diff options
author | Alan Mishchenko <alanmi@berkeley.edu> | 2007-09-06 08:01:00 -0700 |
---|---|---|
committer | Alan Mishchenko <alanmi@berkeley.edu> | 2007-09-06 08:01:00 -0700 |
commit | 9be1b076934b0410689c857cd71ef7d21a714b5f (patch) | |
tree | c342242ad3c5ea9d35e6e682f9026534ec73fcbe /src/aig/ioa/ioaWriteAig.c | |
parent | b2470dd3da962026fd874e13c2cf78c10099fe68 (diff) | |
download | abc-9be1b076934b0410689c857cd71ef7d21a714b5f.tar.gz abc-9be1b076934b0410689c857cd71ef7d21a714b5f.tar.bz2 abc-9be1b076934b0410689c857cd71ef7d21a714b5f.zip |
Version abc70906
Diffstat (limited to 'src/aig/ioa/ioaWriteAig.c')
-rw-r--r-- | src/aig/ioa/ioaWriteAig.c | 291 |
1 files changed, 291 insertions, 0 deletions
diff --git a/src/aig/ioa/ioaWriteAig.c b/src/aig/ioa/ioaWriteAig.c new file mode 100644 index 00000000..74462bbd --- /dev/null +++ b/src/aig/ioa/ioaWriteAig.c @@ -0,0 +1,291 @@ +/**CFile**************************************************************** + + FileName [ioaWriteAiger.c] + + SystemName [ABC: Logic synthesis and verification system.] + + PackageName [Command processing package.] + + Synopsis [Procedures to write binary AIGER format developed by + Armin Biere, Johannes Kepler University (http://fmv.jku.at/)] + + Author [Alan Mishchenko] + + Affiliation [UC Berkeley] + + Date [Ver. 1.0. Started - December 16, 2006.] + + Revision [$Id: ioaWriteAiger.c,v 1.00 2006/12/16 00:00:00 alanmi Exp $] + +***********************************************************************/ + +#include "ioa.h" + +//////////////////////////////////////////////////////////////////////// +/// DECLARATIONS /// +//////////////////////////////////////////////////////////////////////// + +/* + The following is taken from the AIGER format description, + which can be found at http://fmv.jku.at/aiger +*/ + + +/* + The AIGER And-Inverter Graph (AIG) Format Version 20061129 + ---------------------------------------------------------- + Armin Biere, Johannes Kepler University, 2006 + + This report describes the AIG file format as used by the AIGER library. + The purpose of this report is not only to motivate and document the + format, but also to allow independent implementations of writers and + readers by giving precise and unambiguous definitions. + + ... + +Introduction + + The name AIGER contains as one part the acronym AIG of And-Inverter + Graphs and also if pronounced in German sounds like the name of the + 'Eiger', a mountain in the Swiss alps. This choice should emphasize the + origin of this format. It was first openly discussed at the Alpine + Verification Meeting 2006 in Ascona as a way to provide a simple, compact + file format for a model checking competition affiliated to CAV 2007. + + ... + +Binary Format Definition + + The binary format is semantically a subset of the ASCII format with a + slightly different syntax. The binary format may need to reencode + literals, but translating a file in binary format into ASCII format and + then back in to binary format will result in the same file. + + The main differences of the binary format to the ASCII format are as + follows. After the header the list of input literals and all the + current state literals of a latch can be omitted. Furthermore the + definitions of the AND gates are binary encoded. However, the symbol + table and the comment section are as in the ASCII format. + + The header of an AIGER file in binary format has 'aig' as format + identifier, but otherwise is identical to the ASCII header. The standard + file extension for the binary format is therefore '.aig'. + + A header for the binary format is still in ASCII encoding: + + aig M I L O A + + Constants, variables and literals are handled in the same way as in the + ASCII format. The first simplifying restriction is on