summaryrefslogtreecommitdiffstats
path: root/src/base/abci/abcResub.c
diff options
context:
space:
mode:
authorAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
committerAlan Mishchenko <alanmi@berkeley.edu>2008-01-30 20:01:00 -0800
commit0c6505a26a537dc911b6566f82d759521e527c08 (patch)
treef2687995efd4943fe3b1307fce7ef5942d0a57b3 /src/base/abci/abcResub.c
parent4d30a1e4f1edecff86d5066ce4653a370e59e5e1 (diff)
downloadabc-0c6505a26a537dc911b6566f82d759521e527c08.tar.gz
abc-0c6505a26a537dc911b6566f82d759521e527c08.tar.bz2
abc-0c6505a26a537dc911b6566f82d759521e527c08.zip
Version abc80130_2
Diffstat (limited to 'src/base/abci/abcResub.c')
-rw-r--r--src/base/abci/abcResub.c1952
1 files changed, 1952 insertions, 0 deletions
diff --git a/src/base/abci/abcResub.c b/src/base/abci/abcResub.c
new file mode 100644
index 00000000..a2b23c0c
--- /dev/null
+++ b/src/base/abci/abcResub.c
@@ -0,0 +1,1952 @@
+/**CFile****************************************************************
+
+ FileName [abcResub.c]
+
+ SystemName [ABC: Logic synthesis and verification system.]
+
+ PackageName [Network and node package.]
+
+ Synopsis [Resubstitution manager.]
+
+ Author [Alan Mishchenko]
+
+ Affiliation [UC Berkeley]
+
+ Date [Ver. 1.0. Started - June 20, 2005.]
+
+ Revision [$Id: abcResub.c,v 1.00 2005/06/20 00:00:00 alanmi Exp $]
+
+***********************************************************************/
+
+#include "abc.h"
+#include "dec.h"
+
+////////////////////////////////////////////////////////////////////////
+/// DECLARATIONS ///
+////////////////////////////////////////////////////////////////////////
+
+#define ABC_RS_DIV1_MAX 150 // the max number of divisors to consider
+#define ABC_RS_DIV2_MAX 500 // the max number of pair-wise divisors to consider
+
+typedef struct Abc_ManRes_t_ Abc_ManRes_t;
+struct Abc_ManRes_t_
+{
+ // paramers
+ int nLeavesMax; // the max number of leaves in the cone
+ int nDivsMax; // the max number of divisors in the cone
+ // representation of the cone
+ Abc_Obj_t * pRoot; // the root of the cone
+ int nLeaves; // the number of leaves
+ int nDivs; // the number of all divisor (including leaves)
+ int nMffc; // the size of MFFC
+ int nLastGain; // the gain the number of nodes
+ Vec_Ptr_t * vDivs; // the divisors
+ // representation of the simulation info
+ int nBits; // the number of simulation bits
+ int nWords; // the number of unsigneds for siminfo
+ Vec_Ptr_t * vSims; // simulation info
+ unsigned * pInfo; // pointer to simulation info
+ // observability don't-cares
+ unsigned * pCareSet;
+ // internal divisor storage
+ Vec_Ptr_t * vDivs1UP; // the single-node unate divisors
+ Vec_Ptr_t * vDivs1UN; // the single-node unate divisors
+ Vec_Ptr_t * vDivs1B; // the single-node binate divisors
+ Vec_Ptr_t * vDivs2UP0; // the double-node unate divisors
+ Vec_Ptr_t * vDivs2UP1; // the double-node unate divisors
+ Vec_Ptr_t * vDivs2UN0; // the double-node unate divisors
+ Vec_Ptr_t * vDivs2UN1; // the double-node unate divisors
+ // other data
+ Vec_Ptr_t * vTemp; // temporary array of nodes
+ // runtime statistics
+ int timeCut;
+ int timeTruth;
+ int timeRes;
+ int timeDiv;
+ int timeMffc;
+ int timeSim;
+ int timeRes1;
+ int timeResD;
+ int timeRes2;
+ int timeRes3;
+ int timeNtk;
+ int timeTotal;
+ // improvement statistics
+ int nUsedNodeC;
+ int nUsedNode0;
+ int nUsedNode1Or;
+ int nUsedNode1And;
+ int nUsedNode2Or;
+ int nUsedNode2And;
+ int nUsedNode2OrAnd;
+ int nUsedNode2AndOr;
+ int nUsedNode3OrAnd;
+ int nUsedNode3AndOr;
+ int nUsedNodeTotal;
+ int nTotalDivs;
+ int nTotalLeaves;
+ int nTotalGain;
+ int nNodesBeg;
+ int nNodesEnd;
+};
+
+// external procedures
+static Abc_ManRes_t* Abc_ManResubStart( int nLeavesMax, int nDivsMax );
+static void Abc_ManResubStop( Abc_ManRes_t * p );
+static Dec_Graph_t * Abc_ManResubEval( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int nSteps, bool fUpdateLevel, int fVerbose );
+static void Abc_ManResubCleanup( Abc_ManRes_t * p );
+static void Abc_ManResubPrint( Abc_ManRes_t * p );
+
+// other procedures
+static int Abc_ManResubCollectDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int Required );
+static void Abc_ManResubSimulate( Vec_Ptr_t * vDivs, int nLeaves, Vec_Ptr_t * vSims, int nLeavesMax, int nWords );
+static void Abc_ManResubPrintDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves );
+
+static void Abc_ManResubDivsS( Abc_ManRes_t * p, int Required );
+static void Abc_ManResubDivsD( Abc_ManRes_t * p, int Required );
+static Dec_Graph_t * Abc_ManResubQuit( Abc_ManRes_t * p );
+static Dec_Graph_t * Abc_ManResubDivs0( Abc_ManRes_t * p );
+static Dec_Graph_t * Abc_ManResubDivs1( Abc_ManRes_t * p, int Required );
+static Dec_Graph_t * Abc_ManResubDivs12( Abc_ManRes_t * p, int Required );
+static Dec_Graph_t * Abc_ManResubDivs2( Abc_ManRes_t * p, int Required );
+static Dec_Graph_t * Abc_ManResubDivs3( Abc_ManRes_t * p, int Required );
+
+static Vec_Ptr_t * Abc_CutFactorLarge( Abc_Obj_t * pNode, int nLeavesMax );
+static int Abc_CutVolumeCheck( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves );
+
+// don't-care manager
+extern void * Abc_NtkDontCareAlloc( int nVarsMax, int nLevels, int fVerbose, int fVeryVerbose );
+extern void Abc_NtkDontCareClear( void * p );
+extern void Abc_NtkDontCareFree( void * p );
+extern int Abc_NtkDontCareCompute( void * p, Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, unsigned * puTruth );
+
+extern int s_ResubTime;
+
+////////////////////////////////////////////////////////////////////////
+/// FUNCTION DEFINITIONS ///
+////////////////////////////////////////////////////////////////////////
+
+/**Function*************************************************************
+
+ Synopsis [Performs incremental resynthesis of the AIG.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_NtkResubstitute( Abc_Ntk_t * pNtk, int nCutMax, int nStepsMax, int nLevelsOdc, bool fUpdateLevel, bool fVerbose, bool fVeryVerbose )
+{
+ extern void Dec_GraphUpdateNetwork( Abc_Obj_t * pRoot, Dec_Graph_t * pGraph, bool fUpdateLevel, int nGain );
+ ProgressBar * pProgress;
+ Abc_ManRes_t * pManRes;
+ Abc_ManCut_t * pManCut;
+ void * pManOdc = NULL;
+ Dec_Graph_t * pFForm;
+ Vec_Ptr_t * vLeaves;
+ Abc_Obj_t * pNode;
+ int clk, clkStart = clock();
+ int i, nNodes;
+
+ assert( Abc_NtkIsStrash(pNtk) );
+
+ // cleanup the AIG
+ Abc_AigCleanup(pNtk->pManFunc);
+ // start the managers
+ pManCut = Abc_NtkManCutStart( nCutMax, 100000, 100000, 100000 );
+ pManRes = Abc_ManResubStart( nCutMax, ABC_RS_DIV1_MAX );
+ if ( nLevelsOdc > 0 )
+ pManOdc = Abc_NtkDontCareAlloc( nCutMax, nLevelsOdc, fVerbose, fVeryVerbose );
+
+ // compute the reverse levels if level update is requested
+ if ( fUpdateLevel )
