diff options
author | Alan Mishchenko <alanmi@berkeley.edu> | 2007-10-01 08:01:00 -0700 |
---|---|---|
committer | Alan Mishchenko <alanmi@berkeley.edu> | 2007-10-01 08:01:00 -0700 |
commit | 4812c90424dfc40d26725244723887a2d16ddfd9 (patch) | |
tree | b32ace96e7e2d84d586e09ba605463b6f49c3271 /src/misc/espresso/pair.c | |
parent | e54d9691616b9a0326e2fdb3156bb4eeb8abfcd7 (diff) | |
download | abc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.gz abc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.bz2 abc-4812c90424dfc40d26725244723887a2d16ddfd9.zip |
Version abc71001
Diffstat (limited to 'src/misc/espresso/pair.c')
-rw-r--r-- | src/misc/espresso/pair.c | 675 |
1 files changed, 675 insertions, 0 deletions
diff --git a/src/misc/espresso/pair.c b/src/misc/espresso/pair.c new file mode 100644 index 00000000..a8077176 --- /dev/null +++ b/src/misc/espresso/pair.c @@ -0,0 +1,675 @@ +/* + * Revision Control Information + * + * $Source$ + * $Author$ + * $Revision$ + * $Date$ + * + */ +#include "espresso.h" + +void set_pair(PLA) +pPLA PLA; +{ + set_pair1(PLA, TRUE); +} + +void set_pair1(PLA, adjust_labels) +pPLA PLA; +bool adjust_labels; +{ + int i, var, *paired, newvar; + int old_num_vars, old_num_binary_vars, old_size, old_mv_start; + int *new_part_size, new_num_vars, new_num_binary_vars, new_mv_start; + ppair pair = PLA->pair; + char scratch[1000], **oldlabel, *var1, *var1bar, *var2, *var2bar; + + if (adjust_labels) + makeup_labels(PLA); + + /* Check the pair structure for valid entries and see which binary + variables are left unpaired + */ + paired = ALLOC(bool, cube.num_binary_vars); + for(var = 0; var < cube.num_binary_vars; var++) + paired[var] = FALSE; + for(i = 0; i < pair->cnt; i++) + if ((pair->var1[i] > 0 && pair->var1[i] <= cube.num_binary_vars) && + (pair->var2[i] > 0 && pair->var2[i] <= cube.num_binary_vars)) { + paired[pair->var1[i]-1] = TRUE; + paired[pair->var2[i]-1] = TRUE; + } else + fatal("can only pair binary-valued variables"); + + PLA->F = delvar(pairvar(PLA->F, pair), paired); + PLA->R = delvar(pairvar(PLA->R, pair), paired); + PLA->D = delvar(pairvar(PLA->D, pair), paired); + + /* Now painfully adjust the cube size */ + old_size = cube.size; + old_num_vars = cube.num_vars; + old_num_binary_vars = cube.num_binary_vars; + old_mv_start = cube.first_part[cube.num_binary_vars]; + /* Create the new cube.part_size vector and setup the cube structure */ + new_num_binary_vars = 0; + for(var = 0; var < old_num_binary_vars; var++) + new_num_binary_vars += (paired[var] == FALSE); + new_num_vars = new_num_binary_vars + pair->cnt; + new_num_vars += old_num_vars - old_num_binary_vars; + new_part_size = ALLOC(int, new_num_vars); + for(var = 0; var < pair->cnt; var++) + new_part_size[new_num_binary_vars + var] = 4; + for(var = 0; var < old_num_vars - old_num_binary_vars; var++) + new_part_size[new_num_binary_vars + pair->cnt + var] = + cube.part_size[old_num_binary_vars + var]; + setdown_cube(); + FREE(cube.part_size); + cube.num_vars = new_num_vars; + cube.num_binary_vars = new_num_binary_vars; + cube.part_size = new_part_size; + cube_setup(); + + /* hack with the labels to get them correct */ + if (adjust_labels) { + oldlabel = PLA->label; + PLA->label = ALLOC(char *, cube.size); + for(var = 0; var < pair->cnt; var++) { + newvar = cube.num_binary_vars*2 + var*4; + var1 = oldlabel[ (pair->var1[var]-1) * 2 + 1]; + var2 = oldlabel[ (pair->var2[var]-1) * 2 + 1]; + var1bar = oldlabel[ (pair->var1[var]-1) * 2]; + var2bar = oldlabel[ (pair->var2[var]-1) * 