach_set(src, last, p) { - if ((p[word_test] & bit_test) != 0) - pdest[word_set] |= bit_set; -/* - * equivalent code for this is ... - * if (is_in_set(p, srccol)) set_insert(pdest, destcol); - */ - pdest += dst->wsize; - } - return dst; -} - - - -/* - * sf_compress -- delete columns from a matrix - */ -pset_family sf_compress(A, c) -pset_family A; /* will be freed */ -register pset c; -{ - register pset p; - register int i, bcol; - pset_family B; - - /* create a clean set family for the result */ - B = sf_new(A->count, set_ord(c)); - for(i = 0; i < A->count; i++) { - p = GETSET(B, B->count++); - INLINEset_clear(p, B->sf_size); - } - - /* copy each column of A which has a 1 in c */ - bcol = 0; - for(i = 0; i < A->sf_size; i++) { - if (is_in_set(c, i)) { - (void) sf_copy_col(B, bcol++, A, i); - } - } - sf_free(A); - return B; -} - - - -/* - * sf_transpose -- transpose a bit matrix - * - * There are trickier ways of doing this, but this works. - */ -pset_family sf_transpose(A) -pset_family A; -{ - pset_family B; - register pset p; - register int i, j; - - B = sf_new(A->sf_size, A->count); - B->count = A->sf_size; - foreachi_set(B, i, p) { - INLINEset_clear(p, B->sf_size); - } - foreachi_set(A, i, p) { - for(j = 0; j < A->sf_size; j++) { - if (is_in_set(p, j)) { - set_insert(GETSET(B, j), i); - } - } - } - sf_free(A); - return B; -} - - -/* - * sf_permute -- permute the columns of a set_family - * - * permute is an array of integers containing column numbers of A which - * are to be retained. - */ -pset_family sf_permute(A, permute, npermute) -pset_family A; -register int *permute, npermute; -{ - pset_family B; - register pset p, last, pdest; - register int j; - - B = sf_new(A->count, npermute); - B->count = A->count; - foreach_set(B, last, p) - INLINEset_clear(p, npermute); - - pdest = B->data; - foreach_set(A, last, p) { - for(j = 0; j < npermute; j++) - if (is_in_set(p, permute[j])) - set_insert(pdest, j); - pdest += B->wsize; - } - sf_free(A); - return B; -} diff --git a/src/misc/espresso/setc.c b/src/misc/espresso/setc.c deleted file mode 100644 index a6112ebc..00000000 --- a/src/misc/espresso/setc.c +++ /dev/null @@ -1,483 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - setc.c -- massive bit-hacking for performing special "cube"-type - operations on a set - - The basic trick used for binary valued variables is the following: - - If a[w] and b[w] contain a full word of binary variables, then: - - 1) to get the full word of their intersection, we use - - x = a[w] & b[w]; - - - 2) to see if the intersection is null in any variables, we examine - - x = ~(x | x >> 1) & DISJOINT; - - this will have a single 1 in each binary variable for which - the intersection is null. In particular, if this is zero, - then there are no disjoint variables; or, if this is nonzero, - then there is at least one disjoint variable. A "count_ones" - over x will tell in how many variables they have an null - intersection. - - - 3) to get a mask which selects the disjoint variables, we use - - (x | x << 1) - - this provides a selector which can be used to see where - they have an null intersection - - - cdist return distance between two cubes - cdist0 return true if two cubes are distance 0 apart - cdist01 return distance, or 2 if distance exceeds 1 - consensus compute consensus of two cubes distance 1 apart - force_lower expand hack (for now), related to consensus -*/ - -#include "espresso.h" - -/* see if the cube has a full row of 1's (with respect to cof) */ -bool full_row(p, cof) -IN register pcube p, cof; -{ - register int i = LOOP(p); - do if ((p[i] | cof[i]) != cube.fullset[i]) return FALSE; while (--i > 0); - return TRUE; -} - -/* - cdist0 -- return TRUE if a and b are distance 0 apart -*/ - -bool cdist0(a, b) -register pcube a, b; -{ - { /* Check binary variables */ - register int w, last; register unsigned int x; - if ((last = cube.inword) != -1) { - - /* Check the partial word of binary variables */ - x = a[last] & b[last]; - if (~(x | x >> 1) & cube.inmask) - return FALSE; /* disjoint in some variable */ - - /* Check the full words of binary variables */ - for(w = 1; w < last; w++) { - x = a[w] & b[w]; - if (~(x | x >> 1) & DISJOINT) - return FALSE; /* disjoint in some variable */ - } - } - } - - { /* Check the multiple-valued variables */ - register int w, var, last; register pcube mask; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; last = cube.last_word[var]; - for(w = cube.first_word[var]; w <= last; w++) - if (a[w] & b[w] & mask[w]) - goto nextvar; - return FALSE; /* disjoint in this variable */ - nextvar: ; - } - } - return TRUE; -} - -/* - cdist01 -- return the "distance" between two cubes (defined as the - number of null variables in their intersection). If the distance - exceeds 1, the value 2 is returned. -*/ - -int cdist01(a, b) -register pset a, b; -{ - int dist = 0; - - { /* Check binary variables */ - register int w, last; register unsigned int x; - if ((last = cube.inword) != -1) { - - /* Check the partial word of binary variables */ - x = a[last] & b[last]; - if (x = ~ (x | x >> 1) & cube.inmask) - if ((dist = count_ones(x)) > 1) - return 2; - - /* Check the full words of binary variables */ - for(w = 1; w < last; w++) { - x = a[w] & b[w]; - if (x = ~ (x | x >> 1) & DISJOINT) - if (dist == 1 || (dist += count_ones(x)) > 1) - return 2; - } - } - } - - { /* Check the multiple-valued variables */ - register int w, var, last; register pcube mask; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; last = cube.last_word[var]; - for(w = cube.first_word[var]; w <= last; w++) - if (a[w] & b[w] & mask[w]) - goto nextvar; - if (++dist > 1) - return 2; - nextvar: ; - } - } - return dist; -} - -/* - cdist -- return the "distance" between two cubes (defined as the - number of null variables in their intersection). -*/ - -int cdist(a, b) -register pset a, b; -{ - int dist = 0; - - { /* Check binary variables */ - register int w, last; register unsigned int x; - if ((last = cube.inword) != -1) { - - /* Check the partial word of binary variables */ - x = a[last] & b[last]; - if (x = ~ (x | x >> 1) & cube.inmask) - dist = count_ones(x); - - /* Check the full words of binary variables */ - for(w = 1; w < last; w++) { - x = a[w] & b[w]; - if (x = ~ (x | x >> 1) & DISJOINT) - dist += count_ones(x); - } - } - } - - { /* Check the multiple-valued variables */ - register int w, var, last; register pcube mask; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; last = cube.last_word[var]; - for(w = cube.first_word[var]; w <= last; w++) - if (a[w] & b[w] & mask[w]) - goto nextvar; - dist++; - nextvar: ; - } - } - return dist; -} - -/* - force_lower -- Determine which variables of a do not intersect b. -*/ - -pset force_lower(xlower, a, b) -INOUT pset xlower; -IN register pset a, b; -{ - - { /* Check binary variables (if