diff options
author | Alan Mishchenko <alanmi@berkeley.edu> | 2007-10-01 08:01:00 -0700 |
---|---|---|
committer | Alan Mishchenko <alanmi@berkeley.edu> | 2007-10-01 08:01:00 -0700 |
commit | 4812c90424dfc40d26725244723887a2d16ddfd9 (patch) | |
tree | b32ace96e7e2d84d586e09ba605463b6f49c3271 /src/bdd/cudd/cuddApprox.c | |
parent | e54d9691616b9a0326e2fdb3156bb4eeb8abfcd7 (diff) | |
download | abc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.gz abc-4812c90424dfc40d26725244723887a2d16ddfd9.tar.bz2 abc-4812c90424dfc40d26725244723887a2d16ddfd9.zip |
Version abc71001
Diffstat (limited to 'src/bdd/cudd/cuddApprox.c')
-rw-r--r-- | src/bdd/cudd/cuddApprox.c | 2192 |
1 files changed, 2192 insertions, 0 deletions
diff --git a/src/bdd/cudd/cuddApprox.c b/src/bdd/cudd/cuddApprox.c new file mode 100644 index 00000000..debcf48b --- /dev/null +++ b/src/bdd/cudd/cuddApprox.c @@ -0,0 +1,2192 @@ +/**CFile*********************************************************************** + + FileName [cuddApprox.c] + + PackageName [cudd] + + Synopsis [Procedures to approximate a given BDD.] + + Description [External procedures provided by this module: + <ul> + <li> Cudd_UnderApprox() + <li> Cudd_OverApprox() + <li> Cudd_RemapUnderApprox() + <li> Cudd_RemapOverApprox() + <li> Cudd_BiasedUnderApprox() + <li> Cudd_BiasedOverApprox() + </ul> + Internal procedures included in this module: + <ul> + <li> cuddUnderApprox() + <li> cuddRemapUnderApprox() + <li> cuddBiasedUnderApprox() + </ul> + Static procedures included in this module: + <ul> + <li> gatherInfoAux() + <li> gatherInfo() + <li> computeSavings() + <li> UAmarkNodes() + <li> UAbuildSubset() + <li> updateRefs() + <li> RAmarkNodes() + <li> BAmarkNodes() + <li> RAbuildSubset() + </ul> + ] + + SeeAlso [cuddSubsetHB.c cuddSubsetSP.c cuddGenCof.c] + + Author [Fabio Somenzi] + + Copyright [This file was created at the University of Colorado at + Boulder. The University of Colorado at Boulder makes no + warranty about the suitability of this software for any + purpose. It is presented on an AS IS basis.] + +******************************************************************************/ + +#ifdef __STDC__ +#include <float.h> +#else +#define DBL_MAX_EXP 1024 +#endif +#include "util_hack.h" +#include "cuddInt.h" + +/*---------------------------------------------------------------------------*/ +/* Constant declarations */ +/*---------------------------------------------------------------------------*/ + +#define NOTHING 0 +#define REPLACE_T 1 +#define REPLACE_E 2 +#define REPLACE_N 3 +#define REPLACE_TT 4 +#define REPLACE_TE 5 + +#define DONT_CARE 0 +#define CARE 1 +#define TOTAL_CARE 2 +#define CARE_ERROR 3 + +/*---------------------------------------------------------------------------*/ +/* Stucture declarations */ +/*---------------------------------------------------------------------------*/ + +/*---------------------------------------------------------------------------*/ +/* Type declarations */ +/*---------------------------------------------------------------------------*/ + +/* Data structure to store the information on each node. It keeps the +** number of minterms of the function rooted at this node in terms of +** the number of variables specified by the user; the number of +** minterms of the complement; the impact of the number of minterms of +** this function on the number of minterms of the root function; the +** reference count of the node from within the root function; the +** reference count of the node from an internal node; and the flag +** that says whether the node should be replaced and how. */ +typedef struct NodeData { + double mintermsP; /* minterms for the regular node */ + double mintermsN; /* minterms for the complemented node */ + int functionRef; /* references from within this function */ + char care; /* node intersects care set */ + char replace; /* replacement decision */ + short int parity; /* 1: even; 2: odd; 3: both */ + DdNode *resultP; /* result for even parity */ + DdNode *resultN; /* result for odd parity */ +} NodeData; + +typedef struct ApproxInfo { + DdNode *one; /* one constant */ + DdNode *zero; /* BDD zero constant */ + NodeData *page; /* per-node information */ + st_table *table; /* hash table to access the per-node info */ + int index; /* index of the current node */ + double max; /* max number of minterms */ + int size; /* how many nodes are left */ + double minterms; /* how many minterms are left */ +} ApproxInfo; + +/* Item of the queue used in the levelized traversal of the BDD. */ +#ifdef __osf__ +#pragma pointer_size save +#pragma pointer_size short +#endif +typedef struct GlobalQueueItem { + struct GlobalQueueItem *next; + struct GlobalQueueItem *cnext; + DdNode *node; + double impactP; + double impactN; +} GlobalQueueItem; + +typedef struct LocalQueueItem { + struct LocalQueueItem *next; + struct LocalQueueItem *cnext; + DdNode *node; + int localRef; +} LocalQueueItem; +#ifdef __osf__ +#pragma pointer_size restore +#endif + + +/*---------------------------------------------------------------------------*/ +/* Variable declarations */ +/*---------------------------------------------------------------------------*/ + +#ifndef lint +static char rcsid[] DD_UNUSED = "$Id: cuddApprox.c,v 1.1.1.1 2003/02/24 22:23:51 wjiang Exp $"; +#endif + +/*---------------------------------------------------------------------------*/ +/* Macro declarations */ +/*---------------------------------------------------------------------------*/ + +/**AutomaticStart*************************************************************/ + +/*---------------------------------------------------------------------------*/ +/* Static function prototypes */ +/*---------------------------------------------------------------------------*/ + +static void updateParity ARGS((DdNode *node, ApproxInfo *info, int newparity)); +static NodeData * gatherInfoAux ARGS((DdNode *node, ApproxInfo *info, int parity)); +static ApproxInfo * gatherInfo ARGS((DdManager *dd, DdNode *node, int numVars, int parity)); +static int computeSavings ARGS((DdManager *dd, DdNode *f, DdNode *skip, ApproxInfo *info, DdLevelQueue *queue)); +static int updateRefs ARGS((DdManager *dd, DdNode *f, DdNode *skip, ApproxInfo *info, DdLevelQueue *queue)); +static int UAmarkNodes ARGS((DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, int safe, double quality)); +static DdNode * UAbuildSubset ARGS((DdManager *dd, DdNode *node, ApproxInfo *info)); +static int RAmarkNodes ARGS((DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, double quality)); +static int BAmarkNodes ARGS((DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, double quality1, double quality0)); +static DdNode * RAbuildSubset ARGS((DdManager *dd, DdNode *node, ApproxInfo *info)); +static int BAapplyBias ARGS((DdManager *dd, DdNode *f, DdNode *b, ApproxInfo *info, DdHashTable *cache)); + +/**AutomaticEnd***************************************************************/ + + +/*---------------------------------------------------------------------------*/ +/* Definition of exported functions */ +/*---------------------------------------------------------------------------*/ + +/**Function******************************************************************** + + Synopsis [Extracts a dense subset from a BDD with Shiple's + underapproximation method.] + + Description [Extracts a dense subset from a BDD. This procedure uses + a variant of Tom Shiple's underapproximation method. The main + difference from the original method is that density is used as cost + function. Returns a pointer to the BDD of the subset if + successful. NULL if the procedure runs out of memory. The parameter + numVars is the maximum number of variables to be used in minterm + calculation. The optimal number should be as close as possible to + the size of the support of f. However, it is safe to pass the value + returned by Cudd_ReadSize for numVars when the number of variables + is under 1023. If numVars is larger than 1023, it will cause + overflow. If a 0 parameter is passed then the procedure will