2]; + (void) sprintf(scratch, "%s+%s", var1bar, var2bar); + PLA->label[newvar] = util_strsav(scratch); + (void) sprintf(scratch, "%s+%s", var1bar, var2); + PLA->label[newvar+1] = util_strsav(scratch); + (void) sprintf(scratch, "%s+%s", var1, var2bar); + PLA->label[newvar+2] = util_strsav(scratch); + (void) sprintf(scratch, "%s+%s", var1, var2); + PLA->label[newvar+3] = util_strsav(scratch); + } + /* Copy the old labels for the unpaired binary vars */ + i = 0; + for(var = 0; var < old_num_binary_vars; var++) { + if (paired[var] == FALSE) { + PLA->label[2*i] = oldlabel[2*var]; + PLA->label[2*i+1] = oldlabel[2*var+1]; + oldlabel[2*var] = oldlabel[2*var+1] = (char *) NULL; + i++; + } + } + /* Copy the old labels for the remaining unpaired vars */ + new_mv_start = cube.num_binary_vars*2 + pair->cnt*4; + for(i = old_mv_start; i < old_size; i++) { + PLA->label[new_mv_start + i - old_mv_start] = oldlabel[i]; + oldlabel[i] = (char *) NULL; + } + /* free remaining entries in oldlabel */ + for(i = 0; i < old_size; i++) + if (oldlabel[i] != (char *) NULL) + FREE(oldlabel[i]); + FREE(oldlabel); + } + + /* the paired variables should not be sparse (cf. mv_reduce/raise_in)*/ + for(var = 0; var < pair->cnt; var++) + cube.sparse[cube.num_binary_vars + var] = 0; + FREE(paired); +} + +pcover pairvar(A, pair) +pcover A; +ppair pair; +{ + register pcube last, p; + register int val, p1, p2, b1, b0; + int insert_col, pairnum; + + insert_col = cube.first_part[cube.num_vars - 1]; + + /* stretch the cover matrix to make room for the paired variables */ + A = sf_delcol(A, insert_col, -4*pair->cnt); + + /* compute the paired values */ + foreach_set(A, last, p) { + for(pairnum = 0; pairnum < pair->cnt; pairnum++) { + p1 = cube.first_part[pair->var1[pairnum] - 1]; + p2 = cube.first_part[pair->var2[pairnum] - 1]; + b1 = is_in_set(p, p2+1); + b0 = is_in_set(p, p2); + val = insert_col + pairnum * 4; + if (/* a0 */ is_in_set(p, p1)) { + if (b0) + set_insert(p, val + 3); + if (b1) + set_insert(p, val + 2); + } + if (/* a1 */ is_in_set(p, p1+1)) { + if (b0) + set_insert(p, val + 1); + if (b1) + set_insert(p, val); + } + } + } + return A; +} + + +/* delvar -- delete variables from A, minimize the number of column shifts */ +pcover delvar(A, paired) +pcover A; +bool paired[]; +{ + bool run; + int first_run, run_length, var, offset = 0; + + run = FALSE; run_length = 0; + for(var = 0; var < cube.num_binary_vars; var++) + if (paired[var]) + if (run) + run_length += cube.part_size[var]; + else { + run = TRUE; + first_run = cube.first_part[var]; + run_length = cube.part_size[var]; + } + else + if (run) { + A = sf_delcol(A, first_run-offset, run_length); + run = FALSE; + offset += run_length; + } + if (run) + A = sf_delcol(A, first_run-offset, run_length); + return A; +} + +/* + find_optimal_pairing -- find which binary variables should be paired + to maximally reduce the number of terms + + This is essentially the technique outlined by T. Sasao in the + Trans. on Comp., Oct 1984. We estimate the cost of pairing each + pair individually using 1 of 4 strategies: (1) algebraic division + of F by the pair (exactly T. Sasao technique); (2) strong division + of F by the paired variables (using REDUCE/EXPAND/ IRREDUNDANT from + espresso); (3) full minimization using espresso; (4) exact + minimization. These are in order of both increasing accuracy and + increasing difficulty (!) + + Once the n squared pairs have been evaluated, T. Sasao proposes a + graph covering of nodes by disjoint edges. For now, I solve this + problem exhaustively (complexity = (n-1)*(n-3)*...