summaryrefslogtreecommitdiffstats
path: root/src/misc/espresso/hack.c
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
committerAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
commit0c6505a26a537dc911b6566f82d759521e527c08 (patch)
treef2687995efd4943fe3b1307fce7ef5942d0a57b3 /src/misc/espresso/hack.c
parent4d30a1e4f1edecff86d5066ce4653a370e59e5e1 (diff)
downloadabc-0c6505a26a537dc911b6566f82d759521e527c08.tar.gz
abc-0c6505a26a537dc911b6566f82d759521e527c08.tar.bz2
abc-0c6505a26a537dc911b6566f82d759521e527c08.zip
Version abc80130_2
Diffstat (limited to 'src/misc/espresso/hack.c')
-rw-r--r--src/misc/espresso/hack.c641
1 files changed, 641 insertions, 0 deletions
diff --git a/src/misc/espresso/hack.c b/src/misc/espresso/hack.c
new file mode 100644
index 00000000..927f5341
--- /dev/null
+++ b/src/misc/espresso/hack.c
@@ -0,0 +1,641 @@
+/*
+ * Revision Control Information
+ *
+ * $Source$
+ * $Author$
+ * $Revision$
+ * $Date$
+ *
+ */
+#include "espresso.h"
+
+map_dcset(PLA)
+pPLA PLA;
+{
+ int var, i;
+ pcover Tplus, Tminus, Tplusbar, Tminusbar;
+ pcover newf, term1, term2, dcset, dcsetbar;
+ pcube cplus, cminus, last, p;
+
+ if (PLA->label == NIL(char *) || PLA->label[0] == NIL(char))
+ return;
+
+ /* try to find a binary variable named "DONT_CARE" */
+ var = -1;
+ for(i = 0; i < cube.num_binary_vars * 2; i++) {
+ if (strncmp(PLA->label[i], "DONT_CARE", 9) == 0 ||
+ strncmp(PLA->label[i], "DONTCARE", 8) == 0 ||
+ strncmp(PLA->label[i], "dont_care", 9) == 0 ||
+ strncmp(PLA->label[i], "dontcare", 8) == 0) {
+ var = i/2;
+ break;
+ }
+ }
+ if (var == -1) {
+ return;
+ }
+
+ /* form the cofactor cubes for the don't-care variable */
+ cplus = set_save(cube.fullset);
+ cminus = set_save(cube.fullset);
+ set_remove(cplus, var*2);
+ set_remove(cminus, var*2 + 1);
+
+ /* form the don't-care set */
+ EXEC(simp_comp(cofactor(cube1list(PLA->F), cplus), &Tplus, &Tplusbar),
+ "simpcomp+", Tplus);
+ EXEC(simp_comp(cofactor(cube1list(PLA->F), cminus), &Tminus, &Tminusbar),
+ "simpcomp-", Tminus);
+ EXEC(term1 = cv_intersect(Tplus, Tminusbar), "term1 ", term1);
+ EXEC(term2 = cv_intersect(Tminus, Tplusbar), "term2 ", term2);
+ EXEC(dcset = sf_union(term1, term2), "union ", dcset);
+ EXEC(simp_comp(cube1list(dcset), &PLA->D, &dcsetbar), "simplify", PLA->D);
+ EXEC(newf = cv_intersect(PLA->F, dcsetbar), "separate ", PLA->F);
+ free_cover(PLA->F);
+ PLA->F = newf;
+ free_cover(Tplus);
+ free_cover(Tminus);
+ free_cover(Tplusbar);
+ free_cover(Tminusbar);
+ free_cover(dcsetbar);
+
+ /* remove any cubes dependent on the DONT_CARE variable */
+ (void) sf_active(PLA->F);
+ foreach_set(PLA->F, last, p) {
+ if (! is_in_set(p, var*2) || ! is_in_set(p, var*2+1)) {
+ RESET(p, ACTIVE);
+ }
+ }
+ PLA->F = sf_inactive(PLA->F);
+
+ /* resize the cube and delete the don't-care variable */
+ setdown_cube();
+ for(i = 2*var+2; i < cube.size; i++) {
+ PLA->label[i-2] = PLA->label[i];
+ }
+ for(i = var+1; i < cube.num_vars; i++) {