+ Abc_NtkStartReverseLevels( pNtk, 0 );
+
+ if ( Abc_NtkLatchNum(pNtk) )
+ Abc_NtkForEachLatch(pNtk, pNode, i)
+ pNode->pNext = pNode->pData;
+
+ // resynthesize each node once
+ pManRes->nNodesBeg = Abc_NtkNodeNum(pNtk);
+ nNodes = Abc_NtkObjNumMax(pNtk);
+ pProgress = Extra_ProgressBarStart( stdout, nNodes );
+ Abc_NtkForEachNode( pNtk, pNode, i )
+ {
+ Extra_ProgressBarUpdate( pProgress, i, NULL );
+ // skip the constant node
+// if ( Abc_NodeIsConst(pNode) )
+// continue;
+ // skip persistant nodes
+ if ( Abc_NodeIsPersistant(pNode) )
+ continue;
+ // skip the nodes with many fanouts
+ if ( Abc_ObjFanoutNum(pNode) > 1000 )
+ continue;
+ // stop if all nodes have been tried once
+ if ( i >= nNodes )
+ break;
+
+ // compute a reconvergence-driven cut
+clk = clock();
+ vLeaves = Abc_NodeFindCut( pManCut, pNode, 0 );
+// vLeaves = Abc_CutFactorLarge( pNode, nCutMax );
+pManRes->timeCut += clock() - clk;
+/*
+ if ( fVerbose && vLeaves )
+ printf( "Node %6d : Leaves = %3d. Volume = %3d.\n", pNode->Id, Vec_PtrSize(vLeaves), Abc_CutVolumeCheck(pNode, vLeaves) );
+ if ( vLeaves == NULL )
+ continue;
+*/
+ // get the don't-cares
+ if ( pManOdc )
+ {
+clk = clock();
+ Abc_NtkDontCareClear( pManOdc );
+ Abc_NtkDontCareCompute( pManOdc, pNode, vLeaves, pManRes->pCareSet );
+pManRes->timeTruth += clock() - clk;
+ }
+
+ // evaluate this cut
+clk = clock();
+ pFForm = Abc_ManResubEval( pManRes, pNode, vLeaves, nStepsMax, fUpdateLevel, fVerbose );
+// Vec_PtrFree( vLeaves );
+// Abc_ManResubCleanup( pManRes );
+pManRes->timeRes += clock() - clk;
+ if ( pFForm == NULL )
+ continue;
+ pManRes->nTotalGain += pManRes->nLastGain;
+/*
+ if ( pManRes->nLeaves == 4 && pManRes->nMffc == 2 && pManRes->nLastGain == 1 )
+ {
+ printf( "%6d : L = %2d. V = %2d. Mffc = %2d. Divs = %3d. Up = %3d. Un = %3d. B = %3d.\n",
+ pNode->Id, pManRes->nLeaves, Abc_CutVolumeCheck(pNode, vLeaves), pManRes->nMffc, pManRes->nDivs,
+ pManRes->vDivs1UP->nSize, pManRes->vDivs1UN->nSize, pManRes->vDivs1B->nSize );
+ Abc_ManResubPrintDivs( pManRes, pNode, vLeaves );
+ }
+*/
+ // acceptable replacement found, update the graph
+clk = clock();
+ Dec_GraphUpdateNetwork( pNode, pFForm, fUpdateLevel, pManRes->nLastGain );
+pManRes->timeNtk += clock() - clk;
+ Dec_GraphFree( pFForm );
+ }
+ Extra_ProgressBarStop( pProgress );
+pManRes->timeTotal = clock() - clkStart;
+ pManRes->nNodesEnd = Abc_NtkNodeNum(pNtk);
+
+ // print statistics
+ if ( fVerbose )
+ Abc_ManResubPrint( pManRes );
+
+ // delete the managers
+ Abc_ManResubStop( pManRes );
+ Abc_NtkManCutStop( pManCut );
+ if ( pManOdc ) Abc_NtkDontCareFree( pManOdc );
+
+ // clean the data field
+ Abc_NtkForEachObj( pNtk, pNode, i )
+ pNode->pData = NULL;
+
+ if ( Abc_NtkLatchNum(pNtk) )
+ Abc_NtkForEachLatch(pNtk, pNode, i)
+ pNode->pData = pNode->pNext, pNode->pNext = NULL;
+
+ // put the nodes into the DFS order and reassign their IDs
+ Abc_NtkReassignIds( pNtk );
+// Abc_AigCheckFaninOrder( pNtk->pManFunc );
+ // fix the levels
+ if ( fUpdateLevel )
+ Abc_NtkStopReverseLevels( pNtk );
+ else
+ Abc_NtkLevel( pNtk );
+ // check
+ if ( !Abc_NtkCheck( pNtk ) )
+ {
+ printf( "Abc_NtkRefactor: The network check has failed.\n" );
+ return 0;
+ }
+s_ResubTime = clock() - clkStart;
+ return 1;
+}
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Abc_ManRes_t * Abc_ManResubStart( int nLeavesMax, int nDivsMax )
+{
+ Abc_ManRes_t * p;
+ unsigned * pData;
+ int i, k;
+ assert( sizeof(unsigned) == 4 );
+ p = ALLOC( Abc_ManRes_t, 1 );
+ memset( p, 0, sizeof(Abc_ManRes_t) );
+ p->nLeavesMax = nLeavesMax;
+ p->nDivsMax = nDivsMax;
+ p->vDivs = Vec_PtrAlloc( p->nDivsMax );
+ // allocate simulation info
+ p->nBits = (1 << p->nLeavesMax);
+ p->nWords = (p->nBits <= 32)? 1 : (p->nBits / 32);
+ p->pInfo = ALLOC( unsigned, p->nWords * (p->nDivsMax + 1) );
+ memset( p->pInfo, 0, sizeof(unsigned) * p->nWords * p->nLeavesMax );
+ p->vSims = Vec_PtrAlloc( p->nDivsMax );
+ for ( i = 0; i < p->nDivsMax; i++ )
+ Vec_PtrPush( p->vSims, p->pInfo + i * p->nWords );
+ // assign the care set
+ p->pCareSet = p->pInfo + p->nDivsMax * p->nWords;
+ Abc_InfoFill( p->pCareSet, p->nWords );
+ // set elementary truth tables
+ for ( k = 0; k < p->nLeavesMax; k++ )
+ {
+ pData = p->vSims->pArray[k];
+ for ( i = 0; i < p->nBits; i++ )
+ if ( i & (1 << k) )
+ pData[i>>5] |= (1 << (i&31));
+ }
+ // create the remaining divisors
+ p->vDivs1UP = Vec_PtrAlloc( p->nDivsMax );
+ p->vDivs1UN = Vec_PtrAlloc( p->nDivsMax );
+ p->vDivs1B = Vec_PtrAlloc( p->nDivsMax );
+ p->vDivs2UP0 = Vec_PtrAlloc( p->nDivsMax );
+ p->vDivs2UP1 = Vec_PtrAlloc( p->nDivsMax );
+ p->vDivs2UN0 = Vec_PtrAlloc( p->nDivsMax );
+ p->vDivs2UN1 = Vec_PtrAlloc( p->nDivsMax );
+ p->vTemp = Vec_PtrAlloc( p->nDivsMax );
+ return p;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubStop( Abc_ManRes_t * p )
+{
+ Vec_PtrFree( p->vDivs );
+ Vec_PtrFree( p->vSims );
+ Vec_PtrFree( p->vDivs1UP );
+ Vec_PtrFree( p->vDivs1UN );
+ Vec_PtrFree( p->vDivs1B );
+ Vec_PtrFree( p->vDivs2UP0 );
+ Vec_PtrFree( p->vDivs2UP1 );
+ Vec_PtrFree( p->vDivs2UN0 );
+ Vec_PtrFree( p->vDivs2UN1 );
+ Vec_PtrFree( p->vTemp );
+ free( p->pInfo );
+ free( p );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubPrint( Abc_ManRes_t * p )
+{
+ printf( "Used constants = %6d. ", p->nUsedNodeC ); PRT( "Cuts ", p->timeCut );
+ printf( "Used replacements = %6d. ", p->nUsedNode0 ); PRT( "Resub ", p->timeRes );
+ printf( "Used single ORs = %6d. ", p->nUsedNode1Or ); PRT( " Div ", p->timeDiv );
+ printf( "Used single ANDs = %6d. ", p->nUsedNode1And ); PRT( " Mffc ", p->timeMffc );
+ printf( "Used double ORs = %6d. ", p->nUsedNode2Or ); PRT( " Sim ", p->timeSim );
+ printf( "Used double ANDs = %6d. ", p->nUsedNode2And ); PRT( " 1 ", p->timeRes1 );
+ printf( "Used OR-AND = %6d. ", p->nUsedNode2OrAnd ); PRT( " D ", p->timeResD );
+ printf( "Used AND-OR = %6d. ", p->nUsedNode2AndOr ); PRT( " 2 ", p->timeRes2 );
+ printf( "Used OR-2ANDs = %6d. ", p->nUsedNode3OrAnd ); PRT( "Truth ", p->timeTruth ); //PRT( " 3 ", p->timeRes3 );
+ printf( "Used AND-2ORs = %6d. ", p->nUsedNode3AndOr ); PRT( "AIG ", p->timeNtk );
+ printf( "TOTAL = %6d. ", p->nUsedNodeC +
+ p->nUsedNode0 +
+ p->nUsedNode1Or +
+ p->nUsedNode1And +
+ p->nUsedNode2Or +
+ p->nUsedNode2And +
+ p->nUsedNode2OrAnd +
+ p->nUsedNode2AndOr +
+ p->nUsedNode3OrAnd +
+ p->nUsedNode3AndOr
+ ); PRT( "TOTAL ", p->timeTotal );
+ printf( "Total leaves = %8d.\n", p->nTotalLeaves );
+ printf( "Total divisors = %8d.\n", p->nTotalDivs );
+// printf( "Total gain = %8d.\n", p->nTotalGain );
+ printf( "Gain = %8d. (%6.2f %%).\n", p->nNodesBeg-p->nNodesEnd, 100.0*(p->nNodesBeg-p->nNodesEnd)/p->nNodesBeg );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubCollectDivs_rec( Abc_Obj_t * pNode, Vec_Ptr_t * vInternal )
