diff options
author | Alan Mishchenko <alanmi@berkeley.edu> | 2008-01-30 20:01:00 -0800 |
---|---|---|
committer | Alan Mishchenko <alanmi@berkeley.edu> | 2008-01-30 20:01:00 -0800 |
commit | 0c6505a26a537dc911b6566f82d759521e527c08 (patch) | |
tree | f2687995efd4943fe3b1307fce7ef5942d0a57b3 /src/base/abci/abcResub.c | |
parent | 4d30a1e4f1edecff86d5066ce4653a370e59e5e1 (diff) | |
download | abc-0c6505a26a537dc911b6566f82d759521e527c08.tar.gz abc-0c6505a26a537dc911b6566f82d759521e527c08.tar.bz2 abc-0c6505a26a537dc911b6566f82d759521e527c08.zip |
Version abc80130_2
Diffstat (limited to 'src/base/abci/abcResub.c')
-rw-r--r-- | src/base/abci/abcResub.c | 1952 |
1 files changed, 1952 insertions, 0 deletions
diff --git a/src/base/abci/abcResub.c b/src/base/abci/abcResub.c new file mode 100644 index 00000000..a2b23c0c --- /dev/null +++ b/src/base/abci/abcResub.c @@ -0,0 +1,1952 @@ +/**CFile**************************************************************** + + FileName [abcResub.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Network and node package.] + + Synopsis [Resubstitution manager.] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - June 20, 2005.] + + Revision [$Id: abcResub.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "abc.h" +#include "dec.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +#define ABC_RS_DIV1_MAX 150 // the max number of divisors to consider +#define ABC_RS_DIV2_MAX 500 // the max number of pair-wise divisors to consider + +typedef struct Abc_ManRes_t_ Abc_ManRes_t; +struct Abc_ManRes_t_ +{ + // paramers + int nLeavesMax; // the max number of leaves in the cone + int nDivsMax; // the max number of divisors in the cone + // representation of the cone + Abc_Obj_t * pRoot; // the root of the cone + int nLeaves; // the number of leaves + int nDivs; // the number of all divisor (including leaves) + int nMffc; // the size of MFFC + int nLastGain; // the gain the number of nodes + Vec_Ptr_t * vDivs; // the divisors + // representation of the simulation info + int nBits; // the number of simulation bits + int nWords; // the number of unsigneds for siminfo + Vec_Ptr_t * vSims; // simulation info + unsigned * pInfo; // pointer to simulation info + // observability don't-cares + unsigned * pCareSet; + // internal divisor storage + Vec_Ptr_t * vDivs1UP; // the single-node unate divisors + Vec_Ptr_t * vDivs1UN; // the single-node unate divisors + Vec_Ptr_t * vDivs1B; // the single-node binate divisors + Vec_Ptr_t * vDivs2UP0; // the double-node unate divisors + Vec_Ptr_t * vDivs2UP1; // the double-node unate divisors + Vec_Ptr_t * vDivs2UN0; // the double-node unate divisors + Vec_Ptr_t * vDivs2UN1; // the double-node unate divisors + // other data + Vec_Ptr_t * vTemp; // temporary array of nodes + // runtime statistics + int timeCut; + int timeTruth; + int timeRes; + int timeDiv; + int timeMffc; + int timeSim; + int timeRes1; + int timeResD; + int timeRes2; + int timeRes3; + int timeNtk; + int timeTotal; + // improvement statistics + int nUsedNodeC; + int nUsedNode0; + int nUsedNode1Or; + int nUsedNode1And; + int nUsedNode2Or; + int nUsedNode2And; + int nUsedNode2OrAnd; + int nUsedNode2AndOr; + int nUsedNode3OrAnd; + int nUsedNode3AndOr; + int nUsedNodeTotal; + int nTotalDivs; + int nTotalLeaves; + int nTotalGain; + int nNodesBeg; + int nNodesEnd; +}; + +// external procedures +static Abc_ManRes_t* Abc_ManResubStart( int nLeavesMax, int nDivsMax ); +static void Abc_ManResubStop( Abc_ManRes_t * p ); +static Dec_Graph_t * Abc_ManResubEval( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int nSteps, bool fUpdateLevel, int fVerbose ); +static void Abc_ManResubCleanup( Abc_ManRes_t * p ); +static void Abc_ManResubPrint( Abc_ManRes_t * p ); + +// other procedures +static int Abc_ManResubCollectDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int Required ); +static void Abc_ManResubSimulate( Vec_Ptr_t * vDivs, int nLeaves, Vec_Ptr_t * vSims, int nLeavesMax, int nWords ); +static void Abc_ManResubPrintDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves ); + +static void Abc_ManResubDivsS( Abc_ManRes_t * p, int Required ); +static void Abc_ManResubDivsD( Abc_ManRes_t * p, int Required ); +static Dec_Graph_t * Abc_ManResubQuit( Abc_ManRes_t * p ); +static Dec_Graph_t * Abc_ManResubDivs0( Abc_ManRes_t * p ); +static Dec_Graph_t * Abc_ManResubDivs1( Abc_ManRes_t * p, int Required ); +static Dec_Graph_t * Abc_ManResubDivs12( Abc_ManRes_t * p, int Required ); +static Dec_Graph_t * Abc_ManResubDivs2( Abc_ManRes_t * p, int Required ); +static Dec_Graph_t * Abc_ManResubDivs3( Abc_ManRes_t * p, int Required ); + +static Vec_Ptr_t * Abc_CutFactorLarge( Abc_Obj_t * pNode, int nLeavesMax ); +static int Abc_CutVolumeCheck( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves ); + +// don't-care manager +extern void * Abc_NtkDontCareAlloc( int nVarsMax, int nLevels, int fVerbose, int fVeryVerbose ); +extern void Abc_NtkDontCareClear( void * p ); +extern void Abc_NtkDontCareFree( void * p ); +extern int Abc_NtkDontCareCompute( void * p, Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, unsigned * puTruth ); + +extern int s_ResubTime; + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Performs incremental resynthesis of the AIG.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Abc_NtkResubstitute( Abc_Ntk_t * pNtk, int nCutMax, int nStepsMax, int nLevelsOdc, bool fUpdateLevel, bool fVerbose, bool fVeryVerbose ) +{ + extern void Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, bool fUpdateLevel, int nGain ); + ProgressBar * pProgress; + Abc_ManRes_t * pManRes; + Abc_ManCut_t * pManCut; + void * pManOdc = NULL; + Dec_Graph_t * pFForm; + Vec_Ptr_t * vLeaves; + Abc_Obj_t * pNode; + int clk, clkStart = clock(); + int i, nNodes; + + assert( Abc_NtkIsStrash(pNtk) ); + + // cleanup the AIG + Abc_AigCleanup(pNtk->pManFunc); + // start the managers + pManCut = Abc_NtkManCutStart( nCutMax, 100000, 100000, 100000 ); + pManRes = Abc_ManResubStart( nCutMax, ABC_RS_DIV1_MAX ); + if ( nLevelsOdc > 0 ) + pManOdc = Abc_NtkDontCareAlloc( nCutMax, nLevelsOdc, fVerbose, fVeryVerbose ); + + // compute the reverse levels if level update is requested + if ( fUpdateLevel ) + Abc_NtkStartReverseLevels( pNtk, 0 ); + + if ( Abc_NtkLatchNum(pNtk) ) + Abc_NtkForEachLatch(pNtk, pNode, i) + pNode->pNext = pNode->pData; + + // resynthesize each node once + pManRes->nNodesBeg = Abc_NtkNodeNum(pNtk); + nNodes = Abc_NtkObjNumMax(pNtk); + pProgress = Extra_ProgressBarStart( stdout, nNodes ); + Abc_NtkForEachNode( pNtk, pNode, i ) + { + Extra_ProgressBarUpdate( pProgress, i, NULL ); + // skip the constant node +// if ( Abc_NodeIsConst(pNode) ) +// continue; + // skip persistant nodes + if ( Abc_NodeIsPersistant(pNode) ) + continue; + // skip the nodes with many fanouts + if ( Abc_ObjFanoutNum(pNode) > 1000 ) + continue; + // stop if all nodes have been tried once + if ( i >= nNodes ) + break; + + // compute a reconvergence-driven cut +clk = clock(); + vLeaves = Abc_NodeFindCut( pManCut, pNode, 0 ); +// vLeaves = Abc_CutFactorLarge( pNode, nCutMax ); +pManRes->timeCut += clock() - clk; +/* + if ( fVerbose && vLeaves ) + printf( "Node %6d : Leaves = %3d. Volume = %3d.