/* * Xen domain builder -- ELF bits. * * Parse and load ELF kernel images. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * written 2006 by Gerd Hoffmann . * */ #include #include #include #include #include "xg_private.h" #include "xc_dom.h" #define XEN_VER "xen-3.0" /* ------------------------------------------------------------------------ */ static void log_callback(struct elf_binary *elf, void *caller_data, int iserr, const char *fmt, va_list al) { struct xc_interface *xch = caller_data; xc_reportv(xch, xch->dombuild_logger ? xch->dombuild_logger : xch->error_handler, iserr ? XTL_ERROR : XTL_DETAIL, iserr ? XC_INVALID_KERNEL : XC_ERROR_NONE, fmt, al); } void xc_elf_set_logfile(struct xc_interface *xch, struct elf_binary *elf, int verbose) { elf_set_log(elf, log_callback, xch, verbose); } /* ------------------------------------------------------------------------ */ static char *xc_dom_guest_type(struct xc_dom_image *dom, struct elf_binary *elf) { uint64_t machine = elf_uval(elf, elf->ehdr, e_machine); switch ( machine ) { case EM_386: switch ( dom->parms.pae ) { case 3 /* PAEKERN_bimodal */: if ( strstr(dom->xen_caps, "xen-3.0-x86_32p") ) return "xen-3.0-x86_32p"; return "xen-3.0-x86_32"; case PAEKERN_extended_cr3: case PAEKERN_yes: return "xen-3.0-x86_32p"; case PAEKERN_no: default: return "xen-3.0-x86_32"; } case EM_X86_64: return "xen-3.0-x86_64"; case EM_IA_64: return elf_msb(elf) ? "xen-3.0-ia64be" : "xen-3.0-ia64"; default: return "xen-3.0-unknown"; } } /* ------------------------------------------------------------------------ */ /* parse elf binary */ static int check_elf_kernel(struct xc_dom_image *dom, int verbose) { if ( dom->kernel_blob == NULL ) { if ( verbose ) xc_dom_panic(dom->xch, XC_INTERNAL_ERROR, "%s: no kernel image loaded", __FUNCTION__); return -EINVAL; } if ( !elf_is_elfbinary(dom->kernel_blob) ) { if ( verbose ) xc_dom_panic(dom->xch, XC_INVALID_KERNEL, "%s: kernel is not an ELF image", __FUNCTION__); return -EINVAL; } return 0; } static int xc_dom_probe_elf_kernel(struct xc_dom_image *dom) { return check_elf_kernel(dom, 0); } static int xc_dom_load_elf_symtab(struct xc_dom_image *dom, struct elf_binary *elf, int load) { struct elf_binary syms; const elf_shdr *shdr, *shdr2; xen_vaddr_t symtab, maxaddr; char *hdr; size_t size; int h, count, type, i, tables = 0; if ( elf_swap(elf) ) { DOMPRINTF("%s: non-native byte order, bsd symtab not supported", __FUNCTION__); return 0; } if ( load ) { if ( !dom->bsd_symtab_start ) return 0; size = dom->kernel_seg.vend - dom->bsd_symtab_start; hdr = xc_dom_vaddr_to_ptr(dom, dom->bsd_symtab_start); *(int *)hdr = size - sizeof(int); } else { size = sizeof(int) + elf_size(elf, elf->ehdr) + elf_shdr_count(elf) * elf_size(elf, shdr); hdr = xc_dom_malloc(dom, size); if ( hdr == NULL ) return 0; dom->bsd_symtab_start = elf_round_up(&syms, dom->kernel_seg.vend); } memcpy(hdr + sizeof(int), elf->image, elf_size(elf, elf->ehdr)); memcpy(hdr + sizeof(int) + elf_size(elf, elf->ehdr), elf->image + elf_uval(elf, elf->ehdr, e_shoff), elf_shdr_count(elf) * elf_size(elf, shdr)); if ( elf_64bit(elf) ) { Elf64_Ehdr *ehdr = (Elf64_Ehdr *)(hdr + sizeof(int)); ehdr->e_phoff = 0; ehdr->e_phentsize = 0; ehdr->e_phnum = 0; ehdr->e_shoff = elf_size(elf, elf->ehdr); ehdr->e_shstrndx = SHN_UNDEF; } else { Elf32_Ehdr *ehdr = (Elf32_Ehdr *)(hdr + sizeof(int)); ehdr->e_phoff = 0; ehdr->e_phentsize = 0; ehdr->e_phnum = 0; ehdr->e_shoff = elf_size(elf, elf->ehdr); ehdr->e_shstrndx = SHN_UNDEF; } if ( elf_init(&syms, hdr + sizeof(int), size - sizeof(int)) ) return -1; xc_elf_set_logfile(dom->xch, &syms, 1); symtab = dom->bsd_symtab_start + sizeof(int); maxaddr = elf_round_up(&syms, symtab + elf_size(&syms, syms.ehdr) + elf_shdr_count(&syms) * elf_size(&syms, shdr)); DOMPRINTF("%s/%s: bsd_symtab_start=%" PRIx64 ", kernel.end=0x%" PRIx64 " -- symtab=0x%" PRIx64 ", maxaddr=0x%" PRIx64 "", __FUNCTION__, load ? "load" : "parse", dom->bsd_symtab_start, dom->kernel_seg.vend, symtab, maxaddr); count = elf_shdr_count(&syms); for ( h = 0; h < count; h++ ) { shdr = elf_shdr_by_index(&syms, h); type = elf_uval(&syms, shdr, sh_type); if ( type == SHT_STRTAB ) { /* Look for a strtab @i linked to symtab @h. */ for ( i = 0; i < count; i++ ) { shdr2 = elf_shdr_by_index(&syms, i); if ( (elf_uval(&syms, shdr2, sh_type) == SHT_SYMTAB) && (elf_uval(&syms, shdr2, sh_link) == h) ) break; } /* Skip symtab @h if we found no corresponding strtab @i. */ if ( i == count ) { if ( elf_64bit(&syms) ) *(Elf64_Off*)(&shdr->e64.sh_offset) = 0; else *(Elf32_Off*)(&shdr->e32.sh_offset) = 0; continue; } } if ( (type == SHT_STRTAB) || (type == SHT_SYMTAB) ) { /* Mangled to be based on ELF header location. */ if ( elf_64bit(&syms) ) *(Elf64_Off*)(&shdr->e64.sh_offset) = maxaddr - symtab; else *(Elf32_Off*)(&shdr->e32.sh_offset) = maxaddr - symtab; size = elf_uval(&syms, shdr, sh_size); maxaddr = elf_round_up(&syms, maxaddr + size); tables++; DOMPRINTF("%s: h=%d %s, size=0x%zx, maxaddr=0x%" PRIx64 "", __FUNCTION__, h, type == SHT_SYMTAB ? "symtab" : "strtab", size, maxaddr); if ( load ) { shdr2 = elf_shdr_by_index(elf, h); memcpy((void*)elf_section_start(&syms, shdr), elf_section_start(elf, shdr2), size); } } /* Name is NULL. */ if ( elf_64bit(&syms) ) *(Elf64_Half*)(&shdr->e64.sh_name) = 0; else *(Elf32_Word*)(&shdr->e32.sh_name) = 0; } if ( tables == 0 ) { DOMPRINTF("%s: no symbol table present", __FUNCTION__); dom->bsd_symtab_start = 0; return 0; } if ( !load ) dom->kernel_seg.vend = maxaddr; return 0; } static int xc_dom_parse_elf_kernel(struct xc_dom_image *dom) { struct elf_binary *elf; int rc; rc = check_elf_kernel(dom, 1); if ( rc != 0 ) return rc; elf = xc_dom_malloc(dom, sizeof(*elf)); dom->private_loader = elf; rc = elf_init(elf, dom->kernel_blob, dom->kernel_size); xc_elf_set_logfile(dom->xch, elf, 1); if ( rc != 0 ) { xc_dom_panic(dom->xch, XC_INVALID_KERNEL, "%s: corrupted ELF image", __FUNCTION__); return rc; } /* Find the section-header strings table. */ if ( elf->sec_strtab == NULL ) { xc_dom_panic(dom->xch, XC_INVALID_KERNEL, "%s: ELF image" " has no shstrtab", __FUNCTION__); return -EINVAL; } /* parse binary and get xen meta info */ elf_parse_binary(elf); if ( (rc = elf_xen_parse(elf, &dom->parms)) != 0 ) return rc; /* find kernel segment */ dom->kernel_seg.vstart = dom->parms.virt_kstart; dom->kernel_seg.vend = dom->parms.virt_kend; if ( dom->parms.bsd_symtab ) xc_dom_load_elf_symtab(dom, elf, 0); dom->guest_type = xc_dom_guest_type(dom, elf); DOMPRINTF("%s: %s: 0x%" PRIx64 " -> 0x%" PRIx64 "", __FUNCTION__, dom->guest_type, dom->kernel_seg.vstart, dom->kernel_seg.vend); return 0; } static int xc_dom_load_elf_kernel(struct xc_dom_image *dom) { struct elf_binary *elf = dom->private_loader; elf->dest = xc_dom_seg_to_ptr(dom, &dom->kernel_seg); elf_load_binary(elf); if ( dom->parms.bsd_symtab ) xc_dom_load_elf_symtab(dom, elf, 1); return 0; } /* ------------------------------------------------------------------------ */ struct xc_dom_loader elf_loader = { .name = "ELF-generic", .probe = xc_dom_probe_elf_kernel, .parser = xc_dom_parse_elf_kernel, .loader = xc_dom_load_elf_kernel, }; static void __init register_loader(void) { xc_dom_register_loader(&elf_loader); } /* * Local variables: * mode: C * c-set-style: "BSD" * c-basic-offset: 4 * tab-width: 4 * indent-tabs-mode: nil * End: */ 0'>200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
.. hazmat::