+{
+ // skip visited nodes
+ if ( Abc_NodeIsTravIdCurrent(pNode) )
+ return;
+ Abc_NodeSetTravIdCurrent(pNode);
+ // collect the fanins
+ Abc_ManResubCollectDivs_rec( Abc_ObjFanin0(pNode), vInternal );
+ Abc_ManResubCollectDivs_rec( Abc_ObjFanin1(pNode), vInternal );
+ // collect the internal node
+ if ( pNode->fMarkA == 0 )
+ Vec_PtrPush( vInternal, pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_ManResubCollectDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int Required )
+{
+ Abc_Obj_t * pNode, * pFanout;
+ int i, k, Limit, Counter;
+
+ Vec_PtrClear( p->vDivs1UP );
+ Vec_PtrClear( p->vDivs1UN );
+ Vec_PtrClear( p->vDivs1B );
+
+ // add the leaves of the cuts to the divisors
+ Vec_PtrClear( p->vDivs );
+ Abc_NtkIncrementTravId( pRoot->pNtk );
+ Vec_PtrForEachEntry( vLeaves, pNode, i )
+ {
+ Vec_PtrPush( p->vDivs, pNode );
+ Abc_NodeSetTravIdCurrent( pNode );
+ }
+
+ // mark nodes in the MFFC
+ Vec_PtrForEachEntry( p->vTemp, pNode, i )
+ pNode->fMarkA = 1;
+ // collect the cone (without MFFC)
+ Abc_ManResubCollectDivs_rec( pRoot, p->vDivs );
+ // unmark the current MFFC
+ Vec_PtrForEachEntry( p->vTemp, pNode, i )
+ pNode->fMarkA = 0;
+
+ // check if the number of divisors is not exceeded
+ if ( Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) + Vec_PtrSize(p->vTemp) >= Vec_PtrSize(p->vSims) - p->nLeavesMax )
+ return 0;
+
+ // get the number of divisors to collect
+ Limit = Vec_PtrSize(p->vSims) - p->nLeavesMax - (Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) + Vec_PtrSize(p->vTemp));
+
+ // explore the fanouts, which are not in the MFFC
+ Counter = 0;
+ Vec_PtrForEachEntry( p->vDivs, pNode, i )
+ {
+ if ( Abc_ObjFanoutNum(pNode) > 100 )
+ {
+// printf( "%d ", Abc_ObjFanoutNum(pNode) );
+ continue;
+ }
+ // if the fanout has both fanins in the set, add it
+ Abc_ObjForEachFanout( pNode, pFanout, k )
+ {
+ if ( Abc_NodeIsTravIdCurrent(pFanout) || Abc_ObjIsCo(pFanout) || (int)pFanout->Level > Required )
+ continue;
+ if ( Abc_NodeIsTravIdCurrent(Abc_ObjFanin0(pFanout)) && Abc_NodeIsTravIdCurrent(Abc_ObjFanin1(pFanout)) )
+ {
+ if ( Abc_ObjFanin0(pFanout) == pRoot || Abc_ObjFanin1(pFanout) == pRoot )
+ continue;
+ Vec_PtrPush( p->vDivs, pFanout );
+ Abc_NodeSetTravIdCurrent( pFanout );
+ // quit computing divisors if there is too many of them
+ if ( ++Counter == Limit )
+ goto Quits;
+ }
+ }
+ }
+
+Quits :
+ // get the number of divisors
+ p->nDivs = Vec_PtrSize(p->vDivs);
+
+ // add the nodes in the MFFC
+ Vec_PtrForEachEntry( p->vTemp, pNode, i )
+ Vec_PtrPush( p->vDivs, pNode );
+ assert( pRoot == Vec_PtrEntryLast(p->vDivs) );
+
+ assert( Vec_PtrSize(p->vDivs) - Vec_PtrSize(vLeaves) <= Vec_PtrSize(p->vSims) - p->nLeavesMax );
+ return 1;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubPrintDivs( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves )
+{
+ Abc_Obj_t * pFanin, * pNode;
+ int i, k;
+ // print the nodes
+ Vec_PtrForEachEntry( p->vDivs, pNode, i )
+ {
+ if ( i < Vec_PtrSize(vLeaves) )
+ {
+ printf( "%6d : %c\n", pNode->Id, 'a'+i );
+ continue;
+ }
+ printf( "%6d : %2d = ", pNode->Id, i );
+ // find the first fanin
+ Vec_PtrForEachEntry( p->vDivs, pFanin, k )
+ if ( Abc_ObjFanin0(pNode) == pFanin )
+ break;
+ if ( k < Vec_PtrSize(vLeaves) )
+ printf( "%c", 'a' + k );
+ else
+ printf( "%d", k );
+ printf( "%s ", Abc_ObjFaninC0(pNode)? "\'" : "" );
+ // find the second fanin
+ Vec_PtrForEachEntry( p->vDivs, pFanin, k )
+ if ( Abc_ObjFanin1(pNode) == pFanin )
+ break;
+ if ( k < Vec_PtrSize(vLeaves) )
+ printf( "%c", 'a' + k );
+ else
+ printf( "%d", k );
+ printf( "%s ", Abc_ObjFaninC1(pNode)? "\'" : "" );
+ if ( pNode == pRoot )
+ printf( " root" );
+ printf( "\n" );
+ }
+ printf( "\n" );
+}
+
+
+/**Function*************************************************************
+
+ Synopsis [Performs simulation.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubSimulate( Vec_Ptr_t * vDivs, int nLeaves, Vec_Ptr_t * vSims, int nLeavesMax, int nWords )
+{
+ Abc_Obj_t * pObj;
+ unsigned * puData0, * puData1, * puData;
+ int i, k;
+ assert( Vec_PtrSize(vDivs) - nLeaves <= Vec_PtrSize(vSims) - nLeavesMax );
+ // simulate
+ Vec_PtrForEachEntry( vDivs, pObj, i )
+ {
+ if ( i < nLeaves )
+ { // initialize the leaf
+ pObj->pData = Vec_PtrEntry( vSims, i );
+ continue;
+ }
+ // set storage for the node's simulation info
+ pObj->pData = Vec_PtrEntry( vSims, i - nLeaves + nLeavesMax );
+ // get pointer to the simulation info
+ puData = pObj->pData;
+ puData0 = Abc_ObjFanin0(pObj)->pData;
+ puData1 = Abc_ObjFanin1(pObj)->pData;
+ // simulate
+ if ( Abc_ObjFaninC0(pObj) && Abc_ObjFaninC1(pObj) )
+ for ( k = 0; k < nWords; k++ )
+ puData[k] = ~puData0[k] & ~puData1[k];
+ else if ( Abc_ObjFaninC0(pObj) )
+ for ( k = 0; k < nWords; k++ )
+ puData[k] = ~puData0[k] & puData1[k];
+ else if ( Abc_ObjFaninC1(pObj) )
+ for ( k = 0; k < nWords; k++ )
+ puData[k] = puData0[k] & ~puData1[k];
+ else
+ for ( k = 0; k < nWords; k++ )
+ puData[k] = puData0[k] & puData1[k];
+ }
+ // normalize
+ Vec_PtrForEachEntry( vDivs, pObj, i )
+ {
+ puData = pObj->pData;
+ pObj->fPhase = (puData[0] & 1);
+ if ( pObj->fPhase )
+ for ( k = 0; k < nWords; k++ )
+ puData[k] = ~puData[k];
+ }
+}
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubQuit0( Abc_Obj_t * pRoot, Abc_Obj_t * pObj )
+{
+ Dec_Graph_t * pGraph;
+ Dec_Edge_t eRoot;
+ pGraph = Dec_GraphCreate( 1 );
+ Dec_GraphNode( pGraph, 0 )->pFunc = pObj;
+ eRoot = Dec_EdgeCreate( 0, pObj->fPhase );
+ Dec_GraphSetRoot( pGraph, eRoot );
+ if ( pRoot->fPhase )
+ Dec_GraphComplement( pGraph );
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubQuit1( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, int fOrGate )
+{
+ Dec_Graph_t * pGraph;
+ Dec_Edge_t eRoot, eNode0, eNode1;
+ assert( pObj0 != pObj1 );
+ assert( !Abc_ObjIsComplement(pObj0) );
+ assert( !Abc_ObjIsComplement(pObj1) );
+ pGraph = Dec_GraphCreate( 2 );
+ Dec_GraphNode( pGraph, 0 )->pFunc = pObj0;
+ Dec_GraphNode( pGraph, 1 )->pFunc = pObj1;
+ eNode0 = Dec_EdgeCreate( 0, pObj0->fPhase );
+ eNode1 = Dec_EdgeCreate( 1, pObj1->fPhase );
+ if ( fOrGate )
+ eRoot = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 );
+ else
+ eRoot = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 );
+ Dec_GraphSetRoot( pGraph, eRoot );
+ if ( pRoot->fPhase )
+ Dec_GraphComplement( pGraph );
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubQuit21( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, int fOrGate )
+{
+ Dec_Graph_t * pGraph;
+ Dec_Edge_t eRoot, eNode0, eNode1, eNode2;
+ assert( pObj0 != pObj1 );
+ assert( !Abc_ObjIsComplement(pObj0) );
+ assert( !Abc_ObjIsComplement(pObj1) );