\n", pNode->Id, Vec_PtrSize(vLeaves), Abc_CutVolumeCheck(pNode, vLeaves) ); + if ( vLeaves == NULL ) + continue; +*/ + // get the don't-cares + if ( pManOdc ) + { +clk = clock(); + Abc_NtkDontCareClear( pManOdc ); + Abc_NtkDontCareCompute( pManOdc, pNode, vLeaves, pManRes->pCareSet ); +pManRes->timeTruth += clock() - clk; + } + + // evaluate this cut +clk = clock(); + pFForm = Abc_ManResubEval( pManRes, pNode, vLeaves, nStepsMax, fUpdateLevel, fVerbose ); +// Vec_PtrFree( vLeaves ); +// Abc_ManResubCleanup( pManRes ); +pManRes->timeRes += clock() - clk; + if ( pFForm == NULL ) + continue; + pManRes->nTotalGain += pManRes->nLastGain; +/* + if ( pManRes->nLeaves == 4 && pManRes->nMffc == 2 && pManRes->nLastGain == 1 ) + { + printf( "%6d : L = %2d. V = %2d. Mffc = %2d. Divs = %3d. Up = %3d. Un = %3d. B = %3d.\n", + pNode->Id, pManRes->nLeaves, Abc_CutVolumeCheck(pNode, vLeaves), pManRes->nMffc, pManRes->nDivs, + pManRes->vDivs1UP->nSize, pManRes->vDivs1UN->nSize, pManRes->vDivs1B->nSize ); + Abc_ManResubPrintDivs( pManRes, pNode, vLeaves ); + } +*/ + // acceptable replacement found, update the graph +clk = clock(); + Dec_GraphUpdateNetwork( pNode, pFForm, fUpdateLevel, pManRes->nLastGain ); +pManRes->timeNtk += clock() - clk; + Dec_GraphFree( pFForm ); + } + Extra_ProgressBarStop( pProgress ); +pManRes->timeTotal = clock() - clkStart; + pManRes->nNodesEnd = Abc_NtkNodeNum(pNtk); + + // print statistics + if ( fVerbose ) + Abc_ManResubPrint( pManRes ); + + // delete the managers + Abc_ManResubStop( pManRes ); + Abc_NtkManCutStop( pManCut ); + if ( pManOdc ) Abc_NtkDontCareFree( pManOdc ); + + // clean the data field + Abc_NtkForEachObj( pNtk, pNode, i ) + pNode->pData = NULL; + + if ( Abc_NtkLatchNum(pNtk) ) + Abc_NtkForEachLatch(pNtk, pNode, i) + pNode->pData = pNode->pNext, pNode->pNext = NULL; + + // put the nodes into the DFS order and reassign their IDs + Abc_NtkReassignIds( pNtk ); +// Abc_AigCheckFaninOrder( pNtk->pManFunc ); + // fix the levels + if ( fUpdateLevel ) + Abc_NtkStopReverseLevels( pNtk ); + else + Abc_NtkLevel( pNtk ); + // check + if ( !Abc_NtkCheck( pNtk ) ) + { + printf( "Abc_NtkRefactor: The network check has failed.\n" ); + return 0; + } +s_ResubTime = clock() - clkStart; + return 1; +} + + + + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Abc_ManRes_t * Abc_ManResubStart( int nLeavesMax, int nDivsMax ) +{ + Abc_ManRes_t * p; + unsigned * pData; + int i, k; + assert( sizeof(unsigned) == 4 ); + p = ALLOC( Abc_ManRes_t, 1 ); + memset( p, 0, sizeof(Abc_ManRes_t) ); + p->nLeavesMax = nLeavesMax; + p->nDivsMax = nDivsMax; + p->vDivs = Vec_PtrAlloc( p->nDivsMax ); + // allocate simulation info + p->nBits = (1 << p->nLeavesMax); + p->nWords = (p->nBits <= 32)? 1 : (p->nBits / 32); + p->pInfo = ALLOC( unsigned, p->nWords * (p->nDivsMax + 1) ); + memset( p->pInfo, 0, sizeof(unsigned) * p->nWords * p->nLeavesMax ); + p->vSims = Vec_PtrAlloc( p->nDivsMax ); + for ( i = 0; i < p->nDivsMax; i++ ) + Vec_PtrPush( p->vSims, p->pInfo + i * p->nWords ); + // assign the care set + p->pCareSet = p->pInfo + p->nDivsMax * p->nWords; + Abc_InfoFill( p->pCareSet, p->nWords ); + // set elementary truth tables + for ( k = 0; k < p->nLeavesMax; k++ ) + { + pData = p->vSims->pArray[k]; + for ( i = 0; i < p->nBits; i++ ) + if ( i & (1 << k) ) + pData[i>>5] |= (1 << (i&31)); + } + // create the remaining divisors + p->vDivs1UP = Vec_PtrAlloc( p->nDivsMax ); + p->vDivs1UN = Vec_PtrAlloc( p->nDivsMax ); + p->vDivs1B = Vec_PtrAlloc( p->nDivsMax ); + p->vDivs2UP0 = Vec_PtrAlloc( p->nDivsMax ); + p->vDivs2UP1 = Vec_PtrAlloc( p->nDivsMax ); + p->vDivs2UN0 = Vec_PtrAlloc( p->nDivsMax ); + p->vDivs2UN1 = Vec_PtrAlloc( p->nDivsMax ); + p->vTemp = Vec_PtrAlloc( p->nDivsMax ); + return p; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubStop( Abc_ManRes_t * p ) +{ + Vec_PtrFree( p->vDivs ); + Vec_PtrFree( p->vSims ); + Vec_PtrFree( p->vDivs1UP ); + Vec_PtrFree( p->vDivs1UN ); + Vec_PtrFree( p->vDivs1B ); + Vec_PtrFree( p->vDivs2UP0 ); + Vec_PtrFree( p->vDivs2UP1 ); + Vec_PtrFree( p->vDivs2UN0 ); + Vec_PtrFree( p->vDivs2UN1 ); + Vec_PtrFree( p->vTemp ); + free( p->pInfo ); + free( p ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubPrint( Abc_ManRes_t * p ) +{ + printf( "Used constants = %6d. ", p->nUsedNodeC ); PRT( "Cuts ", p->timeCut ); + printf( "Used replacements = %6d. ", p->nUsedNode0 ); PRT( "Resub ", p->timeRes ); + printf( "Used single ORs = %6d. ", p->nUsedNode1Or ); PRT( " Div ", p->timeDiv ); + printf( "Used single ANDs = %6d. ", p->nUsedNode1And ); PRT( " Mffc ", p->timeMffc ); + printf( "Used double ORs = %6d. ", p->nUsedNode2Or ); PRT( " Sim ", p->timeSim ); + printf( "Used double ANDs = %6d. ", p->nUsedNode2And ); PRT( " 1 ", p->timeRes1 ); + printf( "Used OR-AND = %6d. ", p->nUsedNode2OrAnd ); PRT( " D ", p->timeResD ); + printf( "Used AND-OR = %6d. ", p->nUsedNode2AndOr ); PRT( " 2 ", p->timeRes2 ); + printf( "Used OR-2ANDs = %6d. ", p->nUsedNode3OrAnd ); PRT( "Truth ", p->timeTruth ); //PRT( " 3 ", p->timeRes3 ); + printf( "Used AND-2ORs = %6d. ", p->nUsedNode3AndOr ); PRT( "AIG ", p->timeNtk ); + printf( "TOTAL = %6d. ", p->nUsedNodeC + + p->nUsedNode0 + + p->nUsedNode1Or + + p->nUsedNode1And + + p->nUsedNode2Or + + p->nUsedNode2And + + p->nUsedNode2OrAnd + + p->nUsedNode2AndOr + + p->nUsedNode3OrAnd + + p->nUsedNode3AndOr + ); PRT( "TOTAL ", p->timeTotal ); + printf( "Total leaves = %8d.\n", p->nTotalLeaves ); + printf( "Total divisors = %8d.\n", p->nTotalDivs ); +// printf( "Total gain = %8d.\n", p->nTotalGain ); + printf( "Gain = %8d. (%6.2f %%).