RSA
===

.. module:: cryptography.hazmat.primitives.asymmetric.rsa

`RSA`_ is a `public-key`_ algorithm for encrypting and signing messages.

Generation
~~~~~~~~~~

Unlike symmetric cryptography, where the key is typically just a random series
of bytes, RSA keys have a complex internal structure with `specific
mathematical properties`_.

.. function:: generate_private_key(public_exponent, key_size, backend)

    .. versionadded:: 0.5

    Generates a new RSA private key using the provided ``backend``.
    ``key_size`` describes how many bits long the key should be, larger keys
    provide more security, currently ``1024`` and below are considered
    breakable, and ``2048`` or ``4096`` are reasonable default key sizes for
    new keys. The ``public_exponent`` indicates what one mathematical property
    of the key generation will be, ``65537`` should almost always be used.

    .. doctest::

        >>> from cryptography.hazmat.backends import default_backend
        >>> from cryptography.hazmat.primitives.asymmetric import rsa
        >>> private_key = rsa.generate_private_key(
        ...     public_exponent=65537,
        ...     key_size=2048,
        ...     backend=default_backend()
        ... )

    :param int public_exponent: The public exponent of the new key.
        Usually one of the small Fermat primes 3, 5, 17, 257, 65537. If in
        doubt you should `use 65537`_.

    :param int key_size: The length of the modulus in bits. For keys
        generated in 2015 it is strongly recommended to be
        `at least 2048`_ (See page 41). It must not be less than 512.
        Some backends may have additional limitations.

    :param backend: A backend which provides
        :class:`~cryptography.hazmat.backends.interfaces.RSABackend`.

    :return: An instance of
        :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`.

    :raises cryptography.exceptions.UnsupportedAlgorithm: This is raised if
        the provided ``backend`` does not implement
        :class:`~cryptography.hazmat.backends.interfaces.RSABackend`

Key loading
~~~~~~~~~~~

If you already have an on-disk key in the PEM format (which are recognizable by
the distinctive ``-----BEGIN {format}-----`` and ``-----END {format}-----``
markers), you can load it:

.. code-block:: pycon

    >>> from cryptography.hazmat.primitives import serialization

    >>> with open("path/to/key.pem", "rb") as key_file:
...     private_key = serialization.load_pem_private_key(
...             key_file.read(),
...         password=None,
...             backend=default_backend    ()
...     )
        
Serialized keys may optionally be encrypted on disk using a password. In this
example we loaded an unencrypted key, and therefore we did not provide a
password. If the key is encrypted we can pass a ``bytes`` object as the
``password`` argument.

There is also support for :func:`loading public keys in the SSH format
<cryptography.hazmat.primitives.serialization.load_ssh_public_key>`.

Key serialization
~~~~~~~~~~~~~~~~~

If you have a private key that you've loaded or generated which implements the
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization`
interface you can use
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization.private_bytes`
to serialize the key.

.. doctest::

    >>> from cryptography.hazmat.primitives import serialization
    >>> pem = private_key.private_bytes(
    ...    encoding=serialization.Encoding.PEM,
    ...    format=serialization.PrivateFormat.PKCS8,
    ...    encryption_algorithm=serialization.BestAvailableEncryption(b'mypassword')
    ... )
    >>> pem.splitlines()[0]
    '-----BEGIN ENCRYPTED PRIVATE KEY-----'

It is also possible to serialize without encryption using
:class:`~cryptography.hazmat.primitives.serialization.NoEncryption`.

.. doctest::

    >>> pem = private_key.private_bytes(
    ...    encoding=serialization.Encoding.PEM,
    ...    format=serialization.PrivateFormat.TraditionalOpenSSL,
    ...    encryption_algorithm=serialization.NoEncryption()
    ... )
    >>> pem.splitlines()[0]
    '-----BEGIN RSA PRIVATE KEY-----'

For public keys you can use
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey.public_bytes`
to serialize the key.

.. doctest::

    >>> from cryptography.hazmat.primitives import serialization
    >>> public_key = private_key.public_key()
    >>> pem = public_key.public_bytes(
    ...    encoding=serialization.Encoding.PEM,
    ...    format=serialization.PublicFormat.SubjectPublicKeyInfo
    ... )
    >>> pem.splitlines()[0]
    '-----BEGIN PUBLIC KEY-----'

Signing
~~~~~~~

A private key can be used to sign a message. This allows anyone with the public
key to verify that the message was created by someone who possesses the
corresponding private key. RSA signatures require a specific hash function, and
padding to be used. Here is an example of signing ``message`` using RSA, with a
secure hash function and padding:

.. doctest::

    >>> from cryptography.hazmat.primitives import hashes
    >>> from cryptography.hazmat.primitives.asymmetric import padding

    >>> signer = private_key.signer(
    ...     padding.PSS(
    ...         mgf=padding.MGF1(hashes.SHA256()),
    ...         salt_length=padding.PSS.MAX_LENGTH
    ...     ),
    ...     hashes.SHA256()
    ... )
    >>> message = b"A message I want to sign"
    >>> signer.update(message)
    >>> signature = signer.finalize()

Valid paddings for signatures are
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PSS` and
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``PSS``
is the recommended choice for any new protocols or applications, ``PKCS1v15``
should only be used to support legacy protocols.

Verification
~~~~~~~~~~~~

The previous section describes what to do if you have a private key and want to
sign something. If you have a public key, a message, a signature, and the
signing algorithm that was used you can check that the private key associated