+ cube.part_size[i-1] = cube.part_size[i];
+ }
+ cube.num_binary_vars--;
+ cube.num_vars--;
+ cube_setup();
+ PLA->F = sf_delc(PLA->F, 2*var, 2*var+1);
+ PLA->D = sf_delc(PLA->D, 2*var, 2*var+1);
+}
+
+map_output_symbolic(PLA)
+pPLA PLA;
+{
+ pset_family newF, newD;
+ pset compress;
+ symbolic_t *p1;
+ symbolic_list_t *p2;
+ int i, bit, tot_size, base, old_size;
+
+ /* Remove the DC-set from the ON-set (is this necessary ??) */
+ if (PLA->D->count > 0) {
+ sf_free(PLA->F);
+ PLA->F = complement(cube2list(PLA->D, PLA->R));
+ }
+
+ /* tot_size = width added for all symbolic variables */
+ tot_size = 0;
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ if (p2->pos<0 || p2->pos>=cube.part_size[cube.output]) {
+ fatal("symbolic-output index out of range");
+/* } else if (p2->variable != cube.output) {
+ fatal("symbolic-output label must be an output");*/
+ }
+ }
+ tot_size += 1 << p1->symbolic_list_length;
+ }
+
+ /* adjust the indices to skip over new outputs */
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ p2->pos += tot_size;
+ }
+ }
+
+ /* resize the cube structure -- add enough for the one-hot outputs */
+ old_size = cube.size;
+ cube.part_size[cube.output] += tot_size;
+ setdown_cube();
+ cube_setup();
+
+ /* insert space in the output part for the one-hot output */
+ base = cube.first_part[cube.output];
+ PLA->F = sf_addcol(PLA->F, base, tot_size);
+ PLA->D = sf_addcol(PLA->D, base, tot_size);
+ PLA->R = sf_addcol(PLA->R, base, tot_size);
+
+ /* do the real work */
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ newF = new_cover(100);
+ newD = new_cover(100);
+ find_inputs(NIL(set_family_t), PLA, p1->symbolic_list, base, 0,
+ &newF, &newD);
+/*
+ * Not sure what this means
+ find_dc_inputs(PLA, p1->symbolic_list,
+ base, 1 << p1->symbolic_list_length, &newF, &newD);
+ */
+ free_cover(PLA->F);
+ PLA->F = newF;
+/*
+ * retain OLD DC-set -- but we've lost the don't-care arc information
+ * (it defaults to branch to the zero state)
+ free_cover(PLA->D);
+ PLA->D = newD;
+ */
+ free_cover(newD);
+ base += 1 << p1->symbolic_list_length;
+ }
+
+ /* delete the old outputs, and resize the cube */
+ compress = set_full(newF->sf_size);
+ for(p1=PLA->symbolic_output; p1!=NIL(symbolic_t); p1=p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ bit = cube.first_part[cube.output] + p2->pos;
+ set_remove(compress, bit);
+ }
+ }
+ cube.part_size[cube.output] -= newF->sf_size - set_ord(compress);
+ setdown_cube();
+ cube_setup();
+ PLA->F = sf_compress(PLA->F, compress);
+ PLA->D = sf_compress(PLA->D, compress);
+ if (cube.size != PLA->F->sf_size) fatal("error");
+
+ /* Quick minimization */
+ PLA->F = sf_contain(PLA->F);
+ PLA->D = sf_contain(PLA->D);
+ for(i = 0; i < cube.num_vars; i++) {
+ PLA->F = d1merge(PLA->F, i);
+ PLA->D = d1merge(PLA->D, i);
+ }
+ PLA->F = sf_contain(PLA->F);
+ PLA->D = sf_contain(PLA->D);
+
+ free_cover(PLA->R);
+ PLA->R = new_cover(0);
+
+ symbolic_hack_labels(PLA, PLA->symbolic_output,