+ assert( !Abc_ObjIsComplement(pObj2) );
+ pGraph = Dec_GraphCreate( 3 );
+ Dec_GraphNode( pGraph, 0 )->pFunc = pObj0;
+ Dec_GraphNode( pGraph, 1 )->pFunc = pObj1;
+ Dec_GraphNode( pGraph, 2 )->pFunc = pObj2;
+ eNode0 = Dec_EdgeCreate( 0, pObj0->fPhase );
+ eNode1 = Dec_EdgeCreate( 1, pObj1->fPhase );
+ eNode2 = Dec_EdgeCreate( 2, pObj2->fPhase );
+ if ( fOrGate )
+ {
+ eRoot = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 );
+ eRoot = Dec_GraphAddNodeOr( pGraph, eNode2, eRoot );
+ }
+ else
+ {
+ eRoot = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 );
+ eRoot = Dec_GraphAddNodeAnd( pGraph, eNode2, eRoot );
+ }
+ Dec_GraphSetRoot( pGraph, eRoot );
+ if ( pRoot->fPhase )
+ Dec_GraphComplement( pGraph );
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubQuit2( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, int fOrGate )
+{
+ Dec_Graph_t * pGraph;
+ Dec_Edge_t eRoot, ePrev, eNode0, eNode1, eNode2;
+ assert( pObj0 != pObj1 );
+ assert( pObj0 != pObj2 );
+ assert( pObj1 != pObj2 );
+ assert( !Abc_ObjIsComplement(pObj0) );
+ pGraph = Dec_GraphCreate( 3 );
+ Dec_GraphNode( pGraph, 0 )->pFunc = Abc_ObjRegular(pObj0);
+ Dec_GraphNode( pGraph, 1 )->pFunc = Abc_ObjRegular(pObj1);
+ Dec_GraphNode( pGraph, 2 )->pFunc = Abc_ObjRegular(pObj2);
+ eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase );
+ if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) )
+ {
+ eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase );
+ eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase );
+ ePrev = Dec_GraphAddNodeOr( pGraph, eNode1, eNode2 );
+ }
+ else
+ {
+ eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ^ Abc_ObjIsComplement(pObj1) );
+ eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) );
+ ePrev = Dec_GraphAddNodeAnd( pGraph, eNode1, eNode2 );
+ }
+ if ( fOrGate )
+ eRoot = Dec_GraphAddNodeOr( pGraph, eNode0, ePrev );
+ else
+ eRoot = Dec_GraphAddNodeAnd( pGraph, eNode0, ePrev );
+ Dec_GraphSetRoot( pGraph, eRoot );
+ if ( pRoot->fPhase )
+ Dec_GraphComplement( pGraph );
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubQuit3( Abc_Obj_t * pRoot, Abc_Obj_t * pObj0, Abc_Obj_t * pObj1, Abc_Obj_t * pObj2, Abc_Obj_t * pObj3, int fOrGate )
+{
+ Dec_Graph_t * pGraph;
+ Dec_Edge_t eRoot, ePrev0, ePrev1, eNode0, eNode1, eNode2, eNode3;
+ assert( pObj0 != pObj1 );
+ assert( pObj2 != pObj3 );
+ pGraph = Dec_GraphCreate( 4 );
+ Dec_GraphNode( pGraph, 0 )->pFunc = Abc_ObjRegular(pObj0);
+ Dec_GraphNode( pGraph, 1 )->pFunc = Abc_ObjRegular(pObj1);
+ Dec_GraphNode( pGraph, 2 )->pFunc = Abc_ObjRegular(pObj2);
+ Dec_GraphNode( pGraph, 3 )->pFunc = Abc_ObjRegular(pObj3);
+ if ( Abc_ObjIsComplement(pObj0) && Abc_ObjIsComplement(pObj1) )
+ {
+ eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase );
+ eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase );
+ ePrev0 = Dec_GraphAddNodeOr( pGraph, eNode0, eNode1 );
+ if ( Abc_ObjIsComplement(pObj2) && Abc_ObjIsComplement(pObj3) )
+ {
+ eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase );
+ eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase );
+ ePrev1 = Dec_GraphAddNodeOr( pGraph, eNode2, eNode3 );
+ }
+ else
+ {
+ eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) );
+ eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ^ Abc_ObjIsComplement(pObj3) );
+ ePrev1 = Dec_GraphAddNodeAnd( pGraph, eNode2, eNode3 );
+ }
+ }
+ else
+ {
+ eNode0 = Dec_EdgeCreate( 0, Abc_ObjRegular(pObj0)->fPhase ^ Abc_ObjIsComplement(pObj0) );
+ eNode1 = Dec_EdgeCreate( 1, Abc_ObjRegular(pObj1)->fPhase ^ Abc_ObjIsComplement(pObj1) );
+ ePrev0 = Dec_GraphAddNodeAnd( pGraph, eNode0, eNode1 );
+ if ( Abc_ObjIsComplement(pObj2) && Abc_ObjIsComplement(pObj3) )
+ {
+ eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase );
+ eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase );
+ ePrev1 = Dec_GraphAddNodeOr( pGraph, eNode2, eNode3 );
+ }
+ else
+ {
+ eNode2 = Dec_EdgeCreate( 2, Abc_ObjRegular(pObj2)->fPhase ^ Abc_ObjIsComplement(pObj2) );
+ eNode3 = Dec_EdgeCreate( 3, Abc_ObjRegular(pObj3)->fPhase ^ Abc_ObjIsComplement(pObj3) );
+ ePrev1 = Dec_GraphAddNodeAnd( pGraph, eNode2, eNode3 );
+ }
+ }
+ if ( fOrGate )
+ eRoot = Dec_GraphAddNodeOr( pGraph, ePrev0, ePrev1 );
+ else
+ eRoot = Dec_GraphAddNodeAnd( pGraph, ePrev0, ePrev1 );
+ Dec_GraphSetRoot( pGraph, eRoot );
+ if ( pRoot->fPhase )
+ Dec_GraphComplement( pGraph );
+ return pGraph;
+}
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Derives single-node unate/binate divisors.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubDivsS( Abc_ManRes_t * p, int Required )
+{
+ Abc_Obj_t * pObj;
+ unsigned * puData, * puDataR;
+ int i, w;
+ Vec_PtrClear( p->vDivs1UP );
+ Vec_PtrClear( p->vDivs1UN );
+ Vec_PtrClear( p->vDivs1B );
+ puDataR = p->pRoot->pData;
+ Vec_PtrForEachEntryStop( p->vDivs, pObj, i, p->nDivs )
+ {
+ if ( (int)pObj->Level > Required - 1 )
+ continue;
+
+ puData = pObj->pData;
+ // check positive containment
+ for ( w = 0; w < p->nWords; w++ )
+// if ( puData[w] & ~puDataR[w] )
+ if ( puData[w] & ~puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs1UP, pObj );
+ continue;
+ }
+ // check negative containment
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ~puData[w] & puDataR[w] )
+ if ( ~puData[w] & puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs1UN, pObj );
+ continue;
+ }
+ // add the node to binates
+ Vec_PtrPush( p->vDivs1B, pObj );
+ }
+}
+
+/**Function*************************************************************
+
+ Synopsis [Derives double-node unate/binate divisors.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubDivsD( Abc_ManRes_t * p, int Required )
+{
+ Abc_Obj_t * pObj0, * pObj1;
+ unsigned * puData0, * puData1, * puDataR;
+ int i, k, w;
+ Vec_PtrClear( p->vDivs2UP0 );
+ Vec_PtrClear( p->vDivs2UP1 );
+ Vec_PtrClear( p->vDivs2UN0 );
+ Vec_PtrClear( p->vDivs2UN1 );
+ puDataR = p->pRoot->pData;
+ Vec_PtrForEachEntry( p->vDivs1B, pObj0, i )
+ {
+ if ( (int)pObj0->Level > Required - 2 )
+ continue;
+
+ puData0 = pObj0->pData;
+ Vec_PtrForEachEntryStart( p->vDivs1B, pObj1, k, i + 1 )
+ {
+ if ( (int)pObj1->Level > Required - 2 )
+ continue;
+
+ puData1 = pObj1->pData;
+
+ if ( Vec_PtrSize(p->vDivs2UP0) < ABC_RS_DIV2_MAX )
+ {
+ // get positive unate divisors
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & puData1[w]) & ~puDataR[w] )
+ if ( (puData0[w] & puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UP0, pObj0 );
+ Vec_PtrPush( p->vDivs2UP1, pObj1 );
+ }
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (~puData0[w] & puData1[w]) & ~puDataR[w] )
+ if ( (~puData0[w] & puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UP0, Abc_ObjNot(pObj0) );
+ Vec_PtrPush( p->vDivs2UP1, pObj1 );
+ }