any) */ - register int w, last; register unsigned int x; - if ((last = cube.inword) != -1) { - - /* Check the partial word of binary variables */ - x = a[last] & b[last]; - if (x = ~(x | x >> 1) & cube.inmask) - xlower[last] |= (x | (x << 1)) & a[last]; - - /* Check the full words of binary variables */ - for(w = 1; w < last; w++) { - x = a[w] & b[w]; - if (x = ~(x | x >> 1) & DISJOINT) - xlower[w] |= (x | (x << 1)) & a[w]; - } - } - } - - { /* Check the multiple-valued variables */ - register int w, var, last; register pcube mask; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; last = cube.last_word[var]; - for(w = cube.first_word[var]; w <= last; w++) - if (a[w] & b[w] & mask[w]) - goto nextvar; - for(w = cube.first_word[var]; w <= last; w++) - xlower[w] |= a[w] & mask[w]; - nextvar: ; - } - } - return xlower; -} - -/* - consensus -- multiple-valued consensus - - Although this looks very messy, the idea is to compute for r the - "and" of the cubes a and b for each variable, unless the "and" is - null in a variable, in which case the "or" of a and b is computed - for this variable. - - Because we don't check how many variables are null in the - intersection of a and b, the returned value for r really only - represents the consensus when a and b are distance 1 apart. -*/ - -void consensus(r, a, b) -INOUT pcube r; -IN register pcube a, b; -{ - INLINEset_clear(r, cube.size); - - { /* Check binary variables (if any) */ - register int w, last; register unsigned int x; - if ((last = cube.inword) != -1) { - - /* Check the partial word of binary variables */ - r[last] = x = a[last] & b[last]; - if (x = ~(x | x >> 1) & cube.inmask) - r[last] |= (x | (x << 1)) & (a[last] | b[last]); - - /* Check the full words of binary variables */ - for(w = 1; w < last; w++) { - r[w] = x = a[w] & b[w]; - if (x = ~(x | x >> 1) & DISJOINT) - r[w] |= (x | (x << 1)) & (a[w] | b[w]); - } - } - } - - - { /* Check the multiple-valued variables */ - bool empty; int var; unsigned int x; - register int w, last; register pcube mask; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; - last = cube.last_word[var]; - empty = TRUE; - for(w = cube.first_word[var]; w <= last; w++) - if (x = a[w] & b[w] & mask[w]) - empty = FALSE, r[w] |= x; - if (empty) - for(w = cube.first_word[var]; w <= last; w++) - r[w] |= mask[w] & (a[w] | b[w]); - } - } -} - -/* - cactive -- return the index of the single active variable in - the cube, or return -1 if there are none or more than 2. -*/ - -int cactive(a) -register pcube a; -{ - int active = -1, dist = 0, bit_index(); - - { /* Check binary variables */ - register int w, last; - register unsigned int x; - if ((last = cube.inword) != -1) { - - /* Check the partial word of binary variables */ - x = a[last]; - if (x = ~ (x & x >> 1) & cube.inmask) { - if ((dist = count_ones(x)) > 1) - return -1; /* more than 2 active variables */ - active = (last-1)*(BPI/2) + bit_index(x) / 2; - } - - /* Check the full words of binary variables */ - for(w = 1; w < last; w++) { - x = a[w]; - if (x = ~ (x & x >> 1) & DISJOINT) { - if ((dist += count_ones(x)) > 1) - return -1; /* more than 2 active variables */ - active = (w-1)*(BPI/2) + bit_index(x) / 2; - } - } - } - } - - { /* Check the multiple-valued variables */ - register int w, var, last; - register pcube mask; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; - last = cube.last_word[var]; - for(w = cube.first_word[var]; w <= last; w++) - if (mask[w] & ~ a[w]) { - if (++dist > 1) - return -1; - active = var; - break; - } - } - } - return active; -} - -/* - ccommon -- return TRUE if a and b are share "active" variables - active variables include variables that are empty; -*/ - -bool ccommon(a, b, cof) -register pcube a, b, cof; -{ - { /* Check binary variables */ - int last; - register int w; - register unsigned int x, y; - if ((last = cube.inword) != -1) { - - /* Check the partial word of binary variables */ - x = a[last] | cof[last]; - y = b[last] | cof[last]; - if (~(x & x>>1) & ~(y & y>>1) & cube.inmask) - return TRUE; - - /* Check the full words of binary variables */ - for(w = 1; w < last; w++) { - x = a[w] | cof[w]; - y = b[w] | cof[w]; - if (~(x & x>>1) & ~(y & y>>1) & DISJOINT) - return TRUE; - } - } - } - - { /* Check the multiple-valued variables */ - int var; - register int w, last; - register pcube mask; - for(var = cube.num_binary_vars; var < cube.num_vars; var++) { - mask = cube.var_mask[var]; last = cube.last_word[var]; - /* Check for some part missing from a */ - for(w = cube.first_word[var]; w <= last; w++) - if (mask[w] & ~a[w] & ~cof[w]) { - - /* If so, check for some part missing from b */ - for(w = cube.first_word[var]; w <= last; w++) - if (mask[w] & ~b[w] & ~cof[w]) - return TRUE; /* both active */ - break; - } - } - } - return FALSE; -} - -/* - These routines compare two sets (cubes) for the qsort() routine and - return: - - -1 if set a is to precede set b - 0 if set a and set b are equal - 1 if set a is to follow set b - - Usually the SIZE field of the set is assumed to contain the size - of the set (which will save recomputing the set size during the - sort). For distance-1 merging, the global variable cube.temp[0] is - a mask which mask's-out the merging variable. -*/ - -/* descend -- comparison for descending sort on set size */ -int descend(a, b) -pset *a, *b; -{ - register pset a1 = *a, b1 = *b; - if (SIZE(a1) > SIZE(b1)) return -1; - else if (SIZE(a1) < SIZE(b1)) return 1; - else { - register int i = LOOP(a1); - do - if (a1[i] > b1[i]) return -1; else if (a1[i] < b1[i]) return 1; - while (--i > 0); - } - return 0; -} - -/* ascend -- comparison for ascending sort on set size */ -int ascend(a, b) -pset *a, *b; -{ - register pset a1 = *a, b1 = *b; - if (SIZE(a1) > SIZE(b1)) return 1; - else if (SIZE(a1) < SIZE(b1)) return -1; - else { - register int i = LOOP(a1); - do - if (a1[i] > b1[i]) return 1; else if (a1[i] < b1[i]) return -1; - while (--i > 0); - } - return 0; -} - - -/* lex_order -- comparison for "lexical" ordering of cubes */ -int lex_order(a, b) -pset *a, *b; -{ - register pset a1 = *a, b1 = *b; - register int i = LOOP(a1); - do - if (a1[i] > b1[i]) return -1; else if (a1[i] < b1[i]) return 1; - while (--i > 0); - return 0; -} - - -/* d1_order -- comparison for distance-1 merge routine */ -int d1_order(a, b) -pset *a, *b; -{ - register pset a1 = *a, b1 = *b, c1 = cube.temp[0]; - register int i = LOOP(a1); - register unsigned int x1, x2; - do - if ((x1 = a1[i] | c1[i]) > (x2 = b1[i] | c1[i])) return -1; - else if (x1 < x2) return 1; - while (--i > 0); - return 0; -} - - -/* desc1 -- comparison (without indirection) for descending sort */ -/* also has effect of handling NULL pointers,and a NULL pointer has smallest -order */ -int desc1(a, b) -register pset a, b; -{ - if (a == (pset) NULL) - return (b == (pset) NULL) ? 