compute + a value which will avoid overflow but will cause underflow with 2046 + variables or more.] + + SideEffects [None] + + SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_ReadSize] + +******************************************************************************/ +DdNode * +Cudd_UnderApprox( + DdManager * dd /* manager */, + DdNode * f /* function to be subset */, + int numVars /* number of variables in the support of f */, + int threshold /* when to stop approximation */, + int safe /* enforce safe approximation */, + double quality /* minimum improvement for accepted changes */) +{ + DdNode *subset; + + do { + dd->reordered = 0; + subset = cuddUnderApprox(dd, f, numVars, threshold, safe, quality); + } while (dd->reordered == 1); + + return(subset); + +} /* end of Cudd_UnderApprox */ + + +/**Function******************************************************************** + + Synopsis [Extracts a dense superset from a BDD with Shiple's + underapproximation method.] + + Description [Extracts a dense superset from a BDD. The procedure is + identical to the underapproximation procedure except for the fact that it + works on the complement of the given function. Extracting the subset + of the complement function is equivalent to extracting the superset + of the function. + Returns a pointer to the BDD of the superset if successful. NULL if + intermediate result causes the procedure to run out of memory. The + parameter numVars is the maximum number of variables to be used in + minterm calculation. The optimal number + should be as close as possible to the size of the support of f. + However, it is safe to pass the value returned by Cudd_ReadSize for + numVars when the number of variables is under 1023. If numVars is + larger than 1023, it will overflow. If a 0 parameter is passed then + the procedure will compute a value which will avoid overflow but + will cause underflow with 2046 variables or more.] + + SideEffects [None] + + SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] + +******************************************************************************/ +DdNode * +Cudd_OverApprox( + DdManager * dd /* manager */, + DdNode * f /* function to be superset */, + int numVars /* number of variables in the support of f */, + int threshold /* when to stop approximation */, + int safe /* enforce safe approximation */, + double quality /* minimum improvement for accepted changes */) +{ + DdNode *subset, *g; + + g = Cudd_Not(f); + do { + dd->reordered = 0; + subset = cuddUnderApprox(dd, g, numVars, threshold, safe, quality); + } while (dd->reordered == 1); + + return(Cudd_NotCond(subset, (subset != NULL))); + +} /* end of Cudd_OverApprox */ + + +/**Function******************************************************************** + + Synopsis [Extracts a dense subset from a BDD with the remapping + underapproximation method.] + + Description [Extracts a dense subset from a BDD. This procedure uses + a remapping technique and density as the cost function. + Returns a pointer to the BDD of the subset if + successful. NULL if the procedure runs out of memory. The parameter + numVars is the maximum number of variables to be used in minterm + calculation. The optimal number should be as close as possible to + the size of the support of f. However, it is safe to pass the value + returned by Cudd_ReadSize for numVars when the number of variables + is under 1023. If numVars is larger than 1023, it will cause + overflow. If a 0 parameter is passed then the procedure will compute + a value which will avoid overflow but will cause underflow with 2046 + variables or more.] + + SideEffects [None] + + SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_UnderApprox Cudd_ReadSize] + +******************************************************************************/ +DdNode * +Cudd_RemapUnderApprox( + DdManager * dd /* manager */, + DdNode * f /* function to be subset */, + int numVars /* number of variables in the support of f */, + int threshold /* when to stop approximation */, + double quality /* minimum improvement for accepted changes */) +{ + DdNode *subset; + + do { + dd->reordered = 0; + subset = cuddRemapUnderApprox(dd, f, numVars, threshold, quality); + } while (dd->reordered == 1); + + return(subset); + +} /* end of Cudd_RemapUnderApprox */ + + +/**Function******************************************************************** + + Synopsis [Extracts a dense superset from a BDD with the remapping + underapproximation method.] + + Description [Extracts a dense superset from a BDD. The procedure is + identical to the underapproximation procedure except for the fact that it + works on the complement of the given function. Extracting the subset + of the complement function is equivalent to extracting the superset + of the function. + Returns a pointer to the BDD of the superset if successful. NULL if + intermediate result causes the procedure to run out of memory. The + parameter numVars is the maximum number of variables to be used in + minterm calculation. The optimal number + should be as close as possible to the size of the support of f. + However, it is safe to pass the value returned by Cudd_ReadSize for + numVars when the number of variables is under 1023. If numVars is + larger than 1023, it will overflow. If a 0 parameter is passed then + the procedure will compute a value which will avoid overflow but + will cause underflow with 2046 variables or more.] + + SideEffects [None] + + SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] + +******************************************************************************/ +DdNode * +Cudd_RemapOverApprox( + DdManager * dd /* manager */, + DdNode * f /* function to be superset */, + int numVars /* number of variables in the support of f */, + int threshold /* when to stop approximation */, + double quality /* minimum improvement for accepted changes */) +{ + DdNode *subset, *g; + + g = Cudd_Not(f); + do { + dd->reordered = 0; + subset = cuddRemapUnderApprox(dd, g, numVars, threshold, quality); + } while (dd->reordered == 1); + + return(Cudd_NotCond(subset, (subset != NULL))); + +} /* end of Cudd_RemapOverApprox */ + + +/**Function******************************************************************** + + Synopsis [Extracts a dense subset from a BDD with the biased + underapproximation method.] + + Description [Extracts a dense subset from a BDD. This procedure uses + a biased remapping technique and density as the cost function. The bias + is a function. This procedure tries to approximate where the bias is 0 + and preserve the given function where the bias is 1. + Returns a pointer to the BDD of the subset if + successful. NULL if the procedure runs out of memory. The parameter + numVars is the maximum number of variables to be used in minterm + calculation. The optimal number should be as close as possible to + the size of the support of f. However, it is safe to pass the value + returned by Cudd_ReadSize for numVars when the number of variables + is under 1023. If numVars is larger than 1023, it will cause + overflow. If a 0 parameter is passed then the procedure will compute + a value which will avoid overflow but will cause underflow with 2046 + variables or more.] + + SideEffects [None] + + SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_UnderApprox + Cudd_RemapUnderApprox Cudd_ReadSize] + +******************************************************************************/ +DdNode * +Cudd_BiasedUnderApprox( + DdManager *dd /* manager */, + DdNode *f /* function to be subset */, + DdNode *b /* bias function */, + int numVars /* number of variables in the support of f */, + int threshold /* when to stop approximation */, + double quality1 /* minimum improvement for accepted changes when b=1 */, + double quality0 /* minimum improvement for accepted changes when b=0 */) +{ + DdNode *subset; + + do { + dd->reordered = 0; + subset = cuddBiasedUnderApprox(dd, f, b, numVars, threshold, quality1, + quality0); + } while (dd->reordered == 1); + + return(subset); + +} /* end of Cudd_BiasedUnderApprox */ + + +/**Function******************************************************************** + + Synopsis [Extracts a dense superset from a BDD with the biased + underapproximation method.] + + Description [Extracts a dense superset from a BDD. The procedure is + identical to the underapproximation procedure except for the fact that it + works on the complement of the given function. Extracting the subset + of the complement function is equivalent to extracting the superset + of the function. + Returns a pointer to the BDD of the superset if successful. NULL if + intermediate result causes the procedure to run out of memory. The + parameter numVars is the maximum number of variables to be used in + minterm calculation. The optimal number + should be as close as possible to the size of the support of f. + However, it is safe to pass the value returned by Cudd_ReadSize for + numVars when the number of variables is under 1023. If numVars is + larger than 1023, it will overflow. If a 0 parameter is passed then + the procedure will compute a value which will avoid overflow but + will cause underflow with 2046 variables or more.] + + SideEffects [None] + + SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths + Cudd_RemapOverApprox Cudd_BiasedUnderApprox Cudd_ReadSize] + +******************************************************************************/ +DdNode * +Cudd_BiasedOverApprox( + DdManager *dd /* manager */, + DdNode *f /* function to be superset */, + DdNode *b /* bias function */, + int numVars /* number of variables in the support of f */, + int threshold /* when to stop approximation */, + double quality1 /* minimum improvement for accepted changes when b=1*/, + double quality0 /* minimum improvement for accepted changes when b=0 */) +{ + DdNode *subset, *g; + + g = Cudd_Not(f); + do { + dd->reordered = 0; + subset = cuddBiasedUnderApprox(dd, g, b, numVars, threshold, quality1, + quality0); + } while (dd->reordered == 1); + + return(Cudd_NotCond(subset, (subset != NULL))); + +} /* end of Cudd_BiasedOverApprox */ + + +/*---------------------------------------------------------------------------*/ +/* Definition of internal functions */ +/*---------------------------------------------------------------------------*/ + + +/**Function******************************************************************** + + Synopsis [Applies Tom Shiple's underappoximation algorithm.] + + Description [Applies Tom Shiple's underappoximation algorithm. Proceeds + in three phases: + <ul> + <li> collect information on each node in the BDD; this is done via DFS. + <li> traverse the BDD in top-down fashion and compute for each node + whether its elimination increases density. + <li> traverse the BDD via DFS and actually perform the elimination. + </ul> + Returns the approximated BDD if successful; NULL otherwise.] + + SideEffects [None] + + SeeAlso [Cudd_UnderApprox] + +******************************************************************************/ +DdNode * +cuddUnderApprox( + DdManager * dd /* DD manager */, + DdNode * f /* current DD */, + int numVars /* maximum number of variables */, + int threshold /* threshold under which approximation stops */, + int safe /* enforce safe approximation */, + double quality /* minimum improvement for accepted changes */) +{ + ApproxInfo *info; + DdNode *subset; + int result; + + if (f == NULL) { + fprintf(dd->err, "Cannot subset, nil object\n"); + return(NULL); + } + + if (Cudd_IsConstant(f)) { + return(f); + } + + /* Create table where node data are accessible via a hash table. */ + info = gatherInfo(dd, f, numVars, safe); + if (info == NULL) { + (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + + /* Mark nodes that should be replaced by zero. */ + result = UAmarkNodes(dd, f, info, threshold, safe, quality); + if (result == 0) { + (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); + FREE(info->page); + st_free_table(info->table); + FREE(info); + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + + /* Build the result. */ + subset = UAbuildSubset(dd, f, info); +#if 1 + if (subset && info->size < Cudd_DagSize(subset)) + (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", + info->size, Cudd_DagSize(subset)); +#endif + FREE(info->page); + st_free_table(info->table); + FREE(info); + +#ifdef DD_DEBUG + if (subset != NULL) { + cuddRef(subset); +#if 0 + (void) Cudd_DebugCheck(dd); + (void) Cudd_CheckKeys(dd); +#endif + if (!Cudd_bddLeq(dd, subset, f)) { + (void) fprintf(dd->err, "Wrong subset\n"); + dd->errorCode = CUDD_INTERNAL_ERROR; + } + cuddDeref(subset); + } +#endif + return(subset); + +} /* end of cuddUnderApprox */ + + +/**Function******************************************************************** + + Synopsis [Applies the remapping underappoximation algorithm.] + + Description [Applies the remapping underappoximation algorithm. + Proceeds in three phases: + <ul> + <li> collect information on each node in the BDD; this is done via DFS. + <li> traverse the BDD in top-down fashion and compute for each node + whether remapping increases density. + <li> traverse the BDD via DFS and actually perform the elimination. + </ul> + Returns the approximated BDD if successful; NULL otherwise.] + + SideEffects [None] + + SeeAlso [Cudd_RemapUnderApprox] + +******************************************************************************/ +DdNode * +cuddRemapUnderApprox( + DdManager * dd /* DD manager */, + DdNode * f /* current DD */, + int numVars /* maximum number of variables */, + int threshold /* threshold under which approximation stops */, + double quality /* minimum improvement for accepted changes */) +{ + ApproxInfo *info; + DdNode *subset; + int result; + + if (f == NULL) { + fprintf(dd->err, "Cannot subset, nil object\n"); + dd->errorCode = CUDD_INVALID_ARG; + return(NULL); + } + + if (Cudd_IsConstant(f)) { + return(f); + } + + /* Create table where node data are accessible via a hash table. */ + info = gatherInfo(dd, f, numVars, TRUE); + if (info == NULL) { + (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + + /* Mark nodes that should be replaced by zero. */ + result = RAmarkNodes(dd, f, info, threshold, quality); + if (result == 0) { + (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); + FREE(info->page); + st_free_table(info->table); + FREE(info); + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + + /* Build the result. */ + subset = RAbuildSubset(dd, f, info); +#if 1 + if (subset && info->size < Cudd_DagSize(subset)) + (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", + info->size, Cudd_DagSize(subset)); +#endif + FREE(info->page); + st_free_table(info->table); + FREE(info); + +#ifdef DD_DEBUG + if (subset != NULL) { + cuddRef(subset); +#if 0 + (void) Cudd_DebugCheck(dd); + (void) Cudd_CheckKeys(dd); +#endif + if (!Cudd_bddLeq(dd, subset, f)) { + (void) fprintf(dd->err, "Wrong subset\n"); + } + cuddDeref(subset); + dd->errorCode = CUDD_INTERNAL_ERROR; + } +#endif + return(subset); + +} /* end of cuddRemapUnderApprox */ + + +/**Function******************************************************************** + + Synopsis [Applies the biased remapping underappoximation algorithm.] + + Description [Applies the biased remapping underappoximation algorithm. + Proceeds in three phases: + <ul> + <li> collect information on each node in the BDD; this is done via DFS. + <li> traverse the BDD in top-down fashion and compute for each node + whether remapping increases density. + <li> traverse the BDD via DFS and actually perform the elimination. + </ul> + Returns the approximated BDD if successful; NULL otherwise.] + + SideEffects [None] + + SeeAlso [Cudd_BiasedUnderApprox] + +******************************************************************************/ +DdNode * +cuddBiasedUnderApprox( + DdManager *dd /* DD manager */, + DdNode *f /* current DD */, + DdNode *b /* bias function */, + int numVars /* maximum number of variables */, + int threshold /* threshold under which approximation stops */, + double quality1 /* minimum improvement for accepted changes when b=1 */, + double quality0 /* minimum