*3*1 for n + variables when n is even). Note that solving this problem exactly + is the same as evaluating the cost function for all possible + pairings. + + n pairs + + 1, 2 1 + 3, 4 3 + 5, 6 15 + 7, 8 105 + 9,10 945 + 11,12 10,395 + 13,14 135,135 + 15,16 2,027,025 + 17,18 34,459,425 + 19,20 654,729,075 +*/ +void find_optimal_pairing(PLA, strategy) +pPLA PLA; +int strategy; +{ + int i, j, **cost_array; + + cost_array = find_pairing_cost(PLA, strategy); + + if (summary) { + printf(" "); + for(i = 0; i < cube.num_binary_vars; i++) + printf("%3d ", i+1); + printf("\n"); + for(i = 0; i < cube.num_binary_vars; i++) { + printf("%3d ", i+1); + for(j = 0; j < cube.num_binary_vars; j++) + printf("%3d ", cost_array[i][j]); + printf("\n"); + } + } + + if (cube.num_binary_vars <= 14) { + PLA->pair = pair_best_cost(cost_array); + } else { + (void) greedy_best_cost(cost_array, &(PLA->pair)); + } + printf("# "); + print_pair(PLA->pair); + + for(i = 0; i < cube.num_binary_vars; i++) + FREE(cost_array[i]); + FREE(cost_array); + + set_pair(PLA); + EXEC_S(PLA->F=espresso(PLA->F,PLA->D,PLA->R),"ESPRESSO ",PLA->F); +} + +int **find_pairing_cost(PLA, strategy) +pPLA PLA; +int strategy; +{ + int var1, var2, **cost_array; + int i, j, xnum_binary_vars, xnum_vars, *xpart_size, cost; + pcover T, Fsave, Dsave, Rsave; + pset mask; +/* char *s;*/ + + /* data is returned in the cost array */ + cost_array = ALLOC(int *, cube.num_binary_vars); + for(i = 0; i < cube.num_binary_vars; i++) + cost_array[i] = ALLOC(int, cube.num_binary_vars); + for(i = 0; i < cube.num_binary_vars; i++) + for(j = 0; j < cube.num_binary_vars; j++) + cost_array[i][j] = 0; + + /* Setup the pair structure for pairing variables together */ + PLA->pair = pair_new(1); + PLA->pair->cnt = 1; + + for(var1 = 0; var1 < cube.num_binary_vars-1; var1++) { + for(var2 = var1+1; var2 < cube.num_binary_vars; var2++) { + /* if anything but simple strategy, perform setup */ + if (strategy > 0) { + /* save the original covers */ + Fsave = sf_save(PLA->F); + Dsave = sf_save(PLA->D); + Rsave = sf_save(PLA->R); + + /* save the original cube structure */ + xnum_binary_vars = cube.num_binary_vars; + xnum_vars = cube.num_vars; + xpart_size = ALLOC(int, cube.num_vars); + for(i = 0; i < cube.num_vars; i++) + xpart_size[i] = cube.part_size[i]; + + /* pair two variables together */ + PLA->pair->var1[0] = var1 + 1; + PLA->pair->var2[0] = var2 + 1; + set_pair1(PLA, /* adjust_labels */ FALSE); + } + + + /* decide how to best estimate worth of this pairing */ + switch(strategy) { + case 3: + /*s = "exact minimization";*/ + PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1); + cost = Fsave->count - PLA->F->count; + break; + case 2: + /*s = "full minimization";*/ + PLA->F = espresso(PLA->F, PLA->D, PLA->R); + cost = Fsave->count - PLA->F->count; + break; + case 1: + /*s = "strong division";*/ + PLA->F = reduce(PLA->F, PLA->D); + PLA->F = expand(PLA->F, PLA->R, FALSE); + PLA->F = irredundant(PLA->F, PLA->D); + cost = Fsave->count - PLA->F->count; + break; + case 0: + /*s = "weak division";*/ + mask = new_cube(); + set_or(mask, cube.var_mask[var1], cube.var_mask[var2]); + T = dist_merge(sf_save(PLA->F), mask); + cost = PLA->F->count - T->count; + sf_free(T); + set_free(mask); + } + + cost_array[var1][var2] = cost; + + if (strategy > 0) { + /* restore the original cube structure -- free the new ones */ + setdown_cube(); + FREE(cube.part_size); + cube.num_binary_vars = xnum_binary_vars; + cube.num_vars = xnum_vars; + cube.part_size = xpart_size; + cube_setup(); + + /* restore the original cover(s) -- free the new ones */ + sf_free(PLA->F); + sf_free(PLA->D); + sf_free(PLA->R); + PLA->F = Fsave; + PLA->D = Dsave; + PLA->R = Rsave; + } + } + } + + pair_free(PLA->pair); + PLA->pair = NULL; + return cost_array; +} + +static int best_cost; +static int **cost_array; +static ppair best_pair; +static pset best_phase; +static pPLA global_PLA; +static pcover best_F, best_D, best_R; +static int pair_minim_strategy; + + +print_pair(pair) +ppair pair; +{ + int i; + + printf("pair is"); + for(i = 0; i < pair->cnt; i++) + printf (" (%d %d)", pair->var1[i], pair->var2[i]); + printf("\n"); +} + + +int greedy_best_cost(cost_array_local, pair_p) +int **cost_array_local; +ppair *pair_p; +{ + int i, j, besti, bestj, maxcost, total_cost; + pset cand; + ppair pair; + + pair = pair_new(cube.num_binary_vars); + cand = set_full(cube.num_binary_vars); + total_cost = 0; + + while (set_ord(cand) >= 2) { + maxcost = -1; + for(i = 0; i < cube.num_binary_vars; i++) { + if (is_in_set(cand, i)) { + for(j = i+1; j < cube.num_binary_vars; j++) { + if (is_in_set(cand, j)) { + if (cost_array_local[i][j] > maxcost) { + maxcost = cost_array_local[i][j]; + besti = i; + bestj = j; + } + } + } + } + } + pair->var1[pair->cnt] = besti+1; + pair->var2[pair->cnt] = bestj+1; + pair->cnt++; + set_remove(cand, besti); + set_remove(cand, bestj); + total_cost += maxcost; + } + set_free(cand); + *pair_p = pair; + return total_cost; +} + + +ppair pair_best_cost(cost_array_local) +int **cost_array_local; +{ + ppair pair; + pset candidate; + + best_cost = -1; + best_pair = NULL; + cost_array = cost_array_local; + + pair = pair_new(cube.num_binary_vars); + candidate = set_full(cube.num_binary_vars); + generate_all_pairs(pair, cube.num_binary_vars, candidate, find_best_cost); + pair_free(pair); + set_free(candidate); + return best_pair; +} + + +int find_best_cost(pair) +register ppair pair; +{ + register int i, cost; + + cost = 0; + for(i = 0; i < pair->cnt; i++) + cost += cost_array[pair->var1[i]-1][pair->var2[i]-1]; + if (cost > best_cost) { + best_cost = cost; + best_pair = pair_save(pair, pair->cnt); + } + if ((debug & MINCOV) && trace) { + printf("cost is %d ", cost); + print_pair(pair); + } +} + +/* + pair_all: brute-force approach to try all possible pairings + + pair_strategy is: + 2) for espresso + 3) for minimize_exact + 4) for phase assignment +*/ + +pair_all(PLA, pair_strategy) +pPLA PLA; +int pair_strategy; +{ + ppair pair; + pset candidate; + + global_PLA = PLA; + pair_minim_strategy = pair_strategy; + best_cost = PLA->F->count + 1; + best_pair = NULL; + best_phase = NULL; + best_F = best_D = best_R = NULL; + pair = pair_new(cube.num_binary_vars); + candidate = set_fill(set_new(cube.num_binary_vars), cube.num_binary_vars); + + generate_all_pairs(pair, cube.num_binary_vars, candidate, minimize_pair); + + pair_free(pair); + set_free(candidate); + + PLA->pair = best_pair; + PLA->phase = best_phase; +/* not really necessary + if (phase != NULL) + (void) set_phase(PLA->phase); +*/ + set_pair(PLA); + printf("# "); + print_pair(PLA->pair); + + sf_free(PLA->F); + sf_free(PLA->D); + sf_free(PLA->R); + PLA->F = best_F; + PLA->D = best_D; + PLA->R = best_R; +} + + +/* + * minimize_pair -- called as each pair is generated + */ +int minimize_pair(pair) +ppair pair; +{ + pcover Fsave, Dsave, Rsave; + int i, xnum_binary_vars, xnum_vars, *xpart_size; + + /* save the original covers */ + Fsave = sf_save(global_PLA->F); + Dsave = sf_save(global_PLA->D); + Rsave = sf_save(global_PLA->R); + + /* save the original cube structure */ + xnum_binary_vars = cube.num_binary_vars; + xnum_vars = cube.num_vars; + xpart_size = ALLOC(int, cube.num_vars); + for(i = 0; i < cube.num_vars; i++) + xpart_size[i] = cube.part_size[i]; + + /* setup the paired variables */ + global_PLA->pair = pair; + set_pair1(global_PLA, /* adjust_labels */ FALSE); + + /* call the minimizer */ + if (summary) + print_pair(pair); + switch(pair_minim_strategy) { + case 2: + EXEC_S(phase_assignment(global_PLA,0), "OPO ", global_PLA->F); + if (summary) + printf("# phase is %s\n", pc1(global_PLA->phase)); + break; + case 1: + EXEC_S(global_PLA->F = minimize_exact(global_PLA->F, global_PLA->D, + global_PLA->R, 1), "EXACT ", global_PLA->F); + break; + case 0: + EXEC_S(global_PLA->F = espresso(global_PLA->F, global_PLA->D, + global_PLA->R), "ESPRESSO ", global_PLA->F); + break; + default: + break; + } + + /* see if we have a new best solution */ + if (global_PLA->F->count < best_cost) { + best_cost = global_PLA->F->count; + best_pair = pair_save(pair, pair->cnt); + best_phase = global_PLA->phase!=NULL?set_save(global_PLA->phase):NULL; + if (best_F != NULL) sf_free(best_F); + if (best_D != NULL) sf_free(best_D); + if (best_R != NULL) sf_free(best_R); + best_F = sf_save(global_PLA->F); + best_D = sf_save(global_PLA->D); + best_R = sf_save(global_PLA->R); + } + + /* restore the original cube structure -- free the new ones */ + setdown_cube(); + FREE(cube.part_size); + cube.num_binary_vars = xnum_binary_vars; + cube.num_vars = xnum_vars; + cube.part_size = xpart_size; + cube_setup(); + + /* restore the original cover(s) -- free the new ones */ + sf_free(global_PLA->F); + sf_free(global_PLA->D); + sf_free(global_PLA->R); + global_PLA->F = Fsave; + global_PLA->D = Dsave; + global_PLA->R = Rsave; + global_PLA->pair = NULL; + global_PLA->phase = NULL; +} + +generate_all_pairs(pair, n, candidate, action) +ppair pair; +int n; +pset candidate; +int (*action)(); +{ + int i, j; + pset recur_candidate; + ppair recur_pair; + + if (set_ord(candidate) < 2) { + (*action)(pair); + return; + } + + recur_pair = pair_save(pair, n); + recur_candidate = set_save(candidate); + + /* Find first variable still in the candidate set */ + for(i = 0; i < n; i++) + if (is_in_set(candidate, i)) + break; + + /* Try all pairs of i with other variables */ + for(j = i+1; j < n; j++) + if (is_in_set(candidate, j)) { + /* pair (i j) -- remove from candidate set for future pairings */ + set_remove(recur_candidate, i); + set_remove(recur_candidate, j); + + /* add to the pair array */ + recur_pair->var1[recur_pair->cnt] = i+1; + recur_pair->var2[recur_pair->cnt] = j+1; + recur_pair->cnt++; + + /* recur looking for the end ... */ + generate_all_pairs(recur_pair, n, recur_candidate, action); + + /* now break this pair, and restore candidate set */ + recur_pair->cnt--; + set_insert(recur_candidate, i); + set_insert(recur_candidate, j); + } + + /* if odd, generate all pairs which do NOT include i */ + if ((set_ord(candidate) % 2) == 1) { + set_remove(recur_candidate, i); + generate_all_pairs(recur_pair, n, recur_candidate, action); + } + + pair_free(recur_pair); + set_free(recur_candidate); +} + +ppair pair_new(n) +register int n; +{ + register ppair pair1; + + pair1 = ALLOC(pair_t, 1); + pair1->cnt = 0; + pair1->var1 = ALLOC(int, n); + pair1->var2 = ALLOC(int, n); + return pair1; +} + + +ppair pair_save(pair, n) +register ppair pair; +register int n; +{ + register int k; + register ppair pair1; + + pair1 = pair_new(n); + pair1->cnt = pair->cnt; + for(k = 0; k < pair->cnt; k++) { + pair1->var1[k] = pair->var1[k]; + pair1->var2[k] = pair->var2[k]; + } + return pair1; +} + + +int pair_free(pair) +register ppair pair; +{ + FREE(pair->var1); + FREE(pair->var2); + FREE(pair); +} |