the variable + indices of inputs and latches. The variable indices of inputs come first, + followed by the pseudo-primary inputs of the latches and then the variable + indices of all LHS of AND gates: + + input variable indices 1, 2, ... , I + latch variable indices I+1, I+2, ... , (I+L) + AND variable indices I+L+1, I+L+2, ... , (I+L+A) == M + + The corresponding unsigned literals are + + input literals 2, 4, ... , 2*I + latch literals 2*I+2, 2*I+4, ... , 2*(I+L) + AND literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A) == 2*M + + All literals have to be defined, and therefore 'M = I + L + A'. With this + restriction it becomes possible that the inputs and the current state + literals of the latches do not have to be listed explicitly. Therefore, + after the header only the list of 'L' next state literals follows, one per + latch on a single line, and then the 'O' outputs, again one per line. + + In the binary format we assume that the AND gates are ordered and respect + the child parent relation. AND gates with smaller literals on the LHS + come first. Therefore we can assume that the literals on the right-hand + side of a definition of an AND gate are smaller than the LHS literal. + Furthermore we can sort the literals on the RHS, such that the larger + literal comes first. A definition thus consists of three literals + + lhs rhs0 rhs1 + + with 'lhs' even and 'lhs > rhs0 >= rhs1'. Also the variable indices are + pairwise different to avoid combinational self loops. Since the LHS + indices of the definitions are all consecutive (as even integers), + the binary format does not have to keep 'lhs'. In addition, we can use + the order restriction and only write the differences 'delta0' and 'delta1' + instead of 'rhs0' and 'rhs1', with + + delta0 = lhs - rhs0, delta1 = rhs0 - rhs1 + + The differences will all be strictly positive, and in practice often very + small. We can take advantage of this fact by the simple little-endian + encoding of unsigned integers of the next section. After the binary delta + encoding of the RHSs of all AND gates, the optional symbol table and + optional comment section start in the same format as in the ASCII case. + + ... + +*/ + +static unsigned Ioa_ObjMakeLit( int Var, int fCompl ) { return (Var << 1) | fCompl; } +static unsigned Ioa_ObjAigerNum( Aig_Obj_t * pObj ) { return (unsigned)pObj->pData; } +static void Ioa_ObjSetAigerNum( Aig_Obj_t * pObj, unsigned Num ) { pObj->pData = (void *)Num; } + +int Ioa_WriteAigerEncode( char * pBuffer, int Pos, unsigned x ); + +//////////////////////////////////////////////////////////////////////// +/// FUNCTION DEFINITIONS /// +//////////////////////////////////////////////////////////////////////// + +/**Function************************************************************* + + Synopsis [Writes the AIG in the binary AIGER format.] + + Description [] + + SideEffects [] + + SeeAlso [] + +***********************************************************************/ +void Ioa_WriteAiger( Aig_Man_t * pMan, char * pFileName, int fWriteSymbols ) +{ + Bar_Progress_t * pProgress; + FILE * pFile; + Aig_Obj_t * pObj, * pDriver; + int i, nNodes, Pos, nBufferSize; + unsigned char * pBuffer; + unsigned uLit0, uLit1, uLit; + +// assert( Aig_ManIsStrash(pMan) ); + // start the output stream + pFile = fopen( pFileName, "wb" ); + if ( pFile == NULL ) + { + fprintf( stdout, "Ioa_WriteAiger(): Cannot open the output file \"%s\".\n", pFileName ); + return; + } +/* + Aig_ManForEachLatch( pMan, pObj, i ) + if ( !Aig_LatchIsInit0(pObj) ) + { + fprintf( stdout, "Ioa_WriteAiger(): Cannot write AIGER format with non-0 latch init values. Run \"zero\".