improvement for accepted changes when b=1 */) +{ + ApproxInfo *info; + DdNode *subset; + int result; + DdHashTable *cache; + + if (f == NULL) { + fprintf(dd->err, "Cannot subset, nil object\n"); + dd->errorCode = CUDD_INVALID_ARG; + return(NULL); + } + + if (Cudd_IsConstant(f)) { + return(f); + } + + /* Create table where node data are accessible via a hash table. */ + info = gatherInfo(dd, f, numVars, TRUE); + if (info == NULL) { + (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + + cache = cuddHashTableInit(dd,2,2); + result = BAapplyBias(dd, Cudd_Regular(f), b, info, cache); + if (result == CARE_ERROR) { + (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); + cuddHashTableQuit(cache); + FREE(info->page); + st_free_table(info->table); + FREE(info); + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + cuddHashTableQuit(cache); + + /* Mark nodes that should be replaced by zero. */ + result = BAmarkNodes(dd, f, info, threshold, quality1, quality0); + if (result == 0) { + (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); + FREE(info->page); + st_free_table(info->table); + FREE(info); + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + + /* Build the result. */ + subset = RAbuildSubset(dd, f, info); +#if 1 + if (subset && info->size < Cudd_DagSize(subset)) + (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", + info->size, Cudd_DagSize(subset)); +#endif + FREE(info->page); + st_free_table(info->table); + FREE(info); + +#ifdef DD_DEBUG + if (subset != NULL) { + cuddRef(subset); +#if 0 + (void) Cudd_DebugCheck(dd); + (void) Cudd_CheckKeys(dd); +#endif + if (!Cudd_bddLeq(dd, subset, f)) { + (void) fprintf(dd->err, "Wrong subset\n"); + } + cuddDeref(subset); + dd->errorCode = CUDD_INTERNAL_ERROR; + } +#endif + return(subset); + +} /* end of cuddBiasedUnderApprox */ + + +/*---------------------------------------------------------------------------*/ +/* Definition of static functions */ +/*---------------------------------------------------------------------------*/ + + +/**Function******************************************************************** + + Synopsis [Recursively update the parity of the paths reaching a node.] + + Description [Recursively update the parity of the paths reaching a node. + Assumes that node is regular and propagates the invariant.] + + SideEffects [None] + + SeeAlso [gatherInfoAux] + +******************************************************************************/ +static void +updateParity( + DdNode * node /* function to analyze */, + ApproxInfo * info /* info on BDD */, + int newparity /* new parity for node */) +{ + NodeData *infoN; + DdNode *E; + + if (!st_lookup(info->table, (char *)node, (char **)&infoN)) return; + if ((infoN->parity & newparity) != 0) return; + infoN->parity |= newparity; + if (Cudd_IsConstant(node)) return; + updateParity(cuddT(node),info,newparity); + E = cuddE(node); + if (Cudd_IsComplement(E)) { + updateParity(Cudd_Not(E),info,3-newparity); + } else { + updateParity(E,info,newparity); + } + return; + +} /* end of updateParity */ + + +/**Function******************************************************************** + + Synopsis [Recursively counts minterms and computes reference counts + of each node in the BDD.] + + Description [Recursively counts minterms and computes reference + counts of each node in the BDD. Similar to the cuddCountMintermAux + which recursively counts the number of minterms for the dag rooted + at each node in terms of the total number of variables (max). It assumes + that the node pointer passed to it is regular and it maintains the + invariant.] + + SideEffects [None] + + SeeAlso [gatherInfo] + +******************************************************************************/ +static NodeData * +gatherInfoAux( + DdNode * node /* function to analyze */, + ApproxInfo * info /* info on BDD */, + int parity /* gather parity information */) +{ + DdNode *N, *Nt, *Ne; + NodeData *infoN, *infoT, *infoE; + + N = Cudd_Regular(node); + + /* Check whether entry for this node exists. */ + if (st_lookup(info->table, (char *)N, (char **)&infoN)) { + if (parity) { + /* Update parity and propagate. */ + updateParity(N, info, 1 + (int) Cudd_IsComplement(node)); + } + return(infoN); + } + + /* Compute the cofactors. */ + Nt = Cudd_NotCond(cuddT(N), N != node); + Ne = Cudd_NotCond(cuddE(N), N != node); + + infoT = gatherInfoAux(Nt, info, parity); + if (infoT == NULL) return(NULL); + infoE = gatherInfoAux(Ne, info, parity); + if (infoE == NULL) return(NULL); + + infoT->functionRef++; + infoE->functionRef++; + + /* Point to the correct location in the page. */ + infoN = &(info->page[info->index++]); + infoN->parity |= 1 + (short) Cudd_IsComplement(node); + + infoN->mintermsP = infoT->mintermsP/2; + infoN->mintermsN = infoT->mintermsN/2; + if (Cudd_IsComplement(Ne) ^ Cudd_IsComplement(node)) { + infoN->mintermsP += infoE->mintermsN/2; + infoN->mintermsN += infoE->mintermsP/2; + } else { + infoN->mintermsP += infoE->mintermsP/2; + infoN->mintermsN += infoE->mintermsN/2; + } + + /* Insert entry for the node in the table. */ + if (st_insert(info->table,(char *)N, (char *)infoN) == ST_OUT_OF_MEM) { + return(NULL); + } + return(infoN); + +} /* end of gatherInfoAux */ + + +/**Function******************************************************************** + + Synopsis [Gathers information about each node.] + + Description [Counts minterms and computes reference counts of each + node in the BDD . The minterm count is separately computed for the + node and its complement. This is to avoid cancellation + errors. Returns a pointer to the data structure holding the + information gathered if successful; NULL otherwise.] + + SideEffects [None] + + SeeAlso [cuddUnderApprox gatherInfoAux] + +******************************************************************************/ +static ApproxInfo * +gatherInfo( + DdManager * dd /* manager */, + DdNode * node /* function to be analyzed */, + int numVars /* number of variables node depends on */, + int parity /* gather parity information */) +{ + ApproxInfo *info; + NodeData *infoTop; + + /* If user did not give numVars value, set it to the maximum + ** exponent that the pow function can take. The -1 is due to the + ** discrepancy in the value that pow takes and the value that + ** log gives. + */ + if (numVars == 0) { + numVars = DBL_MAX_EXP - 1; + } + + info = ALLOC(ApproxInfo,1); + if (info == NULL) { + dd->errorCode = CUDD_MEMORY_OUT; + return(NULL); + } + info->max = pow(2.0,(double) numVars); + info->one = DD_ONE(dd); + info->zero = Cudd_Not(info->one); + info->size = Cudd_DagSize(node); + /* All the information gathered will be stored in a contiguous + ** piece of memory, which is allocated here. This can be done + ** efficiently because we have counted the number of nodes of the + ** BDD. info->index points to the next available entry in the array + ** that stores the per-node information. */ + info->page = ALLOC(NodeData,info->size); + if (info->page == NULL) { + dd->errorCode = CUDD_MEMORY_OUT; + FREE(info); + return(NULL); + } + memset(info->page, 0, info->size * sizeof(NodeData)); /* clear all page */ + info->table = st_init_table(st_ptrcmp,st_ptrhash); + if (info->table == NULL) { + FREE(info->page); + FREE(info); + return(NULL); + } + /* We visit the DAG in post-order DFS. Hence, the constant node is + ** in first position, and the root of the DAG is in last position. */ + + /* Info for the constant node: Initialize only fields different from 0. */ + if (st_insert(info->table, (char *)info->one, (char *)info->page) == ST_OUT_OF_MEM) { + FREE(info->page); + FREE(info); + st_free_table(info->table); + return(NULL); + } + info->page[0].mintermsP = info->max; + info->index = 1; + + infoTop = gatherInfoAux(node,info,parity); + if (infoTop == NULL) { + FREE(info->page); + st_free_table(info->table); + FREE(info); + return(NULL); + } + if (Cudd_IsComplement(node)) { + info->minterms = infoTop->mintermsN; + } else { + info->minterms = infoTop->mintermsP; + } + + infoTop->functionRef = 1; + return(info); + +} /* end of gatherInfo */ + + +/**Function******************************************************************** + + Synopsis [Counts the nodes that would be eliminated if a given node + were replaced by zero.] + + Description [Counts the nodes that would be eliminated if a given + node were replaced by zero. This procedure uses a queue passed by + the caller for efficiency: since the queue is left empty at the + endof the search, it can be reused as is by the next search. Returns + the count (always striclty positive) if successful; 0 otherwise.] + + SideEffects [None] + + SeeAlso [cuddUnderApprox] + +******************************************************************************/ +static int +computeSavings( + DdManager * dd, + DdNode * f, + DdNode * skip, + ApproxInfo * info, + DdLevelQueue * queue) +{ + NodeData *infoN; + LocalQueueItem *item; + DdNode *node; + int savings = 0; + + node = Cudd_Regular(f); + skip = Cudd_Regular(skip); + /* Insert the given node in the level queue. Its local reference + ** count is set equal to the function reference count so that the + ** search will continue from it when it is retrieved. */ + item = (LocalQueueItem *) + cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); + if (item == NULL) + return(0); + (void) st_lookup(info->table, (char *)node, (char **)&infoN); + item->localRef = infoN->functionRef; + + /* Process the queue. */ + while (queue->first != NULL) { + item = (LocalQueueItem *) queue->first; + node = item->node; + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); + if (node == skip) continue; + (void) st_lookup(info->table, (char *)node, (char **)&infoN); + if (item->localRef != infoN->functionRef) { + /* This node is shared. */ + continue; + } + savings++; + if (!cuddIsConstant(cuddT(node))) { + item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), + cuddI(dd,cuddT(node)->index)); + if (item == NULL) return(0); + item->localRef++; + } + if (!Cudd_IsConstant(cuddE(node))) { + item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), + cuddI(dd,Cudd_Regular(cuddE(node))->index)); + if (item == NULL) return(0); + item->localRef++; + } + } + +#ifdef DD_DEBUG + /* At the end of a local search the queue should be empty. */ + assert(queue->size == 0); +#endif + return(savings); + +} /* end of computeSavings */ + + +/**Function******************************************************************** + + Synopsis [Update function reference counts.] + + Description [Update function reference counts to account for replacement. + Returns the number of nodes saved if successful; 0 otherwise.] + + SideEffects [None] + + SeeAlso [UAmarkNodes RAmarkNodes] + +******************************************************************************/ +static int +updateRefs( + DdManager * dd, + DdNode * f, + DdNode * skip, + ApproxInfo * info, + DdLevelQueue * queue) +{ + NodeData *infoN; + LocalQueueItem *item; + DdNode *node; + int savings = 0; + + node = Cudd_Regular(f); + /* Insert the given node in the level queue. Its function reference + ** count is set equal to 0 so that the search will continue from it + ** when it is retrieved. */ + item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); + if (item == NULL) + return(0); + (void) st_lookup(info->table, (char *)node, (char **)&infoN); + infoN->functionRef = 0; + + if (skip != NULL) { + /* Increase the function reference count of the node to be skipped + ** by 1 to account for the node pointing to it that will be created. */ + skip = Cudd_Regular(skip); + (void) st_lookup(info->table, (char *)skip, (char **)&infoN); + infoN->functionRef++; + } + + /* Process the queue. */ + while (queue->first != NULL) { + item = (LocalQueueItem *) queue->first; + node = item->node; + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); + (void) st_lookup(info->table, (char *)node, (char **)&infoN); + if (infoN->functionRef != 0) { + /* This node is shared or must be skipped. */ + continue; + } + savings++; + if (!cuddIsConstant(cuddT(node))) { + item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), + cuddI(dd,cuddT(node)->index)); + if (item == NULL) return(0); + (void) st_lookup(info->table, (char *)cuddT(node), + (char **)&infoN); + infoN->functionRef--; + } + if (!Cudd_IsConstant(cuddE(node))) { + item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), + cuddI(dd,Cudd_Regular(cuddE(node))->index)); + if (item == NULL) return(0); + (void) st_lookup(info->table, (char *)Cudd_Regular(cuddE(node)), + (char **)&infoN); + infoN->functionRef--; + } + } + +#ifdef DD_DEBUG + /* At the end of a local search the queue should be empty. */ + assert(queue->size == 0); +#endif + return(savings); + +} /* end of updateRefs */ + + +/**Function******************************************************************** + + Synopsis [Marks nodes for replacement by zero.] + + Description [Marks nodes for replacement by zero. Returns 1 if successful; + 0 otherwise.] + + SideEffects [None] + + SeeAlso [cuddUnderApprox] + +******************************************************************************/ +static int +UAmarkNodes( + DdManager * dd /* manager */, + DdNode * f /* function to be analyzed */, + ApproxInfo * info /* info on BDD */, + int threshold /* when to stop approximating */, + int safe /* enforce safe approximation */, + double quality /* minimum improvement for accepted changes */) +{ + DdLevelQueue *queue; + DdLevelQueue *localQueue; + NodeData *infoN; + GlobalQueueItem *item; + DdNode *node; + double numOnset; + double impactP, impactN; + int savings; + +#if 0 + (void) printf("initial size = %d initial minterms = %g\n", + info->size, info->minterms); +#endif + queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); + if (queue == NULL) { + return(0); + } + localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), + dd->initSlots); + if (localQueue == NULL) { + cuddLevelQueueQuit(queue); + return(0); + } + node = Cudd_Regular(f); + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); + if (item == NULL) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + if (Cudd_IsComplement(f)) { + item->impactP = 0.0; + item->impactN = 1.0; + } else { + item->impactP = 1.0; + item->impactN = 0.0; + } + while (queue->first != NULL) { + /* If the size of the subset is below the threshold, quit. */ + if (info->size <= threshold) + break; + item = (GlobalQueueItem *) queue->first; + node = item->node; + node = Cudd_Regular(node); + (void) st_lookup(info->table, (char *)node, (char **)&infoN); + if (safe && infoN->parity == 3) { + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); + continue; + } + impactP = item->impactP; + impactN = item->impactN; + numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; + savings = computeSavings(dd,node,NULL,info,localQueue); + if (savings == 0) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); +#if 0 + (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", + node, impactP, impactN, numOnset, savings); +#endif + if ((1 - numOnset / info->minterms) > + quality * (1 - (double) savings / info->size)) { + infoN->replace = TRUE; + info->size -= savings; + info->minterms -=numOnset; +#if 0 + (void) printf("replace: new size = %d new minterms = %g\n", + info->size, info->minterms); +#endif + savings -= updateRefs(dd,node,NULL,info,localQueue); + assert(savings == 0); + continue; + } + if (!cuddIsConstant(cuddT(node))) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), + cuddI(dd,cuddT(node)->index)); + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + if (!Cudd_IsConstant(cuddE(node))) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), + cuddI(dd,Cudd_Regular(cuddE(node))->index)); + if (Cudd_IsComplement(cuddE(node))) { + item->impactP += impactN/2.0; + item->impactN += impactP/2.0; + } else { + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + } + } + + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(1); + +} /* end of UAmarkNodes */ + + +/**Function******************************************************************** + + Synopsis [Builds the subset BDD.] + + Description [Builds the subset BDD. Based on the info table, + replaces