\n", p->nNodesBeg-p->nNodesEnd, 100.0*(p->nNodesBeg-p->nNodesEnd)/p->nNodesBeg ); +} + + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubCollectDivs_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vInternal ) +{ + // skip visited nodes + if ( Abc_NodeIsTravIdCurrent(pNode) ) + return; + Abc_NodeSetTravIdCurrent(pNode); + // collect the fanins + Abc_ManResubCollectDivs_rec( Abc_ObjFanin0(pNode), vInternal ); + Abc_ManResubCollectDivs_rec( Abc_ObjFanin1(pNode), vInternal ); + // collect the internal node + if ( pNode->fMarkA == 0 ) + Vec_PtrPush( vInternal, pNode ); +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Abc_ManResubCollectDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int Required ) +{ + Abc_Obj_t * pNode, * pFanout; + int i, k, Limit, Counter; + + Vec_PtrClear( p->vDivs1UP ); + Vec_PtrClear( p->vDivs1UN ); + Vec_PtrClear( p->vDivs1B ); + + // add the leaves of the cuts to the divisors + Vec_PtrClear( p->vDivs ); + Abc_NtkIncrementTravId( pRoot->pNtk ); + Vec_PtrForEachEntry( vLeaves, pNode, i ) + { + Vec_PtrPush( p->vDivs, pNode ); + Abc_NodeSetTravIdCurrent( pNode ); + } + + // mark nodes in the MFFC + Vec_PtrForEachEntry( p->vTemp, pNode, i ) + pNode->fMarkA = 1; + // collect the cone (without MFFC) + Abc_ManResubCollectDivs_rec( pRoot, p->vDivs ); + // unmark the current MFFC + Vec_PtrForEachEntry( p->vTemp, pNode, i ) + pNode->fMarkA = 0; + + // check if the number of divisors is not exceeded + if ( Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) + Vec_PtrSize(p->vTemp) >= Vec_PtrSize(p->vSims) - p->nLeavesMax ) + return 0; + + // get the number of divisors to collect + Limit = Vec_PtrSize(p->vSims) - p->nLeavesMax - (Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) + Vec_PtrSize(p->vTemp)); + + // explore the fanouts, which are not in the MFFC + Counter = 0; + Vec_PtrForEachEntry( p->vDivs, pNode, i ) + { + if ( Abc_ObjFanoutNum(pNode) > 100 ) + { +// printf( "%d ", Abc_ObjFanoutNum(pNode) ); + continue; + } + // if the fanout has both fanins in the set, add it + Abc_ObjForEachFanout( pNode, pFanout, k ) + { + if ( Abc_NodeIsTravIdCurrent(pFanout) || Abc_ObjIsCo(pFanout) || (int)pFanout->Level > Required ) + continue; + if ( Abc_NodeIsTravIdCurrent(Abc_ObjFanin0(pFanout)) && Abc_NodeIsTravIdCurrent(Abc_ObjFanin1(pFanout)) ) + { + if ( Abc_ObjFanin0(pFanout) == pRoot || Abc_ObjFanin1(pFanout) == pRoot ) + continue; + Vec_PtrPush( p->vDivs, pFanout ); + Abc_NodeSetTravIdCurrent( pFanout ); + // quit computing divisors if there is too many of them + if ( ++Counter == Limit ) + goto Quits; + } + } + } + +Quits : + // get the number of divisors + p->nDivs = Vec_PtrSize(p->vDivs); + + // add the nodes in the MFFC + Vec_PtrForEachEntry( p->vTemp, pNode, i ) + Vec_PtrPush( p->vDivs, pNode ); + assert( pRoot == Vec_PtrEntryLast(p->vDivs) ); + + assert( Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) <= Vec_PtrSize(p->vSims) - p->nLeavesMax ); + return 1; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubPrintDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves ) +{ + Abc_Obj_t * pFanin, * pNode; + int i, k; + // print the nodes + Vec_PtrForEachEntry( p->vDivs, pNode, i ) + { + if ( i < Vec_PtrSize(vLeaves) ) + { + printf( "%6d : %c\n", pNode->Id, 'a'+i ); + continue; + } + printf( "%6d : %2d = ", pNode->Id, i ); + // find the first fanin + Vec_PtrForEachEntry( p->vDivs, pFanin, k ) + if ( Abc_ObjFanin0(pNode) == pFanin ) + break; + if ( k < Vec_PtrSize(vLeaves) ) + printf( "%c", 'a' + k ); + else + printf( "%d", k ); + printf( "%s ", Abc_ObjFaninC0(pNode)? "\'" : "" ); + // find the second fanin + Vec_PtrForEachEntry( p->vDivs, pFanin, k ) + if ( Abc_ObjFanin1(pNode) == pFanin ) + break; + if ( k < Vec_PtrSize(vLeaves) ) + printf( "%c", 'a' + k ); + else + printf( "%d", k ); + printf( "%s ", Abc_ObjFaninC1(pNode)? "\'" : "" ); + if ( pNode == pRoot ) + printf( " root" ); + printf( "\n" ); + } + printf( "\n" ); +} + + +/**Function************************************************************* + + Synopsis [Performs simulation.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubSimulate( Vec_Ptr_t * vDivs, int nLeaves, Vec_Ptr_t * vSims, int nLeavesMax, int nWords ) +{ + Abc_Obj_t * pObj; + unsigned * puData0, * puData1, * puData; + int i, k; + assert( Vec_PtrSize(vDivs) - nLeaves <= Vec_PtrSize(vSims) - nLeavesMax ); + // simulate + Vec_PtrForEachEntry( vDivs, pObj, i ) + { + if ( i < nLeaves ) + { // initialize the leaf + pObj->pData = Vec_PtrEntry( vSims, i ); + continue; + } + // set storage for the node's simulation info + pObj->pData = Vec_PtrEntry( vSims, i - nLeaves + nLeavesMax ); + // get pointer to the simulation info + puData = pObj->pData; + puData0 = Abc_ObjFanin0(pObj)->pData; + puData1 = Abc_ObjFanin1(pObj)->pData; + // simulate + if ( Abc_ObjFaninC0(pObj) && Abc_ObjFaninC1(pObj) ) + for ( k = 0; k < nWords; k++ ) + puData[k] = ~puData0[k] & ~puData1[k]; + else if ( Abc_ObjFaninC0(pObj) ) + for ( k = 0; k < nWords; k++ ) + puData[k] = ~puData0[k] & puData1[k]; + else if ( Abc_ObjFaninC1(pObj) ) + for ( k = 0; k < nWords; k++ ) + puData[k] = puData0[k] & ~puData1[k]; + else + for ( k = 0; k < nWords; k++ ) + puData[k] = puData0[k] & puData1[k]; + } + // normalize + Vec_PtrForEachEntry( vDivs, pObj, i ) + { + puData = pObj->pData; + pObj->fPhase = (puData[0] & 1); + if ( pObj->fPhase ) + for ( k = 0; k < nWords; k++ ) + puData[k] = ~puData[k]; + } +} + + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubQuit0( Abc_Obj_t * pRoot, Abc_Obj_t * pObj ) +{ + Dec_Graph_t * pGraph; + Dec_Edge_t eRoot; + pGraph = Dec_GraphCreate( 1 ); + Dec_GraphNode( pGraph, 0 )->pFunc = pObj; + eRoot = Dec_EdgeCreate( 0, pObj->fPhase ); + Dec_GraphSetRoot( pGraph, eRoot ); + if ( pRoot->fPhase ) + Dec_GraphComplement( pGraph ); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubQuit1( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, int fOrGate ) +{ + Dec_Graph_t * pGraph; + Dec_Edge_t eRoot, eNode0, eNode1; + assert( pObj0 != pObj1 ); + assert( !Abc_ObjIsComplement(pObj0) ); + assert( !Abc_ObjIsComplement(pObj1) ); + pGraph = Dec_GraphCreate( 2 ); + Dec_GraphNode( pGraph, 0 )->pFunc = pObj0; + Dec_GraphNode( pGraph, 1 )->pFunc = pObj1; + eNode0 = Dec_EdgeCreate( 0, pObj0->fPhase ); + eNode1 = Dec_EdgeCreate( 1, pObj1->fPhase ); + if ( fOrGate ) + eRoot = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + else + eRoot = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 ); + Dec_GraphSetRoot( pGraph, eRoot ); + if ( pRoot->fPhase ) + Dec_GraphComplement( pGraph ); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubQuit21( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, int fOrGate ) +{ + Dec_Graph_t * pGraph; + Dec_Edge_t eRoot, eNode0, eNode1, eNode2; + assert( pObj0 != pObj1 ); + assert( !Abc_ObjIsComplement(pObj0) ); + assert( !Abc_ObjIsComplement(pObj1) ); + assert( !Abc_ObjIsComplement(pObj2) ); + pGraph = Dec_GraphCreate( 3 ); + Dec_GraphNode( pGraph, 0 )->pFunc = pObj0; + Dec_GraphNode( pGraph, 1 )->pFunc = pObj1; + Dec_GraphNode( pGraph, 2 )->pFunc = pObj2; + eNode0 = Dec_EdgeCreate( 0, pObj0->fPhase ); + eNode1 = Dec_EdgeCreate( 1, pObj1->fPhase ); + eNode2 = Dec_EdgeCreate( 2, pObj2->fPhase ); + if ( fOrGate ) + { + eRoot = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + eRoot = Dec_GraphAddNodeOr( pGraph, eNode2, eRoot ); + } + else + { + eRoot = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 ); + eRoot = Dec_GraphAddNodeAnd( pGraph, eNode2, eRoot ); + } + Dec_GraphSetRoot( pGraph, eRoot ); + if ( pRoot->fPhase ) + Dec_GraphComplement( pGraph ); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubQuit2( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, int fOrGate ) +{ + Dec_Graph_t * pGraph; + Dec_Edge_t eRoot, ePrev, eNode0, eNode1, eNode2; + assert( pObj0 != pObj1 ); + assert( pObj0 != pObj2 ); + assert( pObj1 != pObj2 ); + assert( !Abc_ObjIsComplement(pObj0) ); + pGraph = Dec_GraphCreate( 3 ); + Dec_GraphNode( pGraph, 0 )->pFunc = Abc_ObjRegular(pObj0); + Dec_GraphNode( pGraph, 1 )->pFunc = Abc_ObjRegular(pObj1); + Dec_GraphNode( pGraph, 2 )->pFunc = Abc_ObjRegular(pObj2); + eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase ); + if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) ) + { + eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ); + eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ); + ePrev = Dec_GraphAddNodeOr( pGraph, eNode1, eNode2 ); + } + else + { + eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ^ Abc_ObjIsComplement(pObj1) ); + eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) ); + ePrev = Dec_GraphAddNodeAnd( pGraph, eNode1, eNode2 ); + } + if ( fOrGate ) + eRoot = Dec_GraphAddNodeOr( pGraph, eNode0, ePrev ); + else + eRoot = Dec_GraphAddNodeAnd( pGraph, eNode0, ePrev ); + Dec_GraphSetRoot( pGraph, eRoot ); + if ( pRoot->fPhase ) + Dec_GraphComplement( pGraph ); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubQuit3( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, Abc_Obj_t * pObj3, int fOrGate ) +{ + Dec_Graph_t * pGraph; + Dec_Edge_t eRoot, ePrev0, ePrev1, eNode0, eNode1, eNode2, eNode3; + assert( pObj0 != pObj1 ); + assert( pObj2 != pObj3 ); + pGraph = Dec_GraphCreate( 4 ); + Dec_GraphNode( pGraph, 0 )->pFunc = Abc_ObjRegular(pObj0); + Dec_GraphNode( pGraph, 1 )->pFunc = Abc_ObjRegular(pObj1); + Dec_GraphNode( pGraph, 2 )->pFunc = Abc_ObjRegular(pObj2); + Dec_GraphNode( pGraph, 3 )->pFunc = Abc_ObjRegular(pObj3); + if ( Abc_ObjIsComplement(pObj0) && Abc_ObjIsComplement(pObj1) ) + { + eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase ); + eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ); + ePrev0 = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 ); + if ( Abc_ObjIsComplement(pObj2) && Abc_ObjIsComplement(pObj3) ) + { + eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ); + eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ); + ePrev1 = Dec_GraphAddNodeOr( pGraph, eNode2, eNode3 ); + } + else + { + eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) ); + eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ^ Abc_ObjIsComplement(pObj3) ); + ePrev1 = Dec_GraphAddNodeAnd( pGraph, eNode2, eNode3 ); + } + } + else + { + eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase ^ Abc_ObjIsComplement(pObj0) ); + eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ^ Abc_ObjIsComplement(pObj1) ); + ePrev0 = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 ); + if ( Abc_ObjIsComplement(pObj2) && Abc_ObjIsComplement(pObj3) ) + { + eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ); + eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ); + ePrev1 = Dec_GraphAddNodeOr( pGraph, eNode2, eNode3 ); + } + else + { + eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) ); + eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ^ Abc_ObjIsComplement(pObj3) ); + ePrev1 = Dec_GraphAddNodeAnd( pGraph, eNode2, eNode3 ); + } + } + if ( fOrGate ) + eRoot = Dec_GraphAddNodeOr( pGraph, ePrev0, ePrev1 ); + else + eRoot = Dec_GraphAddNodeAnd( pGraph, ePrev0, ePrev1 ); + Dec_GraphSetRoot( pGraph, eRoot ); + if ( pRoot->fPhase ) + Dec_GraphComplement( pGraph ); + return pGraph; +} + + + + +/**Function************************************************************* + + Synopsis [Derives single-node unate/binate divisors.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubDivsS( Abc_ManRes_t * p, int Required ) +{ + Abc_Obj_t * pObj; + unsigned * puData, * puDataR; + int i, w; + Vec_PtrClear( p->vDivs1UP ); + Vec_PtrClear( p->vDivs1UN ); + Vec_PtrClear( p->vDivs1B ); + puDataR = p->pRoot->pData; + Vec_PtrForEachEntryStop( p->vDivs, pObj, i, p->nDivs ) + { + if ( (int)pObj->Level > Required - 1 ) + continue; + + puData = pObj->pData; + // check positive containment + for ( w = 0; w < p->nWords; w++ ) +// if ( puData[w] & ~puDataR[w] ) + if ( puData[w] & ~puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs1UP, pObj ); + continue; + } + // check negative containment + for ( w = 0; w < p->nWords; w++ ) +// if ( ~puData[w] & puDataR[w] ) + if ( ~puData[w] & puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs1UN, pObj ); + continue; + } + // add the node to binates + Vec_PtrPush( p->vDivs1B, pObj ); + } +} + +/**Function************************************************************* + + Synopsis [Derives double-node unate/binate divisors.