+ compress, cube.size, old_size, tot_size);
+ set_free(compress);
+}
+
+
+find_inputs(A, PLA, list, base, value, newF, newD)
+pcover A;
+pPLA PLA;
+symbolic_list_t *list;
+int base, value;
+pcover *newF, *newD;
+{
+ pcover S, S1;
+ register pset last, p;
+
+ /*
+ * A represents th 'input' values for which the outputs assume
+ * the integer value 'value
+ */
+ if (list == NIL(symbolic_list_t)) {
+ /*
+ * Simulate these inputs against the on-set; then, insert into the
+ * new on-set a 1 in the proper position
+ */
+ S = cv_intersect(A, PLA->F);
+ foreach_set(S, last, p) {
+ set_insert(p, base + value);
+ }
+ *newF = sf_append(*newF, S);
+
+ /*
+ * 'simulate' these inputs against the don't-care set
+ S = cv_intersect(A, PLA->D);
+ *newD = sf_append(*newD, S);
+ */
+
+ } else {
+ /* intersect and recur with the OFF-set */
+ S = cof_output(PLA->R, cube.first_part[cube.output] + list->pos);
+ if (A != NIL(set_family_t)) {
+ S1 = cv_intersect(A, S);
+ free_cover(S);
+ S = S1;
+ }
+ find_inputs(S, PLA, list->next, base, value*2, newF, newD);
+ free_cover(S);
+
+ /* intersect and recur with the ON-set */
+ S = cof_output(PLA->F, cube.first_part[cube.output] + list->pos);
+ if (A != NIL(set_family_t)) {
+ S1 = cv_intersect(A, S);
+ free_cover(S);
+ S = S1;
+ }
+ find_inputs(S, PLA, list->next, base, value*2 + 1, newF, newD);
+ free_cover(S);
+ }
+}
+
+
+#if 0
+find_dc_inputs(PLA, list, base, maxval, newF, newD)
+pPLA PLA;
+symbolic_list_t *list;
+int base, maxval;
+pcover *newF, *newD;
+{
+ pcover A, S, S1;
+ symbolic_list_t *p2;
+ register pset p, last;
+ register int i;
+
+ /* painfully find the points for which the symbolic output is dc */
+ A = NIL(set_family_t);
+ for(p2=list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ S = cof_output(PLA->D, cube.first_part[cube.output] + p2->pos);
+ if (A == NIL(set_family_t)) {
+ A = S;
+ } else {
+ S1 = cv_intersect(A, S);
+ free_cover(S);
+ free_cover(A);
+ A = S1;
+ }
+ }
+
+ S = cv_intersect(A, PLA->F);
+ *newF = sf_append(*newF, S);
+
+ S = cv_intersect(A, PLA->D);
+ foreach_set(S, last, p) {
+ for(i = base; i < base + maxval; i++) {
+ set_insert(p, i);
+ }
+ }
+ *newD = sf_append(*newD, S);
+ free_cover(A);
+}
+#endif
+
+map_symbolic(PLA)
+pPLA PLA;
+{
+ symbolic_t *p1;
+ symbolic_list_t *p2;
+ int var, base, num_vars, num_binary_vars, *new_part_size;
+ int new_size, size_added, num_deleted_vars, num_added_vars, newvar;
+ pset compress;
+
+ /* Verify legal values are in the symbolic lists */
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ if (p2->variable < 0 || p2->variable >= cube.num_binary_vars) {
+ fatal(".symbolic requires binary variables");
+ }
+ }
+ }
+
+ /*
+ * size_added = width added for all symbolic variables
+ * num_deleted_vars = # binary variables to be deleted
+ * num_added_vars = # new mv variables
+ * compress = a cube which will be used to compress the set families
+ */
+ size_added = 0;
+ num_added_vars = 0;
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ size_added += 1 << p1->symbolic_list_length;
+ num_added_vars++;
+ }
+ compress = set_full(PLA->F->sf_size + size_added);
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ for(p2=p1->symbolic_list; p2!=NIL(symbolic_list_t); p2=p2->next) {
+ set_remove(compress, p2->variable*2);
+ set_remove(compress, p2->variable*2+1);
+ }
+ }
+ num_deleted_vars = ((PLA->F->sf_size + size_added) - set_ord(compress))/2;
+
+ /* compute the new cube constants */
+ num_vars = cube.num_vars - num_deleted_vars + num_added_vars;
+ num_binary_vars = cube.num_binary_vars - num_deleted_vars;
+ new_size = cube.size - num_deleted_vars*2 + size_added;
+ new_part_size = ALLOC(int, num_vars);
+ new_part_size[num_vars-1] = cube.part_size[cube.num_vars-1];
+ for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) {
+ new_part_size[var-num_deleted_vars] = cube.part_size[var];
+ }
+
+ /* re-size the covers, opening room for the new mv variables */
+ base = cube.first_part[cube.output];
+ PLA->F = sf_addcol(PLA->F, base, size_added);
+ PLA->D = sf_addcol(PLA->D, base, size_added);
+ PLA->R = sf_addcol(PLA->R, base, size_added);
+
+ /* compute the values for the new mv variables */
+ newvar = (cube.num_vars - 1) - num_deleted_vars;
+ for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) {
+ PLA->F = map_symbolic_cover(PLA->F, p1->symbolic_list, base);
+ PLA->D = map_symbolic_cover(PLA->D, p1->symbolic_list, base);
+ PLA->R = map_symbolic_cover(PLA->R, p1->symbolic_list, base);
+ base += 1 << p1->symbolic_list_length;
+ new_part_size[newvar++] = 1 << p1->symbolic_list_length;
+ }
+
+ /* delete the binary variables which disappear */
+ PLA->F = sf_compress(PLA->F, compress);
+ PLA->D = sf_compress(PLA->D, compress);
+ PLA->R = sf_compress(PLA->R, compress);
+
+ symbolic_hack_labels(PLA, PLA->symbolic, compress,
+ new_size, cube.size, size_added);
+ setdown_cube();
+ FREE(cube.part_size);
+ cube.num_vars = num_vars;
+ cube.num_binary_vars = num_binary_vars;
+ cube.part_size = new_part_size;
+ cube_setup();
+ set_free(compress);
+}
+
+
+pcover map_symbolic_cover(T, list, base)
+pcover T;
+symbolic_list_t *list;
+int base;
+{
+ pset last, p;
+ foreach_set(T, last, p) {
+ form_bitvector(p, base, 0, list);
+ }
+ return T;
+}
+
+
+form_bitvector(p, base, value, list)
+pset p; /* old cube, looking at binary variables */
+int base; /* where in mv cube the new variable starts */
+int value; /* current value for this recursion */
+symbolic_list_t *list; /* current place in the symbolic list */
+{
+ if (list == NIL(symbolic_list_t)) {
+ set_insert(p, base + value);
+ } else {
+ switch(GETINPUT(p, list->variable)) {
+ case ZERO:
+ form_bitvector(p, base, value*2, list->next);
+ break;
+ case ONE:
+ form_bitvector(p, base, value*2+1, list->next);
+ break;
+ case TWO:
+ form_bitvector(p, base, value*2, list->next);
+ form_bitvector(p, base, value*2+1, list->next);
+ break;
+ default:
+ fatal("bad cube in form_bitvector");
+ }
+ }
+}
+
+