selected nodes by zero. Returns a pointer to the result if + successful; NULL otherwise.] + + SideEffects [None] + + SeeAlso [cuddUnderApprox] + +******************************************************************************/ +static DdNode * +UAbuildSubset( + DdManager * dd /* DD manager */, + DdNode * node /* current node */, + ApproxInfo * info /* node info */) +{ + + DdNode *Nt, *Ne, *N, *t, *e, *r; + NodeData *infoN; + + if (Cudd_IsConstant(node)) + return(node); + + N = Cudd_Regular(node); + + if (st_lookup(info->table, (char *)N, (char **)&infoN)) { + if (infoN->replace == TRUE) { + return(info->zero); + } + if (N == node ) { + if (infoN->resultP != NULL) { + return(infoN->resultP); + } + } else { + if (infoN->resultN != NULL) { + return(infoN->resultN); + } + } + } else { + (void) fprintf(dd->err, + "Something is wrong, ought to be in info table\n"); + dd->errorCode = CUDD_INTERNAL_ERROR; + return(NULL); + } + + Nt = Cudd_NotCond(cuddT(N), Cudd_IsComplement(node)); + Ne = Cudd_NotCond(cuddE(N), Cudd_IsComplement(node)); + + t = UAbuildSubset(dd, Nt, info); + if (t == NULL) { + return(NULL); + } + cuddRef(t); + + e = UAbuildSubset(dd, Ne, info); + if (e == NULL) { + Cudd_RecursiveDeref(dd,t); + return(NULL); + } + cuddRef(e); + + if (Cudd_IsComplement(t)) { + t = Cudd_Not(t); + e = Cudd_Not(e); + r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); + if (r == NULL) { + Cudd_RecursiveDeref(dd, e); + Cudd_RecursiveDeref(dd, t); + return(NULL); + } + r = Cudd_Not(r); + } else { + r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); + if (r == NULL) { + Cudd_RecursiveDeref(dd, e); + Cudd_RecursiveDeref(dd, t); + return(NULL); + } + } + cuddDeref(t); + cuddDeref(e); + + if (N == node) { + infoN->resultP = r; + } else { + infoN->resultN = r; + } + + return(r); + +} /* end of UAbuildSubset */ + + +/**Function******************************************************************** + + Synopsis [Marks nodes for remapping.] + + Description [Marks nodes for remapping. Returns 1 if successful; 0 + otherwise.] + + SideEffects [None] + + SeeAlso [cuddRemapUnderApprox] + +******************************************************************************/ +static int +RAmarkNodes( + DdManager * dd /* manager */, + DdNode * f /* function to be analyzed */, + ApproxInfo * info /* info on BDD */, + int threshold /* when to stop approximating */, + double quality /* minimum improvement for accepted changes */) +{ + DdLevelQueue *queue; + DdLevelQueue *localQueue; + NodeData *infoN, *infoT, *infoE; + GlobalQueueItem *item; + DdNode *node, *T, *E; + DdNode *shared; /* grandchild shared by the two children of node */ + double numOnset; + double impact, impactP, impactN; + double minterms; + int savings; + int replace; + +#if 0 + (void) fprintf(dd->out,"initial size = %d initial minterms = %g\n", + info->size, info->minterms); +#endif + queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); + if (queue == NULL) { + return(0); + } + localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), + dd->initSlots); + if (localQueue == NULL) { + cuddLevelQueueQuit(queue); + return(0); + } + /* Enqueue regular pointer to root and initialize impact. */ + node = Cudd_Regular(f); + item = (GlobalQueueItem *) + cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); + if (item == NULL) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + if (Cudd_IsComplement(f)) { + item->impactP = 0.0; + item->impactN = 1.0; + } else { + item->impactP = 1.0; + item->impactN = 0.0; + } + /* The nodes retrieved here are guaranteed to be non-terminal. + ** The initial node is not terminal because constant nodes are + ** dealt with in the calling procedure. Subsequent nodes are inserted + ** only if they are not terminal. */ + while (queue->first != NULL) { + /* If the size of the subset is below the threshold, quit. */ + if (info->size <= threshold) + break; + item = (GlobalQueueItem *) queue->first; + node = item->node; +#ifdef DD_DEBUG + assert(item->impactP >= 0 && item->impactP <= 1.0); + assert(item->impactN >= 0 && item->impactN <= 1.0); + assert(!Cudd_IsComplement(node)); + assert(!Cudd_IsConstant(node)); +#endif + if (!st_lookup(info->table, (char *)node, (char **)&infoN)) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } +#ifdef DD_DEBUG + assert(infoN->parity >= 1 && infoN->parity <= 3); +#endif + if (infoN->parity == 3) { + /* This node can be reached through paths of different parity. + ** It is not safe to replace it, because remapping will give + ** an incorrect result, while replacement by 0 may cause node + ** splitting. */ + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); + continue; + } + T = cuddT(node); + E = cuddE(node); + shared = NULL; + impactP = item->impactP; + impactN = item->impactN; + if (Cudd_bddLeq(dd,T,E)) { + /* Here we know that E is regular. */ +#ifdef DD_DEBUG + assert(!Cudd_IsComplement(E)); +#endif + (void) st_lookup(info->table, (char *)T, (char **)&infoT); + (void) st_lookup(info->table, (char *)E, (char **)&infoE); + if (infoN->parity == 1) { + impact = impactP; + minterms = infoE->mintermsP/2.0 - infoT->mintermsP/2.0; + if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { + savings = 1 + computeSavings(dd,E,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_E; + } else { +#ifdef DD_DEBUG + assert(infoN->parity == 2); +#endif + impact = impactN; + minterms = infoT->mintermsN/2.0 - infoE->mintermsN/2.0; + if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { + savings = 1 + computeSavings(dd,T,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_T; + } + numOnset = impact * minterms; + } else if (Cudd_bddLeq(dd,E,T)) { + /* Here E may be complemented. */ + DdNode *Ereg = Cudd_Regular(E); + (void) st_lookup(info->table, (char *)T, (char **)&infoT); + (void) st_lookup(info->table, (char *)Ereg, (char **)&infoE); + if (infoN->parity == 1) { + impact = impactP; + minterms = infoT->mintermsP/2.0 - + ((E == Ereg) ? infoE->mintermsP : infoE->mintermsN)/2.0; + if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { + savings = 1 + computeSavings(dd,T,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_T; + } else { +#ifdef DD_DEBUG + assert(infoN->parity == 2); +#endif + impact = impactN; + minterms = ((E == Ereg) ? infoE->mintermsN : + infoE->mintermsP)/2.0 - infoT->mintermsN/2.0; + if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { + savings = 1 + computeSavings(dd,E,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_E; + } + numOnset = impact * minterms; + } else { + DdNode *Ereg = Cudd_Regular(E); + DdNode *TT = cuddT(T); + DdNode *ET = Cudd_NotCond(cuddT(Ereg), Cudd_IsComplement(E)); + if (T->index == Ereg->index && TT == ET) { + shared = TT; + replace = REPLACE_TT; + } else { + DdNode *TE = cuddE(T); + DdNode *EE = Cudd_NotCond(cuddE(Ereg), Cudd_IsComplement(E)); + if (T->index == Ereg->index && TE == EE) { + shared = TE; + replace = REPLACE_TE; + } else { + replace = REPLACE_N; + } + } + numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; + savings = computeSavings(dd,node,shared,info,localQueue); + if (shared != NULL) { + NodeData *infoS; + (void) st_lookup(info->table, (char *)Cudd_Regular(shared), + (char **)&infoS); + if (Cudd_IsComplement(shared)) { + numOnset -= (infoS->mintermsN * impactP + + infoS->mintermsP * impactN)/2.0; + } else { + numOnset -= (infoS->mintermsP * impactP + + infoS->mintermsN * impactN)/2.0; + } + savings--; + } + } + + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); +#if 0 + if (replace == REPLACE_T || replace == REPLACE_E) + (void) printf("node %p: impact = %g numOnset = %g savings %d\n", + node, impact, numOnset, savings); + else + (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", + node, impactP, impactN, numOnset, savings); +#endif + if ((1 - numOnset / info->minterms) > + quality * (1 - (double) savings / info->size)) { + infoN->replace = replace; + info->size -= savings; + info->minterms -=numOnset; +#if 0 + (void) printf("remap(%d): new size = %d new minterms = %g\n", + replace, info->size, info->minterms); +#endif + if (replace == REPLACE_N) { + savings -= updateRefs(dd,node,NULL,info,localQueue); + } else if (replace == REPLACE_T) { + savings -= updateRefs(dd,node,E,info,localQueue); + } else if (replace == REPLACE_E) { + savings -= updateRefs(dd,node,T,info,localQueue); + } else { +#ifdef DD_DEBUG + assert(replace == REPLACE_TT || replace == REPLACE_TE); +#endif + savings -= updateRefs(dd,node,shared,info,localQueue) - 1; + } + assert(savings == 0); + } else { + replace = NOTHING; + } + if (replace == REPLACE_N) continue; + if ((replace == REPLACE_E || replace == NOTHING) && + !cuddIsConstant(cuddT(node))) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), + cuddI(dd,cuddT(node)->index)); + if (replace == REPLACE_E) { + item->impactP += impactP; + item->impactN += impactN; + } else { + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + } + if ((replace == REPLACE_T || replace == NOTHING) && + !Cudd_IsConstant(cuddE(node))) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), + cuddI(dd,Cudd_Regular(cuddE(node))->index)); + if (Cudd_IsComplement(cuddE(node))) { + if (replace == REPLACE_T) { + item->impactP += impactN; + item->impactN += impactP; + } else { + item->impactP += impactN/2.0; + item->impactN += impactP/2.0; + } + } else { + if (replace == REPLACE_T) { + item->impactP += impactP; + item->impactN += impactN; + } else { + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + } + } + if ((replace == REPLACE_TT || replace == REPLACE_TE) && + !Cudd_IsConstant(shared)) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(shared), + cuddI(dd,Cudd_Regular(shared)->index)); + if (Cudd_IsComplement(shared)) { + if (replace == REPLACE_T) { + item->impactP += impactN; + item->impactN += impactP; + } else { + item->impactP += impactN/2.0; + item->impactN += impactP/2.0; + } + } else { + if (replace == REPLACE_T) { + item->impactP += impactP; + item->impactN += impactN; + } else { + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + } + } + } + + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(1); + +} /* end of RAmarkNodes */ + + +/**Function******************************************************************** + + Synopsis [Marks nodes for remapping.] + + Description [Marks nodes for remapping. Returns 1 if successful; 0 + otherwise.] + + SideEffects [None] + + SeeAlso [cuddRemapUnderApprox] + +******************************************************************************/ +static int +BAmarkNodes( + DdManager *dd /* manager */, + DdNode *f /* function to be analyzed */, + ApproxInfo *info /* info on BDD */, + int threshold /* when to stop approximating */, + double quality1 /* minimum improvement for accepted changes when b=1 */, + double quality0 /* minimum improvement for accepted changes when b=0 */) +{ + DdLevelQueue *queue; + DdLevelQueue *localQueue; + NodeData *infoN, *infoT, *infoE; + GlobalQueueItem *item; + DdNode *node, *T, *E; + DdNode *shared; /* grandchild shared by the two children of node */ + double numOnset; + double impact, impactP, impactN; + double minterms; + double quality; + int savings; + int replace; + +#if 0 + (void) fprintf(dd->out,"initial size = %d initial minterms = %g\n", + info->size, info->minterms); +#endif + queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); + if (queue == NULL) { + return(0); + } + localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), + dd->initSlots); + if (localQueue == NULL) { + cuddLevelQueueQuit(queue); + return(0); + } + /* Enqueue regular pointer to root and initialize impact. */ + node = Cudd_Regular(f); + item = (GlobalQueueItem *) + cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); + if (item == NULL) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + if (Cudd_IsComplement(f)) { + item->impactP = 0.0; + item->impactN = 1.0; + } else { + item->impactP = 1.0; + item->impactN = 0.0; + } + /* The nodes retrieved here are guaranteed to be non-terminal. + ** The initial node is not terminal because constant nodes are + ** dealt with in the calling procedure. Subsequent nodes are inserted + ** only if they are not terminal. */ + while (queue->first != NULL) { + /* If the size of the subset is below the threshold, quit. */ + if (info->size <= threshold) + break; + item = (GlobalQueueItem *) queue->first; + node = item->node; +#ifdef DD_DEBUG + assert(item->impactP >= 0 && item->impactP <= 1.0); + assert(item->impactN >= 0 && item->impactN <= 1.0); + assert(!Cudd_IsComplement(node)); + assert(!Cudd_IsConstant(node)); +#endif + if (!st_lookup(info->table, (char *)node, (char **)&infoN)) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + quality = infoN->care ? quality1 : quality0; +#ifdef DD_DEBUG + assert(infoN->parity >= 1 && infoN->parity <= 3); +#endif + if (infoN->parity == 3) { + /* This node can be reached through paths of different parity. + ** It is not safe to replace it, because remapping will give + ** an incorrect result, while replacement by 0 may cause node + ** splitting. */ + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); + continue; + } + T = cuddT(node); + E = cuddE(node); + shared = NULL; + impactP = item->impactP; + impactN = item->impactN; + if (Cudd_bddLeq(dd,T,E)) { + /* Here we know that E is regular. */ +#ifdef DD_DEBUG + assert(!Cudd_IsComplement(E)); +#endif + (void) st_lookup(info->table, (char *)T, (char **)&infoT); + (void) st_lookup(info->table, (char *)E, (char **)&infoE); + if (infoN->parity == 1) { + impact = impactP; + minterms = infoE->mintermsP/2.0 - infoT->mintermsP/2.0; + if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { + savings = 1 + computeSavings(dd,E,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_E; + } else { +#ifdef DD_DEBUG + assert(infoN->parity == 2); +#endif + impact = impactN; + minterms = infoT->mintermsN/2.0 - infoE->mintermsN/2.0; + if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { + savings = 1 + computeSavings(dd,T,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_T; + } + numOnset = impact * minterms; + } else if (Cudd_bddLeq(dd,E,T)) { + /* Here E may be complemented. */ + DdNode *Ereg = Cudd_Regular(E); + (void) st_lookup(info->table, (char *)T, (char **)&infoT); + (void) st_lookup(info->table, (char *)Ereg, (char **)&infoE); + if (infoN->parity == 1) { + impact = impactP; + minterms = infoT->mintermsP/2.0 - + ((E == Ereg) ? infoE->mintermsP : infoE->mintermsN)/2.0; + if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { + savings = 1 + computeSavings(dd,T,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_T; + } else { +#ifdef DD_DEBUG + assert(infoN->parity == 2); +#endif + impact = impactN; + minterms = ((E == Ereg) ? infoE->mintermsN : + infoE->mintermsP)/2.0 - infoT->mintermsN/2.0; + if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { + savings = 1 + computeSavings(dd,E,NULL,info,localQueue); + if (savings == 1) { + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(0); + } + } else { + savings = 1; + } + replace = REPLACE_E; + } + numOnset = impact * minterms; + } else { + DdNode *Ereg = Cudd_Regular(E); + DdNode *TT = cuddT(T); + DdNode *ET = Cudd_NotCond(cuddT(Ereg), Cudd_IsComplement(E)); + if (T->index == Ereg->index && TT == ET) { + shared = TT; + replace = REPLACE_TT; + } else { + DdNode *TE = cuddE(T); + DdNode *EE = Cudd_NotCond(cuddE(Ereg), Cudd_IsComplement(E)); + if (T->index == Ereg->index && TE == EE) { + shared = TE; + replace = REPLACE_TE; + } else { + replace = REPLACE_N; + } + } + numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; + savings = computeSavings(dd,node,shared,info,localQueue); + if (shared != NULL) { + NodeData *infoS; + (void) st_lookup(info->table, (char *)Cudd_Regular(shared), + (char **)&infoS); + if (Cudd_IsComplement(shared)) { + numOnset -= (infoS->mintermsN * impactP + + infoS->mintermsP * impactN)/2.0; + } else { + numOnset -= (infoS->mintermsP * impactP + + infoS->mintermsN * impactN)/2.0; + } + savings--; + } + } + + cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); +#if 0 + if (replace == REPLACE_T || replace == REPLACE_E) + (void) printf("node %p: impact = %g numOnset = %g savings %d\n", + node, impact, numOnset, savings); + else + (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", + node, impactP, impactN, numOnset, savings); +#endif + if ((1 - numOnset / info->minterms) > + quality * (1 - (double) savings / info->size)) { + infoN->replace = replace; + info->size -= savings; + info->minterms -=numOnset; +#if 0 + (void) printf("remap(%d): new size = %d new minterms = %g\n", + replace, info->size, info->minterms); +#endif + if (replace == REPLACE_N) { + savings -= updateRefs(dd,node,NULL,info,localQueue); + } else if (replace == REPLACE_T) { + savings -= updateRefs(dd,node,E,info,localQueue); + } else if (replace == REPLACE_E) { + savings -= updateRefs(dd,node,T,info,localQueue); + } else { +#ifdef DD_DEBUG + assert(replace == REPLACE_TT || replace == REPLACE_TE); +#endif + savings -= updateRefs(dd,node,shared,info,localQueue) - 1; + } + assert(savings == 0); + } else { + replace = NOTHING; + } + if (replace == REPLACE_N) continue; + if ((replace == REPLACE_E || replace == NOTHING) && + !cuddIsConstant(cuddT(node))) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), + cuddI(dd,cuddT(node)->index)); + if (replace == REPLACE_E) { + item->impactP += impactP; + item->impactN += impactN; + } else { + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + } + if ((replace == REPLACE_T || replace == NOTHING) && + !Cudd_IsConstant(cuddE(node))) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), + cuddI(dd,Cudd_Regular(cuddE(node))->index)); + if (Cudd_IsComplement(cuddE(node))) { + if (replace == REPLACE_T) { + item->impactP += impactN; + item->impactN += impactP; + } else { + item->impactP += impactN/2.0; + item->impactN += impactP/2.0; + } + } else { + if (replace == REPLACE_T) { + item->impactP += impactP; + item->impactN += impactN; + } else { + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + } + } + if ((replace == REPLACE_TT || replace == REPLACE_TE) && + !Cudd_IsConstant(shared)) { + item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(shared), + cuddI(dd,Cudd_Regular(shared)->index)); + if (Cudd_IsComplement(shared)) { + if (replace == REPLACE_T) { + item->impactP += impactN; + item->impactN += impactP; + } else { + item->impactP += impactN/2.0; + item->impactN += impactP/2.0; + } + } else { + if (replace == REPLACE_T) { + item->impactP += impactP; + item->impactN += impactN; + } else { + item->impactP += impactP/2.0; + item->impactN += impactN/2.0; + } + } + } + } + + cuddLevelQueueQuit(queue); + cuddLevelQueueQuit(localQueue); + return(1); + +} /* end of BAmarkNodes */ + + +/**Function******************************************************************** + + Synopsis [Builds the subset BDD for cuddRemapUnderApprox.] + + Description [Builds the subset BDDfor cuddRemapUnderApprox. Based + on the info table, performs remapping or replacement at selected + nodes. Returns a pointer to the result if successful; NULL + otherwise.] + + SideEffects [None] + + SeeAlso [cuddRemapUnderApprox] + +******************************************************************************/ +static DdNode * +RAbuildSubset( + DdManager * dd /* DD manager */, + DdNode * node /* current node */, + ApproxInfo * info /* node info */) +{ + DdNode *Nt, *Ne, *N, *t, *e, *r; + NodeData *infoN; + + if (Cudd_IsConstant(node)) + return(node); + + N = Cudd_Regular(node); + + Nt = Cudd_NotCond(cuddT(N), Cudd_IsComplement(node)); + Ne = Cudd_NotCond(cuddE(N), Cudd_IsComplement(node)); + + if (st_lookup(info->table, (char *)N, (char **)&infoN)) { + if (N == node ) { + if (infoN->resultP != NULL) { + return(infoN->resultP); + } + } else { + if (infoN->resultN != NULL) { + return(infoN->resultN); + } + } + if (infoN->replace == REPLACE_T) { + r = RAbuildSubset(dd, Ne, info); + return(r); + } else if (infoN->replace == REPLACE_E) { + r = RAbuildSubset(dd, Nt, info); + return(r); + } else if (infoN->replace == REPLACE_N) { + return(info->zero); + } else if (infoN->replace == REPLACE_TT) { + DdNode *Ntt = Cudd_NotCond(cuddT(cuddT(N)), + Cudd_IsComplement(node)); + int index = cuddT(N)->index; + DdNode *e = info->zero; + DdNode *t = RAbuildSubset(dd, Ntt, info); + if (t == NULL) { + return(NULL); + } + cuddRef(t); + if (Cudd_IsComplement(t)) { + t = Cudd_Not(t); + e = Cudd_Not(e); + r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); + if (r == NULL) { + Cudd_RecursiveDeref(dd, t); + return(NULL); + } + r = Cudd_Not(r); + } else { + r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); + if (r == NULL) { + Cudd_RecursiveDeref(dd, t); + return(NULL); + } + } + cuddDeref(t); + return(r); + } else if (infoN->replace == REPLACE_TE) { + DdNode *Nte = Cudd_NotCond(cuddE(cuddT(N)), + Cudd_IsComplement(node)); + int index = cuddT(N)->index; + DdNode *t = info->one; + DdNode *e = RAbuildSubset(dd, Nte, info); + if (e == NULL) { + return(NULL); + } + cuddRef(e); + e = Cudd_Not(e); + r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); + if (r == NULL) { + Cudd_RecursiveDeref(dd, e); + return(NULL); + } + r =Cudd_Not(r); + cuddDeref(e); + return(r); + } + } else { + (void) fprintf(dd->err, + "Something is wrong, ought to be in info table\n"); + dd->errorCode = CUDD_INTERNAL_ERROR; + return(NULL); + } + + t = RAbuildSubset(dd, Nt, info); + if (t == NULL) { + return(NULL); + } + cuddRef(t); + + e = RAbuildSubset(dd, Ne, info); + if (e == NULL) { + Cudd_RecursiveDeref(dd,t); + return(NULL); + } + cuddRef(e); + + if (Cudd_IsComplement(t)) { + t = Cudd_Not(t); + e = Cudd_Not(e); + r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); + if (r == NULL) { + Cudd_RecursiveDeref(dd, e); + Cudd_RecursiveDeref(dd, t); + return(NULL); + } + r = Cudd_Not(r); + } else { + r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); + if (r == NULL) { + Cudd_RecursiveDeref(dd, e); + Cudd_RecursiveDeref(dd, t); + return(NULL); + } + } + cuddDeref(t); + cuddDeref(e); + + if (N == node) { + infoN->resultP = r; + } else { + infoN->resultN = r; + } + + return(r); + +} /* end of RAbuildSubset */ + + +/**Function******************************************************************** + + Synopsis [Finds don't care nodes.] + + Description [Finds don't care nodes by traversing f and b in parallel. + Returns the care status of the visited f node if successful; CARE_ERROR + otherwise.] + + SideEffects [None] + + SeeAlso [cuddBiasedUnderApprox] + +******************************************************************************/ +static int +BAapplyBias( + DdManager *dd, + DdNode *f, + DdNode *b, + ApproxInfo *info, + DdHashTable *cache) +{ + DdNode *one, *zero, *res; + DdNode *Ft, *Fe, *B, *Bt, *Be; + unsigned int topf, topb; + NodeData *infoF; + int careT, careE; + + one = DD_ONE(dd); + zero = Cudd_Not(one); + + if (!st_lookup(info->table, (char *) f, (char **)&infoF)) + return(CARE_ERROR); + if (f == one) return(TOTAL_CARE); + if (b == zero) return(infoF->care); + if (infoF->care == TOTAL_CARE) return(TOTAL_CARE); + + if ((f->ref != 1 || Cudd_Regular(b)->ref != 1) && + (res = cuddHashTableLookup2(cache,f,b)) != NULL) { + if (res->ref == 0) { + cache->manager->dead++; + cache->manager->constants.dead++; + } + return(infoF->care); + } + + topf = dd->perm[f->index]; + B = Cudd_Regular(b); + topb = cuddI(dd,B->index); + if (topf <= topb) { + Ft = cuddT(f); Fe = cuddE(f); + } else { + Ft = Fe = f; + } + if (topb <= topf) { + /* We know that b is not constant because f is not. */ + Bt = cuddT(B); Be = cuddE(B); + if (Cudd_IsComplement(b)) { + Bt = Cudd_Not(Bt); + Be = Cudd_Not(Be); + } + } else { + Bt = Be = b; + } + + careT = BAapplyBias(dd, Ft, Bt, info, cache); + if (careT == CARE_ERROR) + return(CARE_ERROR); + careE = BAapplyBias(dd, Cudd_Regular(Fe), Be, info, cache); + if (careE == CARE_ERROR) + return(CARE_ERROR); + if (careT == TOTAL_CARE && careE == TOTAL_CARE) { + infoF->care = TOTAL_CARE; + } else { + infoF->care = CARE; + } + + if (f->ref != 1 || Cudd_Regular(b)->ref != 1) { + ptrint fanout = (ptrint) f->ref * Cudd_Regular(b)->ref; + cuddSatDec(fanout); + if (!cuddHashTableInsert2(cache,f,b,one,fanout)) { + return(CARE_ERROR); + } + } + return(infoF->care); + +} /* end of BAapplyBias */ |