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & ~puData1[w]) & ~puDataR[w] )
+ if ( (puData0[w] & ~puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UP0, pObj0 );
+ Vec_PtrPush( p->vDivs2UP1, Abc_ObjNot(pObj1) );
+ }
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] | puData1[w]) & ~puDataR[w] )
+ if ( (puData0[w] | puData1[w]) & ~puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UP0, Abc_ObjNot(pObj0) );
+ Vec_PtrPush( p->vDivs2UP1, Abc_ObjNot(pObj1) );
+ }
+ }
+
+ if ( Vec_PtrSize(p->vDivs2UN0) < ABC_RS_DIV2_MAX )
+ {
+ // get negative unate divisors
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ~(puData0[w] & puData1[w]) & puDataR[w] )
+ if ( ~(puData0[w] & puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UN0, pObj0 );
+ Vec_PtrPush( p->vDivs2UN1, pObj1 );
+ }
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ~(~puData0[w] & puData1[w]) & puDataR[w] )
+ if ( ~(~puData0[w] & puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UN0, Abc_ObjNot(pObj0) );
+ Vec_PtrPush( p->vDivs2UN1, pObj1 );
+ }
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ~(puData0[w] & ~puData1[w]) & puDataR[w] )
+ if ( ~(puData0[w] & ~puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UN0, pObj0 );
+ Vec_PtrPush( p->vDivs2UN1, Abc_ObjNot(pObj1) );
+ }
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ~(puData0[w] | puData1[w]) & puDataR[w] )
+ if ( ~(puData0[w] | puData1[w]) & puDataR[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ Vec_PtrPush( p->vDivs2UN0, Abc_ObjNot(pObj0) );
+ Vec_PtrPush( p->vDivs2UN1, Abc_ObjNot(pObj1) );
+ }
+ }
+ }
+ }
+// printf( "%d %d ", Vec_PtrSize(p->vDivs2UP0), Vec_PtrSize(p->vDivs2UN0) );
+}
+
+
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubQuit( Abc_ManRes_t * p )
+{
+ Dec_Graph_t * pGraph;
+ unsigned * upData;
+ int w;
+ upData = p->pRoot->pData;
+ for ( w = 0; w < p->nWords; w++ )
+// if ( upData[w] )
+ if ( upData[w] & p->pCareSet[w] ) // care set
+ break;
+ if ( w != p->nWords )
+ return NULL;
+ // get constant node graph
+ if ( p->pRoot->fPhase )
+ pGraph = Dec_GraphCreateConst1();
+ else
+ pGraph = Dec_GraphCreateConst0();
+ return pGraph;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubDivs0( Abc_ManRes_t * p )
+{
+ Abc_Obj_t * pObj;
+ unsigned * puData, * puDataR;
+ int i, w;
+ puDataR = p->pRoot->pData;
+ Vec_PtrForEachEntryStop( p->vDivs, pObj, i, p->nDivs )
+ {
+ puData = pObj->pData;
+ for ( w = 0; w < p->nWords; w++ )
+// if ( puData[w] != puDataR[w] )
+ if ( (puData[w] ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ return Abc_ManResubQuit0( p->pRoot, pObj );
+ }
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubDivs1( Abc_ManRes_t * p, int Required )
+{
+ Abc_Obj_t * pObj0, * pObj1;
+ unsigned * puData0, * puData1, * puDataR;
+ int i, k, w;
+ puDataR = p->pRoot->pData;
+ // check positive unate divisors
+ Vec_PtrForEachEntry( p->vDivs1UP, pObj0, i )
+ {
+ puData0 = pObj0->pData;
+ Vec_PtrForEachEntryStart( p->vDivs1UP, pObj1, k, i + 1 )
+ {
+ puData1 = pObj1->pData;
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] | puData1[w]) != puDataR[w] )
+ if ( ((puData0[w] | puData1[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ p->nUsedNode1Or++;
+ return Abc_ManResubQuit1( p->pRoot, pObj0, pObj1, 1 );
+ }
+ }
+ }
+ // check negative unate divisors
+ Vec_PtrForEachEntry( p->vDivs1UN, pObj0, i )
+ {
+ puData0 = pObj0->pData;
+ Vec_PtrForEachEntryStart( p->vDivs1UN, pObj1, k, i + 1 )
+ {
+ puData1 = pObj1->pData;
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & puData1[w]) != puDataR[w] )
+ if ( ((puData0[w] & puData1[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ p->nUsedNode1And++;
+ return Abc_ManResubQuit1( p->pRoot, pObj0, pObj1, 0 );
+ }
+ }
+ }
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubDivs12( Abc_ManRes_t * p, int Required )
+{
+ Abc_Obj_t * pObj0, * pObj1, * pObj2, * pObjMax, * pObjMin0, * pObjMin1;
+ unsigned * puData0, * puData1, * puData2, * puDataR;
+ int i, k, j, w, LevelMax;
+ puDataR = p->pRoot->pData;
+ // check positive unate divisors
+ Vec_PtrForEachEntry( p->vDivs1UP, pObj0, i )
+ {
+ puData0 = pObj0->pData;
+ Vec_PtrForEachEntryStart( p->vDivs1UP, pObj1, k, i + 1 )
+ {
+ puData1 = pObj1->pData;
+ Vec_PtrForEachEntryStart( p->vDivs1UP, pObj2, j, k + 1 )
+ {
+ puData2 = pObj2->pData;
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] | puData1[w] | puData2[w]) != puDataR[w] )
+ if ( ((puData0[w] | puData1[w] | puData2[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ LevelMax = ABC_MAX( pObj0->Level, ABC_MAX(pObj1->Level, pObj2->Level) );
+ assert( LevelMax <= Required - 1 );
+
+ pObjMax = NULL;
+ if ( (int)pObj0->Level == LevelMax )
+ pObjMax = pObj0, pObjMin0 = pObj1, pObjMin1 = pObj2;
+ if ( (int)pObj1->Level == LevelMax )
+ {
+ if ( pObjMax ) continue;
+ pObjMax = pObj1, pObjMin0 = pObj0, pObjMin1 = pObj2;
+ }
+ if ( (int)pObj2->Level == LevelMax )
+ {
+ if ( pObjMax ) continue;
+ pObjMax = pObj2, pObjMin0 = pObj0, pObjMin1 = pObj1;
+ }
+
+ p->nUsedNode2Or++;
+ return Abc_ManResubQuit21( p->pRoot, pObjMin0, pObjMin1, pObjMax, 1 );
+ }
+ }
+ }
+ }
+ // check negative unate divisors
+ Vec_PtrForEachEntry( p->vDivs1UN, pObj0, i )
+ {
+ puData0 = pObj0->pData;
+ Vec_PtrForEachEntryStart( p->vDivs1UN, pObj1, k, i + 1 )
+ {
+ puData1 = pObj1->pData;
+ Vec_PtrForEachEntryStart( p->vDivs1UN, pObj2, j, k + 1 )
+ {
+ puData2 = pObj2->pData;
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & puData1[w] & puData2[w]) != puDataR[w] )
+ if ( ((puData0[w] & puData1[w] & puData2[w]) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ if ( w == p->nWords )
+ {
+ LevelMax = ABC_MAX( pObj0->Level, ABC_MAX(pObj1->Level, pObj2->Level) );
+ assert( LevelMax <= Required - 1 );
+
+ pObjMax = NULL;
+ if ( (int)pObj0->Level == LevelMax )
+ pObjMax = pObj0, pObjMin0 = pObj1, pObjMin1 = pObj2;
+ if ( (int)pObj1->Level == LevelMax )
+ {
+ if ( pObjMax ) continue;
+ pObjMax = pObj1, pObjMin0 = pObj0, pObjMin1 = pObj2;
+ }
+ if ( (int)pObj2->Level == LevelMax )
+ {
+ if ( pObjMax ) continue;
+ pObjMax = pObj2, pObjMin0 = pObj0, pObjMin1 = pObj1;
+ }
+
+ p->nUsedNode2And++;
+ return Abc_ManResubQuit21( p->pRoot, pObjMin0, pObjMin1, pObjMax, 0 );
+ }
+ }
+ }
+ }
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubDivs2( Abc_ManRes_t * p, int Required )
+{
+ Abc_Obj_t * pObj0, * pObj1, * pObj2;
+ unsigned * puData0, * puData1, * puData2, * puDataR;
+ int i, k, w;
+ puDataR = p->pRoot->pData;
+ // check positive unate divisors
+ Vec_PtrForEachEntry( p->vDivs1UP, pObj0, i )
+ {
+ puData0 = pObj0->pData;
+ Vec_PtrForEachEntry( p->vDivs2UP0, pObj1, k )
+ {
+ pObj2 = Vec_PtrEntry( p->vDivs2UP1, k );
+
+ puData1 = Abc_ObjRegular(pObj1)->pData;