0 : 1; - else if (b == (pset) NULL) - return -1; - if (SIZE(a) > SIZE(b)) return -1; - else if (SIZE(a) < SIZE(b)) return 1; - else { - register int i = LOOP(a); - do - if (a[i] > b[i]) return -1; else if (a[i] < b[i]) return 1; - while (--i > 0); - } - return 0; -} diff --git a/src/misc/espresso/sharp.c b/src/misc/espresso/sharp.c deleted file mode 100644 index 53435078..00000000 --- a/src/misc/espresso/sharp.c +++ /dev/null @@ -1,247 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - sharp.c -- perform sharp, disjoint sharp, and intersection -*/ - -#include "espresso.h" - -long start_time; - - -/* cv_sharp -- form the sharp product between two covers */ -pcover cv_sharp(A, B) -pcover A, B; -{ - pcube last, p; - pcover T; - - T = new_cover(0); - foreach_set(A, last, p) - T = sf_union(T, cb_sharp(p, B)); - return T; -} - - -/* cb_sharp -- form the sharp product between a cube and a cover */ -pcover cb_sharp(c, T) -pcube c; -pcover T; -{ - if (T->count == 0) { - T = sf_addset(new_cover(1), c); - } else { - start_time = ptime(); - T = cb_recur_sharp(c, T, 0, T->count-1, 0); - } - return T; -} - - -/* recursive formulation to provide balanced merging */ -pcover cb_recur_sharp(c, T, first, last, level) -pcube c; -pcover T; -int first, last, level; -{ - pcover temp, left, right; - int middle; - - if (first == last) { - temp = sharp(c, GETSET(T, first)); - } else { - middle = (first + last) / 2; - left = cb_recur_sharp(c, T, first, middle, level+1); - right = cb_recur_sharp(c, T, middle+1, last, level+1); - temp = cv_intersect(left, right); - if ((debug & SHARP) && level < 4) { - printf("# SHARP[%d]: %4d = %4d x %4d, time = %s\n", - level, temp->count, left->count, right->count, - print_time(ptime() - start_time)); - (void) fflush(stdout); - } - free_cover(left); - free_cover(right); - } - return temp; -} - - -/* sharp -- form the sharp product between two cubes */ -pcover sharp(a, b) -pcube a, b; -{ - register int var; - register pcube d=cube.temp[0], temp=cube.temp[1], temp1=cube.temp[2]; - pcover r = new_cover(cube.num_vars); - - if (cdist0(a, b)) { - set_diff(d, a, b); - for(var = 0; var < cube.num_vars; var++) { - if (! setp_empty(set_and(temp, d, cube.var_mask[var]))) { - set_diff(temp1, a, cube.var_mask[var]); - set_or(GETSET(r, r->count++), temp, temp1); - } - } - } else { - r = sf_addset(r, a); - } - return r; -} - -pcover make_disjoint(A) -pcover A; -{ - pcover R, new; - register pset last, p; - - R = new_cover(0); - foreach_set(A, last, p) { - new = cb_dsharp(p, R); - R = sf_append(R, new); - } - return R; -} - - -/* cv_dsharp -- disjoint-sharp product between two covers */ -pcover cv_dsharp(A, B) -pcover A, B; -{ - register pcube last, p; - pcover T; - - T = new_cover(0); - foreach_set(A, last, p) { - T = sf_union(T, cb_dsharp(p, B)); - } - return T; -} - - -/* cb1_dsharp -- disjoint-sharp product between a cover and a cube */ -pcover cb1_dsharp(T, c) -pcover T; -pcube c; -{ - pcube last, p; - pcover R; - - R = new_cover(T->count); - foreach_set(T, last, p) { - R = sf_union(R, dsharp(p, c)); - } - return R; -} - - -/* cb_dsharp -- disjoint-sharp product between a cube and a cover */ -pcover cb_dsharp(c, T) -pcube c; -pcover T; -{ - pcube last, p; - pcover Y, Y1; - - if (T->count == 0) { - Y = sf_addset(new_cover(1), c); - } else { - Y = new_cover(T->count); - set_copy(GETSET(Y,Y->count++), c); - foreach_set(T, last, p) { - Y1 = cb1_dsharp(Y, p); - free_cover(Y); - Y = Y1; - } - } - return Y; -} - - -/* dsharp -- form the disjoint-sharp product between two cubes */ -pcover dsharp(a, b) -pcube a, b; -{ - register pcube mask, diff, and, temp, temp1 = cube.temp[0]; - int var; - pcover r; - - r = new_cover(cube.num_vars); - - if (cdist0(a, b)) { - diff = set_diff(new_cube(), a, b); - and = set_and(new_cube(), a, b); - mask = new_cube(); - for(var = 0; var < cube.num_vars; var++) { - /* check if position var of "a and not b" is not empty */ - if (! setp_disjoint(diff, cube.var_mask[var])) { - - /* coordinate var equals the difference between a and b */ - temp = GETSET(r, r->count++); - (void) set_and(temp, diff, cube.var_mask[var]); - - /* coordinates 0 ... var-1 equal the intersection */ - INLINEset_and(temp1, and, mask); - INLINEset_or(temp, temp, temp1); - - /* coordinates var+1 .. cube.num_vars equal a */ - set_or(mask, mask, cube.var_mask[var]); - INLINEset_diff(temp1, a, mask); - INLINEset_or(temp, temp, temp1); - } - } - free_cube(diff); - free_cube(and); - free_cube(mask); - } else { - r = sf_addset(r, a); - } - return r; -} - -/* cv_intersect -- form the intersection of two covers */ - -#define MAGIC 500 /* save 500 cubes before containment */ - -pcover cv_intersect(A, B) -pcover A, B; -{ - register pcube pi, pj, lasti, lastj, pt; - pcover T, Tsave = NULL; - - /* How large should each temporary result cover be ? */ - T = new_cover(MAGIC); - pt = T->data; - - /* Form pairwise intersection of each cube of A with each cube of B */ - foreach_set(A, lasti, pi) { - foreach_set(B, lastj, pj) { - if (cdist0(pi, pj)) { - (void) set_and(pt, pi, pj); - if (++T->count >= T->capacity) { - if (Tsave == NULL) - Tsave = sf_contain(T); - else - Tsave = sf_union(Tsave, sf_contain(T)); - T = new_cover(MAGIC); - pt = T->data; - } else - pt += T->wsize; - } - } - } - - - if (Tsave == NULL) - Tsave = sf_contain(T); - else - Tsave = sf_union(Tsave, sf_contain(T)); - return Tsave; -} diff --git a/src/misc/espresso/sminterf.c b/src/misc/espresso/sminterf.c deleted file mode 100644 index 50a6db4e..00000000 --- a/src/misc/espresso/sminterf.c +++ /dev/null @@ -1,44 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "espresso.h" - - -pset -do_sm_minimum_cover(A) -pset_family A; -{ - sm_matrix *M; - sm_row *sparse_cover; - sm_element *pe; - pset cover; - register int i, base, rownum; - register unsigned val; - register pset last, p; - - M = sm_alloc(); - rownum = 0; - foreach_set(A, last, p) { - foreach_set_element(p, i, val, base) { - (void) sm_insert(M, rownum, base); - } - rownum++; - } - - sparse_cover = sm_minimum_cover(M, NIL(int), 1, 0); - sm_free(M); - - cover = set_new(A->sf_size); - sm_foreach_row_element(sparse_cover, pe) { - set_insert(cover, pe->col_num); - } - sm_row_free(sparse_cover); - - return cover; -} diff --git a/src/misc/espresso/solution.c b/src/misc/espresso/solution.c deleted file mode 100644 index 26119185..00000000 --- a/src/misc/espresso/solution.c +++ /dev/null @@ -1,114 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#include "mincov_int.h" - - -solution_t * -solution_alloc() -{ - solution_t *sol; - - sol = ALLOC(solution_t, 1); - sol->cost = 0; - sol->row = sm_row_alloc(); - return sol; -} - - -void -solution_free(sol) -solution_t *sol; -{ - sm_row_free(sol->row); - FREE(sol); -} - - -solution_t * -solution_dup(sol) -solution_t *sol; -{ - solution_t *new_sol; - - new_sol = ALLOC(solution_t, 1); - new_sol->cost = sol->cost; - new_sol->row = sm_row_dup(sol->row); - return new_sol; -} - - -void -solution_add(sol, weight, col) -solution_t *sol; -int *weight; -int col; -{ - (void) sm_row_insert(sol->row, col); - sol->cost += WEIGHT(weight, col); -} - - -void -solution_accept(sol, A, weight, col) -solution_t *sol; -sm_matrix *A; -int *weight; -int col; -{ - register sm_element *p, *pnext; - sm_col *pcol; - - solution_add(sol, weight, col); - - /* delete rows covered by this column */ - pcol = sm_get_col(A, col); - for(p = pcol->first_row; p != 0; p = pnext) { - pnext = p->next_row; /* grab it before it disappears */ - sm_delrow(A, p->row_num); - } -} - - -/* ARGSUSED */ -void -solution_reject(sol, A, weight, col) -solution_t *sol; -sm_matrix *A; -int *weight; -int col; -{ - sm_delcol(A, col); -} - - -solution_t * -solution_choose_best(best1, best2) -solution_t *best1, *best2; -{ - if (best1 != NIL(solution_t)) { - if (best2 != NIL(solution_t)) { - if (best1->cost <= best2->cost) { - solution_free(best2); - return best1; - } else { - solution_free(best1); - return best2; - } - } else { - return best1; - } - } else { - if (best2 != NIL(solution_t)) { - return best2; - } else { - return NIL(solution_t); - } - } -} diff --git a/src/misc/espresso/sparse.c b/src/misc/espresso/sparse.c deleted file mode 100644 index 137ce7c1..00000000 --- a/src/misc/espresso/sparse.c +++ /dev/null @@ -1,146 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - module: sparse.c - - make_sparse is a last-step cleanup to reduce the total number - of literals in the cover. - - This is done by reducing the "sparse" variables (using a modified - version of irredundant rather than reduce), followed by expanding - the "dense" variables (using modified version of expand). -*/ - -#include "espresso.h" - -pcover make_sparse(F, D, R) -pcover F, D, R; -{ - cost_t cost, best_cost; - - cover_cost(F, &best_cost); - - do { - EXECUTE(F = mv_reduce(F, D), MV_REDUCE_TIME, F, cost); - if (cost.total == best_cost.total) - break; - copy_cost(&cost, &best_cost); - - EXECUTE(F = expand(F, R, TRUE), RAISE_IN_TIME, F, cost); - if (cost.total == best_cost.total) - break; - copy_cost(&cost, &best_cost); - } while (force_irredundant); - - return F; -} - -/* - mv_reduce -- perform an "optimal" reduction of the variables which - we desire to be sparse - - This could be done using "reduce" and then saving just the desired - part of the reduction. Instead, this version uses IRRED to find - which cubes of an output are redundant. Note that this gets around - the cube-ordering problem. - - In normal use, it is expected that the cover is irredundant and - hence no cubes will be reduced to the empty cube (however, this is - checked for and such cubes will be deleted) -*/ - -pcover -mv_reduce(F, D) -pcover F, D; -{ - register int i, var; - register pcube p, p1, last; - int index; - pcover F1, D1; - pcube *F_cube_table; - - /* loop for each multiple-valued variable */ - for(var = 0; var < cube.num_vars; var++) { - - if (cube.sparse[var]) { - - /* loop for each part of the variable */ - for(i = cube.first_part[var]; i <= cube.last_part[var]; i++) { - - /* remember mapping of F1 cubes back to F cubes */ - F_cube_table = ALLOC(pcube, F->count); - - /* 'cofactor' against part #i of variable #var */ - F1 = new_cover(F->count); - foreach_set(F, last, p) { - if (is_in_set(p, i)) { - F_cube_table[F1->count] = p; - p1 = GETSET(F1, F1->count++); - (void) set_diff(p1, p, cube.var_mask[var]); - set_insert(p1, i); - } - } - - /* 'cofactor' against part #i of variable #var */ - /* not really necessary -- just more efficient ? */ - D1 = new_cover(D->count); - foreach_set(D, last, p) { - if (is_in_set(p, i)) { - p1 = GETSET(D1, D1->count++); - (void) set_diff(p1, p, cube.var_mask[var]); - set_insert(p1, i); - } - } - - mark_irredundant(F1, D1); - - /* now remove part i from cubes which are redundant */ - index = 0; - foreach_set(F1, last, p1) { - if (! TESTP(p1, ACTIVE)) { - p = F_cube_table[index]; - - /* don't reduce a variable which is full - * (unless it is the output variable) - */ - if (var == cube.num_vars-1 || - ! setp_implies(cube.var_mask[var], p)) { - set_remove(p, i); - } - RESET(p, PRIME); - } - index++; - } - - free_cover(F1); - free_cover(D1); - FREE(F_cube_table); - } - } - } - - /* Check if any cubes disappeared */ - (void) sf_active(F); - for(var = 0; var < cube.num_vars; var++) { - if (cube.sparse[var]) { - foreach_active_set(F, last, p) { - if (setp_disjoint(p, cube.var_mask[var])) { - RESET(p, ACTIVE); - F->active_count--; - } - } - } - } - - if (F->count != F->active_count) { - F = sf_inactive(F); - } - return F; -} diff --git a/src/misc/espresso/sparse.h b/src/misc/espresso/sparse.h deleted file mode 100644 index 212a32ed..00000000 --- a/src/misc/espresso/sparse.h +++ /dev/null @@ -1,135 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -#ifndef SPARSE_H -#define SPARSE_H - -/* - * sparse.h -- sparse matrix package header file - */ - -typedef struct sm_element_struct sm_element; -typedef struct sm_row_struct sm_row; -typedef struct sm_col_struct sm_col; -typedef struct sm_matrix_struct sm_matrix; - - -/* - * sparse matrix element - */ -struct sm_element_struct { - int row_num; /* row number of this element */ - int col_num; /* column number of this element */ - sm_element *next_row; /* next row in this column */ - sm_element *prev_row; /* previous row in this column */ - sm_element *next_col; /* next column in this row */ - sm_element *prev_col; /* previous column in this row */ - char *user_word; /* user-defined word */ -}; - - -/* - * row header - */ -struct sm_row_struct { - int row_num; /* the row number */ - int length; /* number of elements in this row */ - int flag; /* user-defined word */ - sm_element *first_col; /* first element in this row */ - sm_element *last_col; /* last element in this row */ - sm_row *next_row; /* next row (in sm_matrix linked list) */ - sm_row *prev_row; /* previous row (in sm_matrix linked list) */ - char *user_word; /* user-defined word */ -}; - - -/* - * column header - */ -struct sm_col_struct { - int col_num; /* the column number */ - int length; /* number of elements in this column */ - int flag; /* user-defined word */ - sm_element *first_row; /* first element in this column */ - sm_element *last_row; /* last element in this column */ - sm_col *next_col; /* next column (in sm_matrix linked list) */ - sm_col *prev_col; /* prev column (in sm_matrix linked list) */ - char *user_word; /* user-defined word */ -}; - - -/* - * A sparse matrix - */ -struct sm_matrix_struct { - sm_row **rows; /* pointer to row headers (by row #) */ - int rows_size; /* alloc'ed size of above array */ - sm_col **cols; /* pointer to column headers (by col #) */ - int cols_size; /* alloc'ed size of above array */ - sm_row *first_row; /* first row (linked list of all rows) */ - sm_row *last_row; /* last row (linked list of all rows) */ - int nrows; /* number of rows */ - sm_col *first_col; /* first column (linked list of columns) */ - sm_col *last_col; /* last column (linked list of columns) */ - int ncols; /* number of columns */ - char *user_word; /* user-defined word */ -}; - - -#define sm_get_col(A, colnum) \ - (((colnum) >= 0 && (colnum) < (A)->cols_size) ? \ - (A)->cols[colnum] : (sm_col *) 0) - -#define sm_get_row(A, rownum) \ - (((rownum) >= 0 && (rownum) < (A)->rows_size) ? \ - (A)->rows[rownum] : (sm_row *) 0) - -#define sm_foreach_row(A, prow) \ - for(prow = A->first_row; prow != 0; prow = prow->next_row) - -#define sm_foreach_col(A, pcol) \ - for(pcol = A->first_col; pcol != 0; pcol = pcol->next_col) - -#define sm_foreach_row_element(prow, p) \ - for(p = prow->first_col; p != 0; p = p->next_col) - -#define sm_foreach_col_element(pcol, p) \ - for(p = pcol->first_row; p != 0; p = p->next_row) - -#define sm_put(x, val) \ - (x->user_word = (char *) val) - -#define sm_get(type, x) \ - ((type) (x->user_word)) - -extern sm_matrix *sm_alloc(), *sm_alloc_size(), *sm_dup(); -extern void sm_free(), sm_delrow(), sm_delcol(), sm_resize(); -extern void sm_write(), sm_print(), sm_dump(), sm_cleanup(); -extern void sm_copy_row(), sm_copy_col(); -extern void sm_remove(), sm_remove_element(); -extern sm_element *sm_insert(), *sm_find(); -extern sm_row *sm_longest_row(); -extern sm_col *sm_longest_col(); -extern int sm_read(), sm_read_compressed(); - -extern sm_row *sm_row_alloc(), *sm_row_dup(), *sm_row_and(); -extern void sm_row_free(), sm_row_remove(), sm_row_print(); -extern sm_element *sm_row_insert(), *sm_row_find(); -extern int sm_row_contains(), sm_row_intersects(); -extern int sm_row_compare(), sm_row_hash(); - -extern sm_col *sm_col_alloc(), *sm_col_dup(), *sm_col_and(); -extern void sm_col_free(), sm_col_remove(), sm_col_print(); -extern sm_element *sm_col_insert(), *sm_col_find(); -extern int sm_col_contains(), sm_col_intersects(); -extern int sm_col_compare(), sm_col_hash(); - -extern int sm_row_dominance(), sm_col_dominance(), sm_block_partition(); - -#endif diff --git a/src/misc/espresso/sparse_int.h b/src/misc/espresso/sparse_int.h deleted file mode 100644 index 49b2509a..00000000 --- a/src/misc/espresso/sparse_int.h +++ /dev/null @@ -1,121 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -//#include "port.h" -//#include "utility.h" -#include "sparse.h" - -#include "util_hack.h" // added - - - -/* - * sorted, double-linked list insertion - * - * type: object type - * - * first, last: fields (in header) to head and tail of the list - * count: field (in header) of length of the list - * - * next, prev: fields (in object) to link next and previous objects - * value: field (in object) which controls the order - * - * newval: value field for new object - * e: an object to use if insertion needed (set to actual value used) - */ - -#define sorted_insert(type, first, last, count, next, prev, value, newval, e) \ - if (last == 0) { \ - e->value = newval; \ - first = e; \ - last = e; \ - e->next = 0; \ - e->prev = 0; \ - count++; \ - } else if (last->value < newval) { \ - e->value = newval; \ - last->next = e; \ - e->prev = last; \ - last = e; \ - e->next = 0; \ - count++; \ - } else if (first->value > newval) { \ - e->value = newval; \ - first->prev = e; \ - e->next = first; \ - first = e; \ - e->prev = 0; \ - count++; \ - } else { \ - type *p; \ - for(p = first; p->value < newval; p = p->next) \ - ; \ - if (p->value > newval) { \ - e->value = newval; \ - p = p->prev; \ - p->next->prev = e; \ - e->next = p->next; \ - p->next = e; \ - e->prev = p; \ - count++; \ - } else { \ - e = p; \ - } \ - } - - -/* - * double linked-list deletion - */ -#define dll_unlink(p, first, last, next, prev, count) { \ - if (p->prev == 0) { \ - first = p->next; \ - } else { \ - p->prev->next = p->next; \ - } \ - if (p->next == 0) { \ - last = p->prev; \ - } else { \ - p->next->prev = p->prev; \ - } \ - count--; \ -} - - -#ifdef FAST_AND_LOOSE -extern sm_element *sm_element_freelist; -extern sm_row *sm_row_freelist; -extern sm_col *sm_col_freelist; - -#define sm_element_alloc(newobj) \ - if (sm_element_freelist == NIL(sm_element)) { \ - newobj = ALLOC(sm_element, 1); \ - } else { \ - newobj = sm_element_freelist; \ - sm_element_freelist = sm_element_freelist->next_col; \ - } \ - newobj->user_word = NIL(char); \ - -#define sm_element_free(e) \ - (e->next_col = sm_element_freelist, sm_element_freelist = e) - -#else - -#define sm_element_alloc(newobj) \ - newobj = ALLOC(sm_element, 1); \ - newobj->user_word = NIL(char); -#define sm_element_free(e) \ - FREE(e) -#endif - - -extern void sm_row_remove_element(); -extern void sm_col_remove_element(); - -/* LINTLIBRARY */ diff --git a/src/misc/espresso/unate.c b/src/misc/espresso/unate.c deleted file mode 100644 index bd71207f..00000000 --- a/src/misc/espresso/unate.c +++ /dev/null @@ -1,441 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - * unate.c -- routines for dealing with unate functions - */ - -#include "espresso.h" - -static pset_family abs_covered(); -static pset_family abs_covered_many(); -static int abs_select_restricted(); - -pcover map_cover_to_unate(T) -pcube *T; -{ - register unsigned int word_test, word_set, bit_test, bit_set; - register pcube p, pA; - pset_family A; - pcube *T1; - int ncol, i; - - A = sf_new(CUBELISTSIZE(T), cdata.vars_unate); - A->count = CUBELISTSIZE(T); - foreachi_set(A, i, p) { - (void) set_clear(p, A->sf_size); - } - ncol = 0; - - for(i = 0; i < cube.size; i++) { - if (cdata.part_zeros[i] > 0) { - assert(ncol <= cdata.vars_unate); - - /* Copy a column from T to A */ - word_test = WHICH_WORD(i); - bit_test = 1 << WHICH_BIT(i); - word_set = WHICH_WORD(ncol); - bit_set = 1 << WHICH_BIT(ncol); - - pA = A->data; - for(T1 = T+2; (p = *T1++) != 0; ) { - if ((p[word_test] & bit_test) == 0) { - pA[word_set] |= bit_set; - } - pA += A->wsize; - } - - ncol++; - } - } - - return A; -} - -pcover map_unate_to_cover(A) -pset_family A; -{ - register int i, ncol, lp; - register pcube p, pB; - int var, nunate, *unate; - pcube last; - pset_family B; - - B = sf_new(A->count, cube.size); - B->count = A->count; - - /* Find the unate variables */ - unate = ALLOC(int, cube.num_vars); - nunate = 0; - for(var = 0; var < cube.num_vars; var++) { - if (cdata.is_unate[var]) { - unate[nunate++] = var; - } - } - - /* Loop for each set of A */ - pB = B->data; - foreach_set(A, last, p) { - - /* Initialize this set of B */ - INLINEset_fill(pB, cube.size); - - /* Now loop for the unate variables; if the part is in A, - * then this variable of B should be a single 1 in the unate - * part. - */ - for(ncol = 0; ncol < nunate; ncol++) { - if (is_in_set(p, ncol)) { - lp = cube.last_part[unate[ncol]]; - for(i = cube.first_part[unate[ncol]]; i <= lp; i++) { - if (cdata.part_zeros[i] == 0) { - set_remove(pB, i); - } - } - } - } - pB += B->wsize; - } - - FREE(unate); - return B; -} - -/* - * unate_compl - */ - -pset_family unate_compl(A) -pset_family A; -{ - register pset p, last; - - /* Make sure A is single-cube containment minimal */ -/* A = sf_rev_contain(A);*/ - - foreach_set(A, last, p) { - PUTSIZE(p, set_ord(p)); - } - - /* Recursively find the complement */ - A = unate_complement(A); - - /* Now, we can guarantee a minimal result by containing the result */ - A = sf_rev_contain(A); - return A; -} - - -/* - * Assume SIZE(p) records the size of each set - */ -pset_family unate_complement(A) -pset_family A; /* disposes of A */ -{ - pset_family Abar; - register pset p, p1, restrict; - register int i; - int max_i, min_set_ord, j; - - /* Check for no sets in the matrix -- complement is the universe */ - if (A->count == 0) { - sf_free(A); - Abar = sf_new(1, A->sf_size); - (void) set_clear(GETSET(Abar, Abar->count++), A->sf_size); - - /* Check for a single set in the maxtrix -- compute de Morgan complement */ - } else if (A->count == 1) { - p = A->data; - Abar = sf_new(A->sf_size, A->sf_size); - for(i = 0; i < A->sf_size; i++) { - if (is_in_set(p, i)) { - p1 = set_clear(GETSET(Abar, Abar->count++), A->sf_size); - set_insert(p1, i); - } - } - sf_free(A); - - } else { - - /* Select splitting variable as the variable which belongs to a set - * of the smallest size, and which has greatest column count - */ - restrict = set_new(A->sf_size); - min_set_ord = A->sf_size + 1; - foreachi_set(A, i, p) { - if (SIZE(p) < min_set_ord) { - set_copy(restrict, p); - min_set_ord = SIZE(p); - } else if (SIZE(p) == min_set_ord) { - set_or(restrict, restrict, p); - } - } - - /* Check for no data (shouldn't happen ?) */ - if (min_set_ord == 0) { - A->count = 0; - Abar = A; - - /* Check for "essential" columns */ - } else if (min_set_ord == 1) { - Abar = unate_complement(abs_covered_many(A, restrict)); - sf_free(A); - foreachi_set(Abar, i, p) { - set_or(p, p, restrict); - } - - /* else, recur as usual */ - } else { - max_i = abs_select_restricted(A, restrict); - - /* Select those rows of A which are not covered by max_i, - * recursively find all minimal covers of these rows, and - * then add back in max_i - */ - Abar = unate_complement(abs_covered(A, max_i)); - foreachi_set(Abar, i, p) { - set_insert(p, max_i); - } - - /* Now recur on A with all zero's on column max_i */ - foreachi_set(A, i, p) { - if (is_in_set(p, max_i)) { - set_remove(p, max_i); - j = SIZE(p) - 1; - PUTSIZE(p, j); - } - } - - Abar = sf_append(Abar, unate_complement(A)); - } - set_free(restrict); - } - - return Abar; -} - -pset_family exact_minimum_cover(T) -IN pset_family T; -{ - register pset p, last, p1; - register int i, n; - int lev, lvl; - pset nlast; - pset_family temp; - long start = ptime(); - struct { - pset_family sf; - int level; - } stack[32]; /* 32 suffices for 2 ** 32 cubes ! */ - - if (T->count <= 0) - return sf_new(1, T->sf_size); - for(n = T->count, lev = 0; n != 0; n >>= 1, lev++) ; - - /* A simple heuristic ordering */ - T = lex_sort(sf_save(T)); - - /* Push a full set on the stack to get things started */ - n = 1; - stack[0].sf = sf_new(1, T->sf_size); - stack[0].level = lev; - set_fill(GETSET(stack[0].sf, stack[0].sf->count++), T->sf_size); - - nlast = GETSET(T, T->count - 1); - foreach_set(T, last, p) { - - /* "unstack" the set into a family */ - temp = sf_new(set_ord(p), T->sf_size); - for(i = 0; i < T->sf_size; i++) - if (is_in_set(p, i)) { - p1 = set_fill(GETSET(temp, temp->count++), T->sf_size); - set_remove(p1, i); - } - stack[n].sf = temp; - stack[n++].level = lev; - - /* Pop the stack and perform (leveled) intersections */ - while (n > 1 && (stack[n-1].level==stack[n-2].level || p == nlast)) { - temp = unate_intersect(stack[n-1].sf, stack[n-2].sf, FALSE); - lvl = MIN(stack[n-1].level, stack[n-2].level) - 1; - if (debug & MINCOV && lvl < 10) { - printf("# EXACT_MINCOV[%d]: %4d = %4d x %4d, time = %s\n", - lvl, temp->count, stack[n-1].sf->count, - stack[n-2].sf->count, print_time(ptime() - start)); - (void) fflush(stdout); - } - sf_free(stack[n-2].sf); - sf_free(stack[n-1].sf); - stack[n-2].sf = temp; - stack[n-2].level = lvl; - n--; - } - } - - temp = stack[0].sf; - p1 = set_fill(set_new(T->sf_size), T->sf_size); - foreach_set(temp, last, p) - INLINEset_diff(p, p1, p); - set_free(p1); - if (debug & MINCOV1) { - printf("MINCOV: family of all minimal coverings is\n"); - sf_print(temp); - } - sf_free(T); /* this is the copy of T we made ... */ - return temp; -} - -/* - * unate_intersect -- intersect two unate covers - * - * If largest_only is TRUE, then only the largest cube(s) are returned - */ - -#define MAGIC 500 /* save 500 cubes before containment */ - -pset_family unate_intersect(A, B, largest_only) -pset_family A, B; -bool largest_only; -{ - register pset pi, pj, lasti, lastj, pt; - pset_family T, Tsave; - bool save; - int maxord, ord; - - /* How large should each temporary result cover be ? */ - T = sf_new(MAGIC, A->sf_size); - Tsave = NULL; - maxord = 0; - pt = T->data; - - /* Form pairwise intersection of each set of A with each cube of B */ - foreach_set(A, lasti, pi) { - - foreach_set(B, lastj, pj) { - - save = set_andp(pt, pi, pj); - - /* Check if we want the largest only */ - if (save && largest_only) { - if ((ord = set_ord(pt)) > maxord) { - /* discard Tsave and T */ - if (Tsave != NULL) { - sf_free(Tsave); - Tsave = NULL; - } - pt = T->data; - T->count = 0; - /* Re-create pt (which was just thrown away) */ - (void) set_and(pt, pi, pj); - maxord = ord; - } else if (ord < maxord) { - save = FALSE; - } - } - - if (save) { - if (++T->count >= T->capacity) { - T = sf_contain(T); - Tsave = (Tsave == NULL) ? T : sf_union(Tsave, T); - T = sf_new(MAGIC, A->sf_size); - pt = T->data; - } else { - pt += T->wsize; - } - } - } - } - - - /* Contain the final result and merge it into Tsave */ - T = sf_contain(T); - Tsave = (Tsave == NULL) ? T : sf_union(Tsave, T); - - return Tsave; -} - -/* - * abs_covered -- after selecting a new column for the selected set, - * create a new matrix which is only those rows which are still uncovered - */ -static pset_family -abs_covered(A, pick) -pset_family A; -register int pick; -{ - register pset last, p, pdest; - register pset_family Aprime; - - Aprime = sf_new(A->count, A->sf_size); - pdest = Aprime->data; - foreach_set(A, last, p) - if (! is_in_set(p, pick)) { - INLINEset_copy(pdest, p); - Aprime->count++; - pdest += Aprime->wsize; - } - return Aprime; -} - - -/* - * abs_covered_many -- after selecting many columns for ther selected set, - * create a new matrix which is only those rows which are still uncovered - */ -static pset_family -abs_covered_many(A, pick_set) -pset_family A; -register pset pick_set; -{ - register pset last, p, pdest; - register pset_family