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubDivsD( Abc_ManRes_t * p, int Required ) +{ + Abc_Obj_t * pObj0, * pObj1; + unsigned * puData0, * puData1, * puDataR; + int i, k, w; + Vec_PtrClear( p->vDivs2UP0 ); + Vec_PtrClear( p->vDivs2UP1 ); + Vec_PtrClear( p->vDivs2UN0 ); + Vec_PtrClear( p->vDivs2UN1 ); + puDataR = p->pRoot->pData; + Vec_PtrForEachEntry( p->vDivs1B, pObj0, i ) + { + if ( (int)pObj0->Level > Required - 2 ) + continue; + + puData0 = pObj0->pData; + Vec_PtrForEachEntryStart( p->vDivs1B, pObj1, k, i + 1 ) + { + if ( (int)pObj1->Level > Required - 2 ) + continue; + + puData1 = pObj1->pData; + + if ( Vec_PtrSize(p->vDivs2UP0) < ABC_RS_DIV2_MAX ) + { + // get positive unate divisors + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & puData1[w]) & ~puDataR[w] ) + if ( (puData0[w] & puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UP0, pObj0 ); + Vec_PtrPush( p->vDivs2UP1, pObj1 ); + } + for ( w = 0; w < p->nWords; w++ ) +// if ( (~puData0[w] & puData1[w]) & ~puDataR[w] ) + if ( (~puData0[w] & puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UP0, Abc_ObjNot(pObj0) ); + Vec_PtrPush( p->vDivs2UP1, pObj1 ); + } + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & ~puData1[w]) & ~puDataR[w] ) + if ( (puData0[w] & ~puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UP0, pObj0 ); + Vec_PtrPush( p->vDivs2UP1, Abc_ObjNot(pObj1) ); + } + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] | puData1[w]) & ~puDataR[w] ) + if ( (puData0[w] | puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UP0, Abc_ObjNot(pObj0) ); + Vec_PtrPush( p->vDivs2UP1, Abc_ObjNot(pObj1) ); + } + } + + if ( Vec_PtrSize(p->vDivs2UN0) < ABC_RS_DIV2_MAX ) + { + // get negative unate divisors + for ( w = 0; w < p->nWords; w++ ) +// if ( ~(puData0[w] & puData1[w]) & puDataR[w] ) + if ( ~(puData0[w] & puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UN0, pObj0 ); + Vec_PtrPush( p->vDivs2UN1, pObj1 ); + } + for ( w = 0; w < p->nWords; w++ ) +// if ( ~(~puData0[w] & puData1[w]) & puDataR[w] ) + if ( ~(~puData0[w] & puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UN0, Abc_ObjNot(pObj0) ); + Vec_PtrPush( p->vDivs2UN1, pObj1 ); + } + for ( w = 0; w < p->nWords; w++ ) +// if ( ~(puData0[w] & ~puData1[w]) & puDataR[w] ) + if ( ~(puData0[w] & ~puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UN0, pObj0 ); + Vec_PtrPush( p->vDivs2UN1, Abc_ObjNot(pObj1) ); + } + for ( w = 0; w < p->nWords; w++ ) +// if ( ~(puData0[w] | puData1[w]) & puDataR[w] ) + if ( ~(puData0[w] | puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + Vec_PtrPush( p->vDivs2UN0, Abc_ObjNot(pObj0) ); + Vec_PtrPush( p->vDivs2UN1, Abc_ObjNot(pObj1) ); + } + } + } + } +// printf( "%d %d ", Vec_PtrSize(p->vDivs2UP0), Vec_PtrSize(p->vDivs2UN0) ); +} + + + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubQuit( Abc_ManRes_t * p ) +{ + Dec_Graph_t * pGraph; + unsigned * upData; + int w; + upData = p->pRoot->pData; + for ( w = 0; w < p->nWords; w++ ) +// if ( upData[w] ) + if ( upData[w] & p->pCareSet[w] ) // care set + break; + if ( w != p->nWords ) + return NULL; + // get constant node graph + if ( p->pRoot->fPhase ) + pGraph = Dec_GraphCreateConst1(); + else + pGraph = Dec_GraphCreateConst0(); + return pGraph; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubDivs0( Abc_ManRes_t * p ) +{ + Abc_Obj_t * pObj; + unsigned * puData, * puDataR; + int i, w; + puDataR = p->pRoot->pData; + Vec_PtrForEachEntryStop( p->vDivs, pObj, i, p->nDivs ) + { + puData = pObj->pData; + for ( w = 0; w < p->nWords; w++ ) +// if ( puData[w] != puDataR[w] ) + if ( (puData[w] ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + return Abc_ManResubQuit0( p->pRoot, pObj ); + } + return NULL; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubDivs1( Abc_ManRes_t * p, int Required ) +{ + Abc_Obj_t * pObj0, * pObj1; + unsigned * puData0, * puData1, * puDataR; + int i, k, w; + puDataR = p->pRoot->pData; + // check positive unate divisors + Vec_PtrForEachEntry( p->vDivs1UP, pObj0, i ) + { + puData0 = pObj0->pData; + Vec_PtrForEachEntryStart( p->vDivs1UP, pObj1, k, i + 1 ) + { + puData1 = pObj1->pData; + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] | puData1[w]) != puDataR[w] ) + if ( ((puData0[w] | puData1[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + p->nUsedNode1Or++; + return Abc_ManResubQuit1( p->pRoot, pObj0, pObj1, 1 ); + } + } + } + // check negative unate divisors + Vec_PtrForEachEntry( p->vDivs1UN, pObj0, i ) + { + puData0 = pObj0->pData; + Vec_PtrForEachEntryStart( p->vDivs1UN, pObj1, k, i + 1 ) + { + puData1 = pObj1->pData; + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & puData1[w]) != puDataR[w] ) + if ( ((puData0[w] & puData1[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + p->nUsedNode1And++; + return Abc_ManResubQuit1( p->pRoot, pObj0, pObj1, 0 ); + } + } + } + return NULL; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubDivs12( Abc_ManRes_t * p, int Required ) +{ + Abc_Obj_t * pObj0, * pObj1, * pObj2, * pObjMax, * pObjMin0, * pObjMin1; + unsigned * puData0, * puData1, * puData2, * puDataR; + int i, k, j, w, LevelMax; + puDataR = p->pRoot->pData; + // check positive unate divisors + Vec_PtrForEachEntry( p->vDivs1UP, pObj0, i ) + { + puData0 = pObj0->pData; + Vec_PtrForEachEntryStart( p->vDivs1UP, pObj1, k, i + 1 ) + { + puData1 = pObj1->pData; + Vec_PtrForEachEntryStart( p->vDivs1UP, pObj2, j, k + 1 ) + { + puData2 = pObj2->pData; + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] | puData1[w] | puData2[w]) != puDataR[w] ) + if ( ((puData0[w] | puData1[w] | puData2[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + LevelMax = ABC_MAX( pObj0->Level, ABC_MAX(pObj1->Level, pObj2->Level) ); + assert( LevelMax <= Required - 1 ); + + pObjMax = NULL; + if ( (int)pObj0->Level == LevelMax ) + pObjMax = pObj0, pObjMin0 = pObj1, pObjMin1 = pObj2; + if ( (int)pObj1->Level == LevelMax ) + { + if ( pObjMax ) continue; + pObjMax = pObj1, pObjMin0 = pObj0, pObjMin1 = pObj2; + } + if ( (int)pObj2->Level == LevelMax ) + { + if ( pObjMax ) continue; + pObjMax = pObj2, pObjMin0 = pObj0, pObjMin1 = pObj1; + } + + p->nUsedNode2Or++; + return Abc_ManResubQuit21( p->pRoot, pObjMin0, pObjMin1, pObjMax, 1 ); + } + } + } + } + // check negative unate divisors + Vec_PtrForEachEntry( p->vDivs1UN, pObj0, i ) + { + puData0 = pObj0->pData; + Vec_PtrForEachEntryStart( p->vDivs1UN, pObj1, k, i + 1 ) + { + puData1 = pObj1->pData; + Vec_PtrForEachEntryStart( p->vDivs1UN, pObj2, j, k + 1 ) + { + puData2 = pObj2->pData; + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & puData1[w] & puData2[w]) != puDataR[w] ) + if ( ((puData0[w] & puData1[w] & puData2[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + if ( w == p->nWords ) + { + LevelMax = ABC_MAX( pObj0->Level, ABC_MAX(pObj1->Level, pObj2->Level) ); + assert( LevelMax <= Required - 1 ); + + pObjMax = NULL; + if ( (int)pObj0->Level == LevelMax ) + pObjMax = pObj0, pObjMin0 = pObj1, pObjMin1 = pObj2; + if ( (int)pObj1->Level == LevelMax ) + { + if ( pObjMax ) continue; + pObjMax = pObj1, pObjMin0 = pObj0, pObjMin1 = pObj2; + } + if ( (int)pObj2->Level == LevelMax ) + { + if ( pObjMax ) continue; + pObjMax = pObj2, pObjMin0 = pObj0, pObjMin1 = pObj1; + } + + p->nUsedNode2And++; + return Abc_ManResubQuit21( p->pRoot, pObjMin0, pObjMin1, pObjMax, 0 ); + } + } + } + } + return NULL; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubDivs2( Abc_ManRes_t * p, int Required ) +{ + Abc_Obj_t * pObj0, * pObj1, * pObj2; + unsigned * puData0, * puData1, * puData2, * puDataR; + int i, k, w; + puDataR = p->pRoot->pData; + // check positive unate divisors + Vec_PtrForEachEntry( p->vDivs1UP, pObj0, i ) + { + puData0 = pObj0->pData; + Vec_PtrForEachEntry( p->vDivs2UP0, pObj1, k ) + { + pObj2 = Vec_PtrEntry( p->vDivs2UP1, k ); + + puData1 = Abc_ObjRegular(pObj1)->pData; + puData2 = Abc_ObjRegular(pObj2)->pData; + if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) ) + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] | (puData1[w] | puData2[w])) != puDataR[w] ) + if ( ((puData0[w] | (puData1[w] | puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + else if ( Abc_ObjIsComplement(pObj1) ) + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] | (~puData1[w] & puData2[w])) != puDataR[w] ) + if ( ((puData0[w] | (~puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + else if ( Abc_ObjIsComplement(pObj2) ) + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] | (puData1[w] & ~puData2[w])) != puDataR[w] ) + if ( ((puData0[w] | (puData1[w] & ~puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + else + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] | (puData1[w] & puData2[w])) != puDataR[w] ) + if ( ((puData0[w] | (puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + if ( w == p->nWords ) + { + p->nUsedNode2OrAnd++; + return Abc_ManResubQuit2( p->pRoot, pObj0, pObj1, pObj2, 1 ); + } + } + } + // check negative unate divisors + Vec_PtrForEachEntry( p->vDivs1UN, pObj0, i ) + { + puData0 = pObj0->pData; + Vec_PtrForEachEntry( p->vDivs2UN0, pObj1, k ) + { + pObj2 = Vec_PtrEntry( p->vDivs2UN1, k ); + + puData1 = Abc_ObjRegular(pObj1)->pData; + puData2 = Abc_ObjRegular(pObj2)->pData; + if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) ) + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & (puData1[w] | puData2[w])) != puDataR[w] ) + if ( ((puData0[w] & (puData1[w] | puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + else if ( Abc_ObjIsComplement(pObj1) ) + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & (~puData1[w] & puData2[w])) != puDataR[w] ) + if ( ((puData0[w] & (~puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + else if ( Abc_ObjIsComplement(pObj2) ) + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & (puData1[w] & ~puData2[w])) != puDataR[w] ) + if ( ((puData0[w] & (puData1[w] & ~puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + else + { + for ( w = 0; w < p->nWords; w++ ) +// if ( (puData0[w] & (puData1[w] & puData2[w])) != puDataR[w] ) + if ( ((puData0[w] & (puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + } + if ( w == p->nWords ) + { + p->nUsedNode2AndOr++; + return Abc_ManResubQuit2( p->pRoot, pObj0, pObj1, pObj2, 0 ); + } + } + } + return NULL; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubDivs3( Abc_ManRes_t * p, int Required ) +{ + Abc_Obj_t * pObj0, * pObj1, * pObj2, * pObj3; + unsigned * puData0, * puData1, * puData2, * puData3, * puDataR; + int i, k, w, Flag; + puDataR = p->pRoot->pData; + // check positive unate divisors + Vec_PtrForEachEntry( p->vDivs2UP0, pObj0, i ) + { + pObj1 = Vec_PtrEntry( p->vDivs2UP1, i ); + puData0 = Abc_ObjRegular(pObj0)->pData; + puData1 = Abc_ObjRegular(pObj1)->pData; + Flag = (Abc_ObjIsComplement(pObj0) << 3) | (Abc_ObjIsComplement(pObj1) << 2); + + Vec_PtrForEachEntryStart( p->vDivs2UP0, pObj2, k, i + 1 ) + { + pObj3 = Vec_PtrEntry( p->vDivs2UP1, k ); + puData2 = Abc_ObjRegular(pObj2)->pData; + puData3 = Abc_ObjRegular(pObj3)->pData; + + Flag = (Flag & 12) | (Abc_ObjIsComplement(pObj2) << 1) | Abc_ObjIsComplement(pObj3); + assert( Flag < 16 ); + switch( Flag ) + { + case 0: // 0000 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 1: // 0001 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 2: // 0010 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 3: // 0011 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + + case 4: // 0100 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & ~puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & ~puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 5: // 0101 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & ~puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & ~puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 6: // 0110 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & ~puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & ~puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 7: // 0111 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] & ~puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] ) + if ( (((puData0[w] & ~puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + + case 8: // 1000 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((~puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((~puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 9: // 1001 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((~puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] ) + if ( (((~puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 10: // 1010 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((~puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((~puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 11: // 1011 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((~puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] ) + if ( (((~puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + + case 12: // 1100 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] | puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((puData0[w] | puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set + break; + break; + case 13: // 1101 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] | puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] ) + if ( (((puData0[w] | puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) + break; + break; + case 