\n" ); + return; + } +*/ + // set the node numbers to be used in the output file + nNodes = 0; + Ioa_ObjSetAigerNum( Aig_ManConst1(pMan), nNodes++ ); + Aig_ManForEachPi( pMan, pObj, i ) + Ioa_ObjSetAigerNum( pObj, nNodes++ ); + Aig_ManForEachNode( pMan, pObj, i ) + Ioa_ObjSetAigerNum( pObj, nNodes++ ); + + // write the header "M I L O A" where M = I + L + A + fprintf( pFile, "aig %u %u %u %u %u\n", + Aig_ManPiNum(pMan) + Aig_ManNodeNum(pMan), + Aig_ManPiNum(pMan) - Aig_ManRegNum(pMan), + Aig_ManRegNum(pMan), + Aig_ManPoNum(pMan) - Aig_ManRegNum(pMan), + Aig_ManNodeNum(pMan) ); + + // if the driver node is a constant, we need to complement the literal below + // because, in the AIGER format, literal 0/1 is represented as number 0/1 + // while, in ABC, constant 1 node has number 0 and so literal 0/1 will be 1/0 + + // write latch drivers + Aig_ManForEachLiSeq( pMan, pObj, i ) + { + pDriver = Aig_ObjFanin0(pObj); + fprintf( pFile, "%u\n", Ioa_ObjMakeLit( Ioa_ObjAigerNum(pDriver), Aig_ObjFaninC0(pObj) ^ (Ioa_ObjAigerNum(pDriver) == 0) ) ); + } + + // write PO drivers + Aig_ManForEachPoSeq( pMan, pObj, i ) + { + pDriver = Aig_ObjFanin0(pObj); + fprintf( pFile, "%u\n", Ioa_ObjMakeLit( Ioa_ObjAigerNum(pDriver), Aig_ObjFaninC0(pObj) ^ (Ioa_ObjAigerNum(pDriver) == 0) ) ); + } + + // write the nodes into the buffer + Pos = 0; + nBufferSize = 6 * Aig_ManNodeNum(pMan) + 100; // skeptically assuming 3 chars per one AIG edge + pBuffer = ALLOC( char, nBufferSize ); + pProgress = Bar_ProgressStart( stdout, Aig_ManObjNumMax(pMan) ); + Aig_ManForEachNode( pMan, pObj, i ) + { + Bar_ProgressUpdate( pProgress, i, NULL ); + uLit = Ioa_ObjMakeLit( Ioa_ObjAigerNum(pObj), 0 ); + uLit0 = Ioa_ObjMakeLit( Ioa_ObjAigerNum(Aig_ObjFanin0(pObj)), Aig_ObjFaninC0(pObj) ); + uLit1 = Ioa_ObjMakeLit( Ioa_ObjAigerNum(Aig_ObjFanin1(pObj)), Aig_ObjFaninC1(pObj) ); + assert( uLit0 < uLit1 ); + Pos = Ioa_WriteAigerEncode( pBuffer, Pos, uLit - uLit1 ); + Pos = Ioa_WriteAigerEncode( pBuffer, Pos, uLit1 - uLit0 ); + if ( Pos > nBufferSize - 10 ) + { + printf( "Ioa_WriteAiger(): AIGER generation has failed because the allocated buffer is too small.\n" ); + fclose( pFile ); + return; + } + } + assert( Pos < nBufferSize ); + Bar_ProgressStop( pProgress ); + + // write the buffer + fwrite( pBuffer, 1, Pos, pFile ); + free( pBuffer ); +/* + // write the symbol table + if ( fWriteSymbols ) + { + // write PIs + Aig_ManForEachPi( pMan, pObj, i ) + fprintf( pFile, "i%d %s\n", i, Aig_ObjName(pObj) ); + // write latches + Aig_ManForEachLatch( pMan, pObj, i ) + fprintf( pFile, "l%d %s\n", i, Aig_ObjName(Aig_ObjFanout0(pObj)) ); + // write POs + Aig_ManForEachPo( pMan, pObj, i ) + fprintf( pFile, "o%d %s\n", i, Aig_ObjName(pObj) ); + } +*/ + // write the comment + fprintf( pFile, "c\n" ); + fprintf( pFile, "%s\n", pMan->pName ); + fprintf( pFile, "This file was produced by the AIG package in ABC on %s\n", Ioa_TimeStamp() ); + fprintf( pFile, "For information about AIGER format, refer to %s\n", "http://fmv.jku.at/aiger" ); + fclose( pFile ); +} + +/**Function************************************************************* + + Synopsis [Adds one unsigned AIG edge to the output buffer.] + + Description [This procedure is a slightly modified version of Armin Biere's + procedure "void encode (FILE * file, unsigned x)" ] + + SideEffects [Returns the current writing position.] + + SeeAlso [] + +***********************************************************************/ +int Ioa_WriteAigerEncode( char * pBuffer, int Pos, unsigned x ) +{ + unsigned char ch; + while (x & ~0x7f) + { + ch = (x & 0x7f) | 0x80; +// putc (ch, file); + pBuffer[Pos++] = ch; + x >>= 7; + } + ch = x; +// putc (ch, file); + pBuffer[Pos++] = ch; + return Pos; +} + + +//////////////////////////////////////////////////////////////////////// +/// END OF FILE /// +//////////////////////////////////////////////////////////////////////// + + |