+symbolic_hack_labels(PLA, list, compress, new_size, old_size, size_added)
+pPLA PLA;
+symbolic_t *list;
+pset compress;
+int new_size, old_size, size_added;
+{
+ int i, base;
+ char **oldlabel;
+ symbolic_t *p1;
+ symbolic_label_t *p3;
+
+ /* hack with the labels */
+ if ((oldlabel = PLA->label) == NIL(char *))
+ return;
+ PLA->label = ALLOC(char *, new_size);
+ for(i = 0; i < new_size; i++) {
+ PLA->label[i] = NIL(char);
+ }
+
+ /* copy the binary variable labels and unchanged mv variable labels */
+ base = 0;
+ for(i = 0; i < cube.first_part[cube.output]; i++) {
+ if (is_in_set(compress, i)) {
+ PLA->label[base++] = oldlabel[i];
+ } else {
+ if (oldlabel[i] != NIL(char)) {
+ FREE(oldlabel[i]);
+ }
+ }
+ }
+
+ /* add the user-defined labels for the symbolic outputs */
+ for(p1 = list; p1 != NIL(symbolic_t); p1 = p1->next) {
+ p3 = p1->symbolic_label;
+ for(i = 0; i < (1 << p1->symbolic_list_length); i++) {
+ if (p3 == NIL(symbolic_label_t)) {
+ PLA->label[base+i] = ALLOC(char, 10);
+ (void) sprintf(PLA->label[base+i], "X%d", i);
+ } else {
+ PLA->label[base+i] = p3->label;
+ p3 = p3->next;
+ }
+ }
+ base += 1 << p1->symbolic_list_length;
+ }
+
+ /* copy the labels for the binary outputs which remain */
+ for(i = cube.first_part[cube.output]; i < old_size; i++) {
+ if (is_in_set(compress, i + size_added)) {
+ PLA->label[base++] = oldlabel[i];
+ } else {
+ if (oldlabel[i] != NIL(char)) {
+ FREE(oldlabel[i]);
+ }
+ }
+ }
+ FREE(oldlabel);
+}
+
+static pcover fsm_simplify(F)
+pcover F;
+{
+ pcover D, R;
+ D = new_cover(0);
+ R = complement(cube1list(F));
+ F = espresso(F, D, R);
+ free_cover(D);
+ free_cover(R);
+ return F;
+}
+
+
+disassemble_fsm(PLA, verbose_mode)
+pPLA PLA;
+int verbose_mode;
+{
+ int nin, nstates, nout;
+ int before, after, present_state, next_state, i, j;
+ pcube next_state_mask, present_state_mask, state_mask, p, p1, last;
+ pcover go_nowhere, F, tF;
+
+ /* We make the DISGUSTING assumption that the first 'n' outputs have
+ * been created by .symbolic-output, and represent a one-hot encoding
+ * of the next state. 'n' is the size of the second-to-last multiple-
+ * valued variable (i.e., before the outputs
+ */
+
+ if (cube.num_vars - cube.num_binary_vars != 2) {
+ (void) fprintf(stderr,
+ "use .symbolic and .symbolic-output to specify\n");
+ (void) fprintf(stderr,
+ "the present state and next state field information\n");
+ fatal("disassemble_pla: need two multiple-valued variables\n");
+ }
+
+ nin = cube.num_binary_vars;
+ nstates = cube.part_size[cube.num_binary_vars];
+ nout = cube.part_size[cube.num_vars - 1];
+ if (nout < nstates) {
+ (void) fprintf(stderr,
+ "use .symbolic and .symbolic-output to specify\n");
+ (void) fprintf(stderr,
+ "the present state and next state field information\n");
+ fatal("disassemble_pla: # outputs < # states\n");
+ }
+
+
+ present_state = cube.first_part[cube.num_binary_vars];
+ present_state_mask = new_cube();
+ for(i = 0; i < nstates; i++) {
+ set_insert(present_state_mask, i + present_state);
+ }
+
+ next_state = cube.first_part[cube.num_binary_vars+1];
+ next_state_mask = new_cube();
+ for(i = 0; i < nstates; i++) {
+ set_insert(next_state_mask, i + next_state);
+ }
+
+ state_mask = set_or(new_cube(), next_state_mask, present_state_mask);
+
+ F = new_cover(10);
+
+
+ /*
+ * check for arcs which go from ANY state to state #i
+ */
+ for(i = 0; i < nstates; i++) {
+ tF = new_cover(10);
+ foreach_set(PLA->F, last, p) {
+ if (setp_implies(present_state_mask, p)) { /* from any state ! */
+ if (is_in_set(p, next_state + i)) {
+ tF = sf_addset(tF, p);
+ }
+ }
+ }
+ before = tF->count;
+ if (before > 0) {
+ tF = fsm_simplify(tF);
+ /* don't allow the next state to disappear ... */
+ foreach_set(tF, last, p) {
+ set_insert(p, next_state + i);
+ }
+ after = tF->count;
+ F = sf_append(F, tF);
+ if (verbose_mode) {
+ printf("# state EVERY to %d, before=%d after=%d\n",
+ i, before, after);
+ }
+ }
+ }
+
+
+ /*
+ * some 'arcs' may NOT have a next state -- handle these
+ * we must unravel the present state part
+ */
+ go_nowhere = new_cover(10);
+ foreach_set(PLA->F, last, p) {
+ if (setp_disjoint(p, next_state_mask)) { /* no next state !! */
+ go_nowhere = sf_addset(go_nowhere, p);
+ }
+ }
+ before = go_nowhere->count;
+ go_nowhere = unravel_range(go_nowhere,
+ cube.num_binary_vars, cube.num_binary_vars);
+ after = go_nowhere->count;
+ F = sf_append(F, go_nowhere);
+ if (verbose_mode) {
+ printf("# state ANY to NOWHERE, before=%d after=%d\n", before, after);
+ }
+
+
+ /*
+ * minimize cover for all arcs from state #i to state #j
+ */
+ for(i = 0; i < nstates; i++) {
+ for(j = 0; j < nstates; j++) {
+ tF = new_cover(10);
+ foreach_set(PLA->F, last, p) {
+ /* not EVERY state */
+ if (! setp_implies(present_state_mask, p)) {
+ if (is_in_set(p, present_state + i)) {
+ if (is_in_set(p, next_state + j)) {
+ p1 = set_save(p);
+ set_diff(p1, p1, state_mask);
+ set_insert(p1, present_state + i);
+ set_insert(p1, next_state + j);
+ tF = sf_addset(tF, p1);
+ set_free(p1);
+ }
+ }
+ }
+ }
+ before = tF->count;
+ if (before > 0) {
+ tF = fsm_simplify(tF);
+ /* don't allow the next state to disappear ... */
+ foreach_set(tF, last, p) {
+ set_insert(p, next_state + j);
+ }
+ after = tF->count;
+ F = sf_append(F, tF);
+ if (verbose_mode) {
+ printf("# state %d to %d, before=%d after=%d\n",
+ i, j, before, after);
+ }
+ }
+ }
+ }
+
+
+ free_cube(state_mask);
+ free_cube(present_state_mask);
+ free_cube(next_state_mask);
+
+ free_cover(PLA->F);
+ PLA->F = F;
+ free_cover(PLA->D);
+ PLA->D = new_cover(0);
+
+ setdown_cube();
+ FREE(cube.part_size);
+ cube.num_binary_vars = nin;
+ cube.num_vars = nin + 3;
+ cube.part_size = ALLOC(int, cube.num_vars);
+ cube.part_size[cube.num_binary_vars] = nstates;
+ cube.part_size[cube.num_binary_vars+1] = nstates;
+ cube.part_size[cube.num_binary_vars+2] = nout - nstates;
+ cube_setup();
+
+ foreach_set(PLA->F, last, p) {
+ kiss_print_cube(stdout, PLA, p, "~1");
+ }
+}