Aprime; - - Aprime = sf_new(A->count, A->sf_size); - pdest = Aprime->data; - foreach_set(A, last, p) - if (setp_disjoint(p, pick_set)) { - INLINEset_copy(pdest, p); - Aprime->count++; - pdest += Aprime->wsize; - } - return Aprime; -} - - -/* - * abs_select_restricted -- select the column of maximum column count which - * also belongs to the set "restrict"; weight each column of a set as - * 1 / (set_ord(p) - 1). - */ -static int -abs_select_restricted(A, restrict) -pset_family A; -pset restrict; -{ - register int i, best_var, best_count, *count; - - /* Sum the elements in these columns */ - count = sf_count_restricted(A, restrict); - - /* Find which variable has maximum weight */ - best_var = -1; - best_count = 0; - for(i = 0; i < A->sf_size; i++) { - if (count[i] > best_count) { - best_var = i; - best_count = count[i]; - } - } - FREE(count); - - if (best_var == -1) - fatal("abs_select_restricted: should not have best_var == -1"); - - return best_var; -} diff --git a/src/misc/espresso/util_old.h b/src/misc/espresso/util_old.h deleted file mode 100644 index 5451cbe9..00000000 --- a/src/misc/espresso/util_old.h +++ /dev/null @@ -1,301 +0,0 @@ -/* - * Revision Control Information - * - * $Source: /vol/opua/opua2/sis/sis-1.2/common/src/sis/util/RCS/util.h,v $ - * $Author: sis $ - * $Revision: 1.9 $ - * $Date: 1993/06/07 21:04:07 $ - * - */ -#ifndef UTIL_H -#define UTIL_H - -#if defined(_IBMR2) -#ifndef _POSIX_SOURCE -#define _POSIX_SOURCE /* Argh! IBM strikes again */ -#endif -#ifndef _ALL_SOURCE -#define _ALL_SOURCE /* Argh! IBM strikes again */ -#endif -#ifndef _ANSI_C_SOURCE -#define _ANSI_C_SOURCE /* Argh! IBM strikes again */ -#endif -#endif - -#if defined(__STDC__) || defined(sprite) || defined(_IBMR2) || defined(__osf__) -#include <unistd.h> -#endif - -#if defined(_IBMR2) && !defined(__STDC__) -#define _BSD -#endif - -#include "ansi.h" /* since some files don't include sis.h */ - -/* This was taken out and defined at compile time in the SIS Makefile - that uses the OctTools. When the OctTools are used, USE_MM is defined, - because the OctTools contain libmm.a. Otherwise, USE_MM is not defined, - since the mm package is not distributed with SIS, only with Oct. */ - -/* #define USE_MM */ /* choose libmm.a as the memory allocator */ - -#define NIL(type) ((type *) 0) - -#ifdef USE_MM -/* - * assumes the memory manager is libmm.a - * - allows malloc(0) or realloc(obj, 0) - * - catches out of memory (and calls MMout_of_memory()) - * - catch free(0) and realloc(0, size) in the macros - */ -#define ALLOC(type, num) \ - ((type *) malloc(sizeof(type) * (num))) -#define REALLOC(type, obj, num) \ - (obj) ? ((type *) realloc((char *) obj, sizeof(type) * (num))) : \ - ((type *) malloc(sizeof(type) * (num))) -#define FREE(obj) \ - ((obj) ? (free((char *) (obj)), (obj) = 0) : 0) -#else -/* - * enforce strict semantics on the memory allocator - * - when in doubt, delete the '#define USE_MM' above - */ -#define ALLOC(type, num) \ - ((type *) MMalloc((long) sizeof(type) * (long) (num))) -#define REALLOC(type, obj, num) \ - ((type *) MMrealloc((char *) (obj), (long) sizeof(type) * (long) (num))) -#define FREE(obj) \ - ((obj) ? (free((void *) (obj)), (obj) = 0) : 0) -#endif - - -/* Ultrix (and SABER) have 'fixed' certain functions which used to be int */ -#if defined(ultrix) || defined(SABER) || defined(aiws) || defined(__hpux) || defined(__STDC__) || defined(apollo) -#define VOID_HACK void -#else -#define VOID_HACK int -#endif - - -/* No machines seem to have much of a problem with these */ -#include <stdio.h> -#include <ctype.h> - - -/* Some machines fail to define some functions in stdio.h */ -#if !defined(__STDC__) && !defined(sprite) && !defined(_IBMR2) && !defined(__osf__) -extern FILE *popen(), *tmpfile(); -extern int pclose(); -#ifndef clearerr /* is a macro on many machines, but not all */ -extern VOID_HACK clearerr(); -#endif -#ifndef rewind -extern VOID_HACK rewind(); -#endif -#endif - -#ifndef PORT_H -#include <sys/types.h> -#include <signal.h> -#if defined(ultrix) -#if defined(_SIZE_T_) -#define ultrix4 -#else -#if defined(SIGLOST) -#define ultrix3 -#else -#define ultrix2 -#endif -#endif -#endif -#endif - -/* most machines don't give us a header file for these */ -#if defined(__STDC__) || defined(sprite) || defined(_IBMR2) || defined(__osf__) || defined(sunos4) || defined(__hpux) -#include <stdlib.h> -#if defined(__hpux) -#include <errno.h> /* For perror() defininition */ -#endif /* __hpux */ -#else -extern VOID_HACK abort(), free(), exit(), perror(); -extern char *getenv(); -#ifdef ultrix4 -extern void *malloc(), *realloc(), *calloc(); -#else -extern char *malloc(), *realloc(), *calloc(); -#endif -#if defined(aiws) -extern int sprintf(); -#else -#ifndef _IBMR2 -extern char *sprintf(); -#endif -#endif -extern int system(); -extern double atof(); -#endif - -#ifndef PORT_H -#if defined(ultrix3) || defined(sunos4) || defined(_IBMR2) || defined(__STDC__) -#define SIGNAL_FN void -#else -/* sequent, ultrix2, 4.3BSD (vax, hp), sunos3 */ -#define SIGNAL_FN int -#endif -#endif - -/* some call it strings.h, some call it string.h; others, also have memory.h */ -#if defined(__STDC__) || defined(sprite) -#include <string.h> -#else -#if defined(ultrix4) || defined(__hpux) -#include <strings.h> -#else -#if defined(_IBMR2) || defined(__osf__) -#include<string.h> -#include<strings.h> -#else -/* ANSI C string.h -- 1/11/88 Draft Standard */ -/* ugly, awful hack */ -#ifndef PORT_H -extern char *strcpy(), *strncpy(), *strcat(), *strncat(), *strerror(); -extern char *strpbrk(), *strtok(), *strchr(), *strrchr(), *strstr(); -extern int strcoll(), strxfrm(), strncmp(), strlen(), strspn(), strcspn(); -extern char *memmove(), *memccpy(), *memchr(), *memcpy(), *memset(); -extern int memcmp(), strcmp(); -#endif -#endif -#endif -#endif - -/* a few extras */ -#if defined(__hpux) -#define random() lrand48() -#define srandom(a) srand48(a) -#define bzero(a,b) memset(a, 0, b) -#else -#if !defined(__osf__) && !defined(linux) -/* these are defined as macros in stdlib.h */ -extern VOID_HACK srandom(); -extern long random(); -#endif -#endif - -/* code from sis-1.3 commented out below -#if defined(__STDC__) || defined(sprite) -#include <assert.h> -#else -#ifndef NDEBUG -#define assert(ex) {\ - if (! (ex)) {\ - (void) fprintf(stderr,\ - "Assertion failed: file %s, line %d\n\"%s\"\n",\ - __FILE__, __LINE__, "ex");\ - (void) fflush(stdout);\ - abort();\ - }\ -} -#else -#define assert(ex) {ex;} -#endif -#endif -*/ - - /* Sunil 5/3/97: - sis-1.4: dont let the assert call go to the OS, since - much of the code in SIS has actual computation done in - the assert function. %$#$@@#! The OS version of assert - will do nothing if NDEBUG is set. We cant let that happen... - */ -# ifdef NDEBUG -# define assert(ex) {ex;} -# else -# define assert(ex) {\ - if (! (ex)) {\ - (void) fprintf(stderr,\ - "Assertion failed: file %s, line %d\n\"%s\"\n",\ - __FILE__, __LINE__, "ex");\ - (void) fflush(stdout);\ - abort();\ - }\ -} -# endif - - -#define fail(why) {\ - (void) fprintf(stderr, "Fatal error: file %s, line %d\n%s\n",\ - __FILE__, __LINE__, why);\ - (void) fflush(stdout);\ - abort();\ -} - - -#ifdef lint -#undef putc /* correct lint '_flsbuf' bug */ -#undef ALLOC /* allow for lint -h flag */ -#undef REALLOC -#define ALLOC(type, num) (((type *) 0) + (num)) -#define REALLOC(type, obj, num) ((obj) + (num)) -#endif - -/* -#if !defined(__osf__) -#define MAXPATHLEN 1024 -#endif -*/ - -/* These arguably do NOT belong in util.h */ -#ifndef ABS -#define ABS(a) ((a) < 0 ? -(a) : (a)) -#endif -#ifndef MAX -#define MAX(a,b) ((a) > (b) ? (a) : (b)) -#endif -#ifndef MIN -#define MIN(a,b) ((a) < (b) ? (a) : (b)) -#endif - - -#ifndef USE_MM -EXTERN void MMout_of_memory ARGS((long)); -EXTERN char *MMalloc ARGS((long)); -EXTERN char *MMrealloc ARGS((char *, long)); -EXTERN void MMfree ARGS((char *)); -#endif - -EXTERN void util_print_cpu_stats ARGS((FILE *)); -EXTERN long util_cpu_time ARGS((void)); -EXTERN void util_getopt_reset ARGS((void)); -EXTERN int util_getopt ARGS((int, char **, char *)); -EXTERN char *util_path_search ARGS((char *)); -EXTERN char *util_file_search ARGS((char *, char *, char *)); -EXTERN int util_pipefork ARGS((char **, FILE **, FILE **, int *)); -EXTERN char *util_print_time ARGS((long)); -EXTERN int util_save_image ARGS((char *, char *)); -EXTERN char *util_strsav ARGS((char *)); -EXTERN int util_do_nothing ARGS((void)); -EXTERN char *util_tilde_expand ARGS((char *)); -EXTERN char *util_tempnam ARGS((char *, char *)); -EXTERN FILE *util_tmpfile ARGS((void)); -EXTERN long getSoftDataLimit(); - -#define ptime() util_cpu_time() -#define print_time(t) util_print_time(t) - -/* util_getopt() global variables (ack !) */ -extern int util_optind; -extern char *util_optarg; - -#include <math.h> -#ifndef HUGE_VAL -#ifndef HUGE -#define HUGE 8.9884656743115790e+307 -#endif -#define HUGE_VAL HUGE -#endif -#ifndef MAXINT -#define MAXINT (1 << 30) -#endif - -#include <varargs.h> -#endif diff --git a/src/misc/espresso/verify.c b/src/misc/espresso/verify.c deleted file mode 100644 index 64342787..00000000 --- a/src/misc/espresso/verify.c +++ /dev/null @@ -1,193 +0,0 @@ -/* - * Revision Control Information - * - * $Source$ - * $Author$ - * $Revision$ - * $Date$ - * - */ -/* - */ - -#include "espresso.h" - -/* - * verify -- check that all minterms of F are contained in (Fold u Dold) - * and that all minterms of Fold are contained in (F u Dold). - */ -bool verify(F, Fold, Dold) -pcover F, Fold, Dold; -{ - pcube p, last, *FD; - bool verify_error = FALSE; - - /* Make sure the function didn't grow too large */ - FD = cube2list(Fold, Dold); - foreach_set(F, last, p) - if (! cube_is_covered(FD, p)) { - printf("some minterm in F is not covered by Fold u Dold\n"); - verify_error = TRUE; - if (verbose_debug) printf("%s\n", pc1(p)); else break; - } - free_cubelist(FD); - - /* Make sure minimized function covers the original function */ - FD = cube2list(F, Dold); - foreach_set(Fold, last, p) - if (! cube_is_covered(FD, p)) { - printf("some minterm in Fold is not covered by F u Dold\n"); - verify_error = TRUE; - if (verbose_debug) printf("%s\n", pc1(p)); else break; - } - free_cubelist(FD); - - return verify_error; -} - - - -/* - * PLA_verify -- verify that two PLA's are identical - * - * If names are given, row and column permutations are done to make - * the comparison meaningful. - * - */ -bool PLA_verify(PLA1, PLA2) -pPLA PLA1, PLA2; -{ - /* Check if both have names given; if so, attempt to permute to - * match the names - */ - if (PLA1->label != NULL && PLA1->label[0] != NULL && - PLA2->label != NULL && PLA2->label[0] != NULL) { - PLA_permute(PLA1, PLA2); - } else { - (void) fprintf(stderr, "Warning: cannot permute columns without names\n"); - return TRUE; - } - - if (PLA1->F->sf_size != PLA2->F->sf_size) { - (void) fprintf(stderr, "PLA_verify: PLA's are not the same size\n"); - return TRUE; - } - - return verify(PLA2->F, PLA1->F, PLA1->D); -} - - - -/* - * Permute the columns of PLA1 so that they match the order of PLA2 - * Discard any columns of PLA1 which are not in PLA2 - * Association is strictly by the names of the columns of the cover. - */ -PLA_permute(PLA1, PLA2) -pPLA PLA1, PLA2; -{ - register int i, j, *permute, npermute; - register char *labi; - char **label; - - /* determine which columns of PLA1 to save, and place these in the list - * "permute"; the order in this list is the final output order - */ - npermute = 0; - permute = ALLOC(int, PLA2->F->sf_size); - for(i = 0; i < PLA2->F->sf_size; i++) { - labi = PLA2->label[i]; - for(j = 0; j < PLA1->F->sf_size; j++) { - if (strcmp(labi, PLA1->label[j]) == 0) { - permute[npermute++] = j; - break; - } - } - } - - /* permute columns */ - if (PLA1->F != NULL) { - PLA1->F = sf_permute(PLA1->F, permute, npermute); - } - if (PLA1->R != NULL) { - PLA1->R = sf_permute(PLA1->R, permute, npermute); - } - if (PLA1->D != NULL) { - PLA1->D = sf_permute(PLA1->D, permute, npermute); - } - - /* permute the labels */ - label = ALLOC(char *, cube.size); - for(i = 0; i < npermute; i++) { - label[i] = PLA1->label[permute[i]]; - } - for(i = npermute; i < cube.size; i++) { - label[i] = NULL; - } - FREE(PLA1->label); - PLA1->label = label; - - FREE(permute); -} - - - -/* - * check_consistency -- test that the ON-set, OFF-set and DC-set form - * a partition of the boolean space. - */ -bool check_consistency(PLA) -pPLA PLA; -{ - bool verify_error = FALSE; - pcover T; - - T = cv_intersect(PLA->F, PLA->D); - if (T->count == 0) - printf("ON-SET and DC-SET are disjoint\n"); - else { - printf("Some minterm(s) belong to both the ON-SET and DC-SET !\n"); - if (verbose_debug) - cprint(T); - verify_error = TRUE; - } - (void) fflush(stdout); - free_cover(T); - - T = cv_intersect(PLA->F, PLA->R); - if (T->count == 0) - printf("ON-SET and OFF-SET are disjoint\n"); - else { - printf("Some minterm(s) belong to both the ON-SET and OFF-SET !\n"); - if (verbose_debug) - cprint(T); - verify_error = TRUE; - } - (void) fflush(stdout); - free_cover(T); - - T = cv_intersect(PLA->D, PLA->R); - if (T->count == 0) - printf("DC-SET and OFF-SET are disjoint\n"); - else { - printf("Some minterm(s) belong to both the OFF-SET and DC-SET !\n"); - if (verbose_debug) - cprint(T); - verify_error = TRUE; - } - (void) fflush(stdout); - free_cover(T); - - if (tautology(cube3list(PLA->F, PLA->D, PLA->R))) - printf("Union of ON-SET, OFF-SET and DC-SET is the universe\n"); - else { - T = complement(cube3list(PLA->F, PLA->D, PLA->R)); - printf("There are minterms left unspecified !\n"); - if (verbose_debug) - cprint(T); - verify_error = TRUE; - free_cover(T); - } - (void) fflush(stdout); - return verify_error; -} |