14: // 1110 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] | puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] ) + if ( (((puData0[w] | puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) + break; + break; + case 15: // 1111 + for ( w = 0; w < p->nWords; w++ ) +// if ( ((puData0[w] | puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] ) + if ( (((puData0[w] | puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) + break; + break; + + } + if ( w == p->nWords ) + { + p->nUsedNode3OrAnd++; + return Abc_ManResubQuit3( p->pRoot, pObj0, pObj1, pObj2, pObj3, 1 ); + } + } + } +/* + // check negative unate divisors + Vec_PtrForEachEntry( p->vDivs2UN0, pObj0, i ) + { + pObj1 = Vec_PtrEntry( p->vDivs2UN1, i ); + puData0 = Abc_ObjRegular(pObj0)->pData; + puData1 = Abc_ObjRegular(pObj1)->pData; + Flag = (Abc_ObjIsComplement(pObj0) << 3) | (Abc_ObjIsComplement(pObj1) << 2); + + Vec_PtrForEachEntryStart( p->vDivs2UN0, pObj2, k, i + 1 ) + { + pObj3 = Vec_PtrEntry( p->vDivs2UN1, k ); + puData2 = Abc_ObjRegular(pObj2)->pData; + puData3 = Abc_ObjRegular(pObj3)->pData; + + Flag = (Flag & 12) | (Abc_ObjIsComplement(pObj2) << 1) | Abc_ObjIsComplement(pObj3); + assert( Flag < 16 ); + switch( Flag ) + { + case 0: // 0000 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 1: // 0001 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] ) + break; + break; + case 2: // 0010 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 3: // 0011 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] ) + break; + break; + + case 4: // 0100 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & ~puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 5: // 0101 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & ~puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] ) + break; + break; + case 6: // 0110 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & ~puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 7: // 0111 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] & ~puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] ) + break; + break; + + case 8: // 1000 + for ( w = 0; w < p->nWords; w++ ) + if ( ((~puData0[w] & puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 9: // 1001 + for ( w = 0; w < p->nWords; w++ ) + if ( ((~puData0[w] & puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] ) + break; + break; + case 10: // 1010 + for ( w = 0; w < p->nWords; w++ ) + if ( ((~puData0[w] & puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 11: // 1011 + for ( w = 0; w < p->nWords; w++ ) + if ( ((~puData0[w] & puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] ) + break; + break; + + case 12: // 1100 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] | puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 13: // 1101 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] | puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] ) + break; + break; + case 14: // 1110 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] | puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] ) + break; + break; + case 15: // 1111 + for ( w = 0; w < p->nWords; w++ ) + if ( ((puData0[w] | puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] ) + break; + break; + + } + if ( w == p->nWords ) + { + p->nUsedNode3AndOr++; + return Abc_ManResubQuit3( p->pRoot, pObj0, pObj1, pObj2, pObj3, 0 ); + } + } + } +*/ + return NULL; +} + +/**Function************************************************************* + + Synopsis [] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_ManResubCleanup( Abc_ManRes_t * p ) +{ + Abc_Obj_t * pObj; + int i; + Vec_PtrForEachEntry( p->vDivs, pObj, i ) + pObj->pData = NULL; + Vec_PtrClear( p->vDivs ); + p->pRoot = NULL; +} + +/**Function************************************************************* + + Synopsis [Evaluates resubstution of one cut.] + + Description [Returns the graph to add if any.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Dec_Graph_t * Abc_ManResubEval( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int nSteps, bool fUpdateLevel, bool fVerbose ) +{ + extern int Abc_NodeMffsInside( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vInside ); + Dec_Graph_t * pGraph; + int Required; + int clk; + + Required = fUpdateLevel? Abc_ObjRequiredLevel(pRoot) : ABC_INFINITY; + + assert( nSteps >= 0 ); + assert( nSteps <= 3 ); + p->pRoot = pRoot; + p->nLeaves = Vec_PtrSize(vLeaves); + p->nLastGain = -1; + + // collect the MFFC +clk = clock(); + p->nMffc = Abc_NodeMffsInside( pRoot, vLeaves, p->vTemp ); +p->timeMffc += clock() - clk; + assert( p->nMffc > 0 ); + + // collect the divisor nodes +clk = clock(); + if ( !Abc_ManResubCollectDivs( p, pRoot, vLeaves, Required ) ) + return NULL; + p->timeDiv += clock() - clk; + + p->nTotalDivs += p->nDivs; + p->nTotalLeaves += p->nLeaves; + + // simulate the nodes +clk = clock(); + Abc_ManResubSimulate( p->vDivs, p->nLeaves, p->vSims, p->nLeavesMax, p->nWords ); +p->timeSim += clock() - clk; + +clk = clock(); + // consider constants + if ( pGraph = Abc_ManResubQuit( p ) ) + { + p->nUsedNodeC++; + p->nLastGain = p->nMffc; + return pGraph; + } + + // consider equal nodes + if ( pGraph = Abc_ManResubDivs0( p ) ) + { +p->timeRes1 += clock() - clk; + p->nUsedNode0++; + p->nLastGain = p->nMffc; + return pGraph; + } + if ( nSteps == 0 || p->nMffc == 1 ) + { +p->timeRes1 += clock() - clk; + return NULL; + } + + // get the one level divisors + Abc_ManResubDivsS( p, Required ); + + // consider one node + if ( pGraph = Abc_ManResubDivs1( p, Required ) ) + { +p->timeRes1 += clock() - clk; + p->nLastGain = p->nMffc - 1; + return pGraph; + } +p->timeRes1 += clock() - clk; + if ( nSteps == 1 || p->nMffc == 2 ) + return NULL; + +clk = clock(); + // consider triples + if ( pGraph = Abc_ManResubDivs12( p, Required ) ) + { +p->timeRes2 += clock() - clk; + p->nLastGain = p->nMffc - 2; + return pGraph; + } +p->timeRes2 += clock() - clk; + + // get the two level divisors +clk = clock(); + Abc_ManResubDivsD( p, Required ); +p->timeResD += clock() - clk; + + // consider two nodes +clk = clock(); + if ( pGraph = Abc_ManResubDivs2( p, Required ) ) + { +p->timeRes2 += clock() - clk; + p->nLastGain = p->nMffc - 2; + return pGraph; + } +p->timeRes2 += clock() - clk; + if ( nSteps == 2 || p->nMffc == 3 ) + return NULL; + + // consider two nodes +clk = clock(); + if ( pGraph = Abc_ManResubDivs3( p, Required ) ) + { +p->timeRes3 += clock() - clk; + p->nLastGain = p->nMffc - 3; + return pGraph; + } +p->timeRes3 += clock() - clk; + if ( nSteps == 3 || p->nLeavesMax == 4 ) + return NULL; + return NULL; +} + + + + +/**Function************************************************************* + + Synopsis [Computes the volume and checks if the cut is feasible.