+ puData2 = Abc_ObjRegular(pObj2)->pData;
+ if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) )
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] | (puData1[w] | puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] | (puData1[w] | puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ else if ( Abc_ObjIsComplement(pObj1) )
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] | (~puData1[w] & puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] | (~puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ else if ( Abc_ObjIsComplement(pObj2) )
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] | (puData1[w] & ~puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] | (puData1[w] & ~puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ else
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] | (puData1[w] & puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] | (puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ if ( w == p->nWords )
+ {
+ p->nUsedNode2OrAnd++;
+ return Abc_ManResubQuit2( p->pRoot, pObj0, pObj1, pObj2, 1 );
+ }
+ }
+ }
+ // check negative unate divisors
+ Vec_PtrForEachEntry( p->vDivs1UN, pObj0, i )
+ {
+ puData0 = pObj0->pData;
+ Vec_PtrForEachEntry( p->vDivs2UN0, pObj1, k )
+ {
+ pObj2 = Vec_PtrEntry( p->vDivs2UN1, k );
+
+ puData1 = Abc_ObjRegular(pObj1)->pData;
+ puData2 = Abc_ObjRegular(pObj2)->pData;
+ if ( Abc_ObjIsComplement(pObj1) && Abc_ObjIsComplement(pObj2) )
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & (puData1[w] | puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] & (puData1[w] | puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ else if ( Abc_ObjIsComplement(pObj1) )
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & (~puData1[w] & puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] & (~puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ else if ( Abc_ObjIsComplement(pObj2) )
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & (puData1[w] & ~puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] & (puData1[w] & ~puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ else
+ {
+ for ( w = 0; w < p->nWords; w++ )
+// if ( (puData0[w] & (puData1[w] & puData2[w])) != puDataR[w] )
+ if ( ((puData0[w] & (puData1[w] & puData2[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ }
+ if ( w == p->nWords )
+ {
+ p->nUsedNode2AndOr++;
+ return Abc_ManResubQuit2( p->pRoot, pObj0, pObj1, pObj2, 0 );
+ }
+ }
+ }
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubDivs3( Abc_ManRes_t * p, int Required )
+{
+ Abc_Obj_t * pObj0, * pObj1, * pObj2, * pObj3;
+ unsigned * puData0, * puData1, * puData2, * puData3, * puDataR;
+ int i, k, w, Flag;
+ puDataR = p->pRoot->pData;
+ // check positive unate divisors
+ Vec_PtrForEachEntry( p->vDivs2UP0, pObj0, i )
+ {
+ pObj1 = Vec_PtrEntry( p->vDivs2UP1, i );
+ puData0 = Abc_ObjRegular(pObj0)->pData;
+ puData1 = Abc_ObjRegular(pObj1)->pData;
+ Flag = (Abc_ObjIsComplement(pObj0) << 3) | (Abc_ObjIsComplement(pObj1) << 2);
+
+ Vec_PtrForEachEntryStart( p->vDivs2UP0, pObj2, k, i + 1 )
+ {
+ pObj3 = Vec_PtrEntry( p->vDivs2UP1, k );
+ puData2 = Abc_ObjRegular(pObj2)->pData;
+ puData3 = Abc_ObjRegular(pObj3)->pData;
+
+ Flag = (Flag & 12) | (Abc_ObjIsComplement(pObj2) << 1) | Abc_ObjIsComplement(pObj3);
+ assert( Flag < 16 );
+ switch( Flag )
+ {
+ case 0: // 0000
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 1: // 0001
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 2: // 0010
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 3: // 0011
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+
+ case 4: // 0100
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & ~puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & ~puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 5: // 0101
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & ~puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & ~puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 6: // 0110
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & ~puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & ~puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 7: // 0111
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] & ~puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] & ~puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+
+ case 8: // 1000
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((~puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((~puData0[w] & puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 9: // 1001
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((~puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
+ if ( (((~puData0[w] & puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 10: // 1010
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((~puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((~puData0[w] & puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 11: // 1011
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((~puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
+ if ( (((~puData0[w] & puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+
+ case 12: // 1100
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] | puData1[w]) | (puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] | puData1[w]) | (puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] ) // care set
+ break;
+ break;
+ case 13: // 1101
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] | puData1[w]) | (puData2[w] & ~puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] | puData1[w]) | (puData2[w] & ~puData3[w])) ^ puDataR[w]) & p->pCareSet[w] )
+ break;
+ break;
+ case 14: // 1110
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] | puData1[w]) | (~puData2[w] & puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] | puData1[w]) | (~puData2[w] & puData3[w])) ^ puDataR[w]) & p->pCareSet[w] )
+ break;
+ break;
+ case 15: // 1111
+ for ( w = 0; w < p->nWords; w++ )
+// if ( ((puData0[w] | puData1[w]) | (puData2[w] | puData3[w])) != puDataR[w] )
+ if ( (((puData0[w] | puData1[w]) | (puData2[w] | puData3[w])) ^ puDataR[w]) & p->pCareSet[w] )
+ break;
+ break;
+
+ }
+ if ( w == p->nWords )
+ {
+ p->nUsedNode3OrAnd++;
+ return Abc_ManResubQuit3( p->pRoot, pObj0, pObj1, pObj2, pObj3, 1 );
+ }
+ }
+ }
+/*
+ // check negative unate divisors
+ Vec_PtrForEachEntry( p->vDivs2UN0, pObj0, i )
+ {
+ pObj1 = Vec_PtrEntry( p->vDivs2UN1, i );
+ puData0 = Abc_ObjRegular(pObj0)->pData;
+ puData1 = Abc_ObjRegular(pObj1)->pData;
+ Flag = (Abc_ObjIsComplement(pObj0) << 3) | (Abc_ObjIsComplement(pObj1) << 2);
+
+ Vec_PtrForEachEntryStart( p->vDivs2UN0, pObj2, k, i + 1 )
+ {
+ pObj3 = Vec_PtrEntry( p->vDivs2UN1, k );
+ puData2 = Abc_ObjRegular(pObj2)->pData;
+ puData3 = Abc_ObjRegular(pObj3)->pData;
+
+ Flag = (Flag & 12) | (Abc_ObjIsComplement(pObj2) << 1) | Abc_ObjIsComplement(pObj3);
+ assert( Flag < 16 );
+ switch( Flag )
+ {
+ case 0: // 0000
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 1: // 0001
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 2: // 0010
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 3: // 0011
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
+ break;
+ break;
+
+ case 4: // 0100
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & ~puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 5: // 0101
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & ~puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 6: // 0110
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & ~puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 7: // 0111
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] & ~puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
+ break;
+ break;
+
+ case 8: // 1000
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((~puData0[w] & puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 9: // 1001
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((~puData0[w] & puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 10: // 1010
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((~puData0[w] & puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 11: // 1011
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((~puData0[w] & puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
+ break;
+ break;
+
+ case 12: // 1100
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] | puData1[w]) & (puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 13: // 1101
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] | puData1[w]) & (puData2[w] & ~puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 14: // 1110
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] | puData1[w]) & (~puData2[w] & puData3[w])) != puDataR[w] )
+ break;
+ break;
+ case 15: // 1111
+ for ( w = 0; w < p->nWords; w++ )
+ if ( ((puData0[w] | puData1[w]) & (puData2[w] | puData3[w])) != puDataR[w] )
+ break;
+ break;
+
+ }
+ if ( w == p->nWords )
+ {
+ p->nUsedNode3AndOr++;
+ return Abc_ManResubQuit3( p->pRoot, pObj0, pObj1, pObj2, pObj3, 0 );
+ }
+ }
+ }
+*/
+ return NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis []
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_ManResubCleanup( Abc_ManRes_t * p )
+{
+ Abc_Obj_t * pObj;
+ int i;
+ Vec_PtrForEachEntry( p->vDivs, pObj, i )
+ pObj->pData = NULL;
+ Vec_PtrClear( p->vDivs );
+ p->pRoot = NULL;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Evaluates resubstution of one cut.]
+
+ Description [Returns the graph to add if any.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Dec_Graph_t * Abc_ManResubEval( Abc_ManRes_t * p, Abc_Obj_t * pRoot, Vec_Ptr_t * vLeaves, int nSteps, bool fUpdateLevel, bool fVerbose )
+{
+ extern int Abc_NodeMffsInside( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vInside );
+ Dec_Graph_t * pGraph;
+ int Required;
+ int clk;
+
+ Required = fUpdateLevel? Abc_ObjRequiredLevel(pRoot) : ABC_INFINITY;
+
+ assert( nSteps >= 0 );
+ assert( nSteps <= 3 );
+ p->pRoot = pRoot;
+ p->nLeaves = Vec_PtrSize(vLeaves);
+ p->nLastGain = -1;
+
+ // collect the MFFC
+clk = clock();
+ p->nMffc = Abc_NodeMffsInside( pRoot, vLeaves, p->vTemp );
+p->timeMffc += clock() - clk;
+ assert( p->nMffc > 0 );
+
+ // collect the divisor nodes
+clk = clock();
+ if ( !Abc_ManResubCollectDivs( p, pRoot, vLeaves, Required ) )
+ return NULL;
+ p->timeDiv += clock() - clk;
+
+ p->nTotalDivs += p->nDivs;
+ p->nTotalLeaves += p->nLeaves;
+
+ // simulate the nodes
+clk = clock();
+ Abc_ManResubSimulate( p->vDivs, p->nLeaves, p->vSims, p->nLeavesMax, p->nWords );
+p->timeSim += clock() - clk;
+
+clk = clock();
+ // consider constants
+ if ( pGraph = Abc_ManResubQuit( p ) )
+ {
+ p->nUsedNodeC++;
+ p->nLastGain = p->nMffc;
+ return pGraph;
+ }
+
+ // consider equal nodes
+ if ( pGraph = Abc_ManResubDivs0( p ) )
+ {
+p->timeRes1 += clock() - clk;
+ p->nUsedNode0++;
+ p->nLastGain = p->nMffc;
+ return pGraph;
+ }
+ if ( nSteps == 0 || p->nMffc == 1 )
+ {
+p->timeRes1 += clock() - clk;
+ return NULL;
+ }
+
+ // get the one level divisors
+ Abc_ManResubDivsS( p, Required );
+
+ // consider one node
+ if ( pGraph = Abc_ManResubDivs1( p, Required ) )
+ {
+p->timeRes1 += clock() - clk;
+ p->nLastGain = p->nMffc - 1;
+ return pGraph;
+ }
+p->timeRes1 += clock() - clk;
+ if ( nSteps == 1 || p->nMffc == 2 )
+ return NULL;
+
+clk = clock();
+ // consider triples
+ if ( pGraph = Abc_ManResubDivs12( p, Required ) )
+ {
+p->timeRes2 += clock() - clk;
+ p->nLastGain = p->nMffc - 2;
+ return pGraph;
+ }
+p->timeRes2 += clock() - clk;
+
+ // get the two level divisors
+clk = clock();
+ Abc_ManResubDivsD( p, Required );
+p->timeResD += clock() - clk;
+
+ // consider two nodes
+clk = clock();
+ if ( pGraph = Abc_ManResubDivs2( p, Required ) )
+ {
+p->timeRes2 += clock() - clk;
+ p->nLastGain = p->nMffc - 2;
+ return pGraph;
+ }
+p->timeRes2 += clock() - clk;
+ if ( nSteps == 2 || p->nMffc == 3 )
+ return NULL;
+
+ // consider two nodes
+clk = clock();
+ if ( pGraph = Abc_ManResubDivs3( p, Required ) )
+ {
+p->timeRes3 += clock() - clk;
+ p->nLastGain = p->nMffc - 3;
+ return pGraph;
+ }
+p->timeRes3 += clock() - clk;
+ if ( nSteps == 3 || p->nLeavesMax == 4 )
+ return NULL;
+ return NULL;
+}
+
+
+
+
+/**Function*************************************************************
+
+ Synopsis [Computes the volume and checks if the cut is feasible.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_CutVolumeCheck_rec( Abc_Obj_t * pObj )
+{
+ // quit if the node is visited (or if it is a leaf)
+ if ( Abc_NodeIsTravIdCurrent(pObj) )
+ return 0;
+ Abc_NodeSetTravIdCurrent(pObj);
+ // report the error
+ if ( Abc_ObjIsCi(pObj) )
+ printf( "Abc_CutVolumeCheck() ERROR: The set of nodes is not a cut!\n" );
+ // count the number of nodes in the leaves
+ return 1 + Abc_CutVolumeCheck_rec( Abc_ObjFanin0(pObj) ) +
+ Abc_CutVolumeCheck_rec( Abc_ObjFanin1(pObj) );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the volume and checks if the cut is feasible.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+int Abc_CutVolumeCheck( Abc_Obj_t * pNode, Vec_Ptr_t * vLeaves )
+{
+ Abc_Obj_t * pObj;
+ int i;
+ // mark the leaves
+ Abc_NtkIncrementTravId( pNode->pNtk );
+ Vec_PtrForEachEntry( vLeaves, pObj, i )
+ Abc_NodeSetTravIdCurrent( pObj );
+ // traverse the nodes starting from the given one and count them
+ return Abc_CutVolumeCheck_rec( pNode );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the factor cut of the node.]
+
+ Description []
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+void Abc_CutFactor_rec( Abc_Obj_t * pObj, Vec_Ptr_t * vLeaves )
+{
+ if ( pObj->fMarkA )
+ return;
+ if ( Abc_ObjIsCi(pObj) || (Abc_ObjFanoutNum(pObj) > 1 && !Abc_NodeIsMuxControlType(pObj)) )
+ {
+ Vec_PtrPush( vLeaves, pObj );
+ pObj->fMarkA = 1;
+ return;
+ }
+ Abc_CutFactor_rec( Abc_ObjFanin0(pObj), vLeaves );
+ Abc_CutFactor_rec( Abc_ObjFanin1(pObj), vLeaves );
+}
+
+/**Function*************************************************************
+
+ Synopsis [Computes the factor cut of the node.]
+
+ Description [Factor-cut is the cut at a node in terms of factor-nodes.
+ Factor-nodes are roots of the node trees (MUXes/EXORs are counted as single nodes).
+ Factor-cut is unique for the given node.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Vec_Ptr_t * Abc_CutFactor( Abc_Obj_t * pNode )
+{
+ Vec_Ptr_t * vLeaves;
+ Abc_Obj_t * pObj;
+ int i;
+ assert( !Abc_ObjIsCi(pNode) );
+ vLeaves = Vec_PtrAlloc( 10 );
+ Abc_CutFactor_rec( Abc_ObjFanin0(pNode), vLeaves );
+ Abc_CutFactor_rec( Abc_ObjFanin1(pNode), vLeaves );
+ Vec_PtrForEachEntry( vLeaves, pObj, i )
+ pObj->fMarkA = 0;
+ return vLeaves;
+}
+
+/**Function*************************************************************
+
+ Synopsis [Cut computation.]
+
+ Description [This cut computation works as follows:
+ It starts with the factor cut at the node. If the factor-cut is large, quit.
+ It supports the set of leaves of the cut under construction and labels all nodes
+ in the cut under construction, including the leaves.
+ It computes the factor-cuts of the leaves and checks if it is easible to add any of them.
+ If it is, it randomly chooses one feasible and continues.]
+
+ SideEffects []
+
+ SeeAlso []
+
+***********************************************************************/
+Vec_Ptr_t * Abc_CutFactorLarge( Abc_Obj_t * pNode, int nLeavesMax )
+{
+ Vec_Ptr_t * vLeaves, * vFactors, * vFact, * vNext;
+ Vec_Int_t * vFeasible;
+ Abc_Obj_t * pLeaf, * pTemp;
+ int i, k, Counter, RandLeaf;
+ int BestCut, BestShare;
+ assert( Abc_ObjIsNode(pNode) );
+ // get one factor-cut
+ vLeaves = Abc_CutFactor( pNode );
+ if ( Vec_PtrSize(vLeaves) > nLeavesMax )
+ {
+ Vec_PtrFree(vLeaves);
+ return NULL;
+ }
+ if ( Vec_PtrSize(vLeaves) == nLeavesMax )
+ return vLeaves;
+ // initialize the factor cuts for the leaves
+ vFactors = Vec_PtrAlloc( nLeavesMax );
+ Abc_NtkIncrementTravId( pNode->pNtk );
+ Vec_PtrForEachEntry( vLeaves, pLeaf, i )
+ {
+ Abc_NodeSetTravIdCurrent( pLeaf );
+ if ( Abc_ObjIsCi(pLeaf) )
+ Vec_PtrPush( vFactors, NULL );
+ else
+ Vec_PtrPush( vFactors, Abc_CutFactor(pLeaf) );
+ }
+ // construct larger factor cuts
+ vFeasible = Vec_IntAlloc( nLeavesMax );
+ while ( 1 )
+ {
+ BestCut = -1;
+ // find the next feasible cut to add
+ Vec_IntClear( vFeasible );
+ Vec_PtrForEachEntry( vFactors, vFact, i )
+ {
+ if ( vFact == NULL )
+ continue;
+ // count the number of unmarked leaves of this factor cut
+ Counter = 0;
+ Vec_PtrForEachEntry( vFact, pTemp, k )
+ Counter += !Abc_NodeIsTravIdCurrent(pTemp);
+ // if the number of new leaves is smaller than the diff, it is feasible
+ if ( Counter <= nLeavesMax - Vec_PtrSize(vLeaves) + 1 )
+ {
+ Vec_IntPush( vFeasible, i );
+ if ( BestCut == -1 || BestShare < Vec_PtrSize(vFact) - Counter )
+ BestCut = i, BestShare = Vec_PtrSize(vFact) - Counter;
+ }
+ }
+ // quit if there is no feasible factor cuts
+ if ( Vec_IntSize(vFeasible) == 0 )
+ break;
+ // randomly choose one leaf and get its factor cut
+// RandLeaf = Vec_IntEntry( vFeasible, rand() % Vec_IntSize(vFeasible) );
+ // choose the cut that has most sharing with the other cuts
+ RandLeaf = BestCut;
+
+ pLeaf = Vec_PtrEntry( vLeaves, RandLeaf );
+ vNext = Vec_PtrEntry( vFactors, RandLeaf );
+ // unmark this leaf
+ Abc_NodeSetTravIdPrevious( pLeaf );
+ // remove this cut from the leaves and factor cuts
+ for ( i = RandLeaf; i < Vec_PtrSize(vLeaves)-1; i++ )
+ {
+ Vec_PtrWriteEntry( vLeaves, i, Vec_PtrEntry(vLeaves, i+1) );
+ Vec_PtrWriteEntry( vFactors, i, Vec_PtrEntry(vFactors,i+1) );
+ }
+ Vec_PtrShrink( vLeaves, Vec_PtrSize(vLeaves) -1 );
+ Vec_PtrShrink( vFactors, Vec_PtrSize(vFactors)-1 );
+ // add new leaves, compute their factor cuts
+ Vec_PtrForEachEntry( vNext, pLeaf, i )
+ {
+ if ( Abc_NodeIsTravIdCurrent(pLeaf) )
+ continue;
+ Abc_NodeSetTravIdCurrent( pLeaf );
+ Vec_PtrPush( vLeaves, pLeaf );
+ if ( Abc_ObjIsCi(pLeaf) )
+ Vec_PtrPush( vFactors, NULL );
+ else
+ Vec_PtrPush( vFactors, Abc_CutFactor(pLeaf) );
+ }
+ Vec_PtrFree( vNext );
+ assert( Vec_PtrSize(vLeaves) <= nLeavesMax );
+ if ( Vec_PtrSize(vLeaves) == nLeavesMax )
+ break;
+ }
+
+ // remove temporary storage
+ Vec_PtrForEachEntry( vFactors, vFact, i )
+ if ( vFact ) Vec_PtrFree( vFact );
+ Vec_PtrFree( vFactors );
+ Vec_IntFree( vFeasible );
+ return vLeaves;
+}
+
+////////////////////////////////////////////////////////////////////////
+/// END OF FILE ///
+////////////////////////////////////////////////////////////////////////
+
+