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Abc_CutVolumeCheck_rec( Abc_Obj_t * pObj ) +{ + // quit if the node is visited (or if it is a leaf) + if ( Abc_NodeIsTravIdCurrent(pObj) ) + return 0; + Abc_NodeSetTravIdCurrent(pObj); + // report the error + if ( Abc_ObjIsCi(pObj) ) + printf( "Abc_CutVolumeCheck() ERROR: The set of nodes is not a cut!\n" ); + // count the number of nodes in the leaves + return 1 + Abc_CutVolumeCheck_rec( Abc_ObjFanin0(pObj) ) + + Abc_CutVolumeCheck_rec( Abc_ObjFanin1(pObj) ); +} + +/**Function************************************************************* + + Synopsis [Computes the volume and checks if the cut is feasible.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +int Abc_CutVolumeCheck( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves ) +{ + Abc_Obj_t * pObj; + int i; + // mark the leaves + Abc_NtkIncrementTravId( pNode->pNtk ); + Vec_PtrForEachEntry( vLeaves, pObj, i ) + Abc_NodeSetTravIdCurrent( pObj ); + // traverse the nodes starting from the given one and count them + return Abc_CutVolumeCheck_rec( pNode ); +} + +/**Function************************************************************* + + Synopsis [Computes the factor cut of the node.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Abc_CutFactor_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves ) +{ + if ( pObj->fMarkA ) + return; + if ( Abc_ObjIsCi(pObj) || (Abc_ObjFanoutNum(pObj) > 1 && !Abc_NodeIsMuxControlType(pObj)) ) + { + Vec_PtrPush( vLeaves, pObj ); + pObj->fMarkA = 1; + return; + } + Abc_CutFactor_rec( Abc_ObjFanin0(pObj), vLeaves ); + Abc_CutFactor_rec( Abc_ObjFanin1(pObj), vLeaves ); +} + +/**Function************************************************************* + + Synopsis [Computes the factor cut of the node.] + + Description [Factor-cut is the cut at a node in terms of factor-nodes. + Factor-nodes are roots of the node trees (MUXes/EXORs are counted as single nodes). + Factor-cut is unique for the given node.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Ptr_t * Abc_CutFactor( Abc_Obj_t * pNode ) +{ + Vec_Ptr_t * vLeaves; + Abc_Obj_t * pObj; + int i; + assert( !Abc_ObjIsCi(pNode) ); + vLeaves = Vec_PtrAlloc( 10 ); + Abc_CutFactor_rec( Abc_ObjFanin0(pNode), vLeaves ); + Abc_CutFactor_rec( Abc_ObjFanin1(pNode), vLeaves ); + Vec_PtrForEachEntry( vLeaves, pObj, i ) + pObj->fMarkA = 0; + return vLeaves; +} + +/**Function************************************************************* + + Synopsis [Cut computation.] + + Description [This cut computation works as follows: + It starts with the factor cut at the node. If the factor-cut is large, quit. + It supports the set of leaves of the cut under construction and labels all nodes + in the cut under construction, including the leaves. + It computes the factor-cuts of the leaves and checks if it is easible to add any of them. + If it is, it randomly chooses one feasible and continues.] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +Vec_Ptr_t * Abc_CutFactorLarge( Abc_Obj_t * pNode, int nLeavesMax ) +{ + Vec_Ptr_t * vLeaves, * vFactors, * vFact, * vNext; + Vec_Int_t * vFeasible; + Abc_Obj_t * pLeaf, * pTemp; + int i, k, Counter, RandLeaf; + int BestCut, BestShare; + assert( Abc_ObjIsNode(pNode) ); + // get one factor-cut + vLeaves = Abc_CutFactor( pNode ); + if ( Vec_PtrSize(vLeaves) > nLeavesMax ) + { + Vec_PtrFree(vLeaves); + return NULL; + } + if ( Vec_PtrSize(vLeaves) == nLeavesMax ) + return vLeaves; + // initialize the factor cuts for the leaves + vFactors = Vec_PtrAlloc( nLeavesMax ); + Abc_NtkIncrementTravId( pNode->pNtk ); + Vec_PtrForEachEntry( vLeaves, pLeaf, i ) + { + Abc_NodeSetTravIdCurrent( pLeaf ); + if ( Abc_ObjIsCi(pLeaf) ) + Vec_PtrPush( vFactors, NULL ); + else + Vec_PtrPush( vFactors, Abc_CutFactor(pLeaf) ); + } + // construct larger factor cuts + vFeasible = Vec_IntAlloc( nLeavesMax ); + while ( 1 ) + { + BestCut = -1; + // find the next feasible cut to add + Vec_IntClear( vFeasible ); + Vec_PtrForEachEntry( vFactors, vFact, i ) + { + if ( vFact == NULL ) + continue; + // count the number of unmarked leaves of this factor cut + Counter = 0; + Vec_PtrForEachEntry( vFact, pTemp, k ) + Counter += !Abc_NodeIsTravIdCurrent(pTemp); + // if the number of new leaves is smaller than the diff, it is feasible + if ( Counter <= nLeavesMax - Vec_PtrSize(vLeaves) + 1 ) + { + Vec_IntPush( vFeasible, i ); + if ( BestCut == -1 || BestShare < Vec_PtrSize(vFact) - Counter ) + BestCut = i, BestShare = Vec_PtrSize(vFact) - Counter; + } + } + // quit if there is no feasible factor cuts + if ( Vec_IntSize(vFeasible) == 0 ) + break; + // randomly choose one leaf and get its factor cut +// RandLeaf = Vec_IntEntry( vFeasible, rand() % Vec_IntSize(vFeasible) ); + // choose the cut that has most sharing with the other cuts + RandLeaf = BestCut; + + pLeaf = Vec_PtrEntry( vLeaves, RandLeaf ); + vNext = Vec_PtrEntry( vFactors, RandLeaf ); + // unmark this leaf + Abc_NodeSetTravIdPrevious( pLeaf ); + // remove this cut from the leaves and factor cuts + for ( i = RandLeaf; i < Vec_PtrSize(vLeaves)-1; i++ ) + { + Vec_PtrWriteEntry( vLeaves, i, Vec_PtrEntry(vLeaves, i+1) ); + Vec_PtrWriteEntry( vFactors, i, Vec_PtrEntry(vFactors,i+1) ); + } + Vec_PtrShrink( vLeaves, Vec_PtrSize(vLeaves) -1 ); + Vec_PtrShrink( vFactors, Vec_PtrSize(vFactors)-1 ); + // add new leaves, compute their factor cuts + Vec_PtrForEachEntry( vNext, pLeaf, i ) + { + if ( Abc_NodeIsTravIdCurrent(pLeaf) ) + continue; + Abc_NodeSetTravIdCurrent( pLeaf ); + Vec_PtrPush( vLeaves, pLeaf ); + if ( Abc_ObjIsCi(pLeaf) ) + Vec_PtrPush( vFactors, NULL ); + else + Vec_PtrPush( vFactors, Abc_CutFactor(pLeaf) ); + } + Vec_PtrFree( vNext ); + assert( Vec_PtrSize(vLeaves) <= nLeavesMax ); + if ( Vec_PtrSize(vLeaves) == nLeavesMax ) + break; + } + + // remove temporary storage + Vec_PtrForEachEntry( vFactors, vFact, i ) + if ( vFact ) Vec_PtrFree( vFact ); + Vec_PtrFree( vFactors ); + Vec_IntFree( vFeasible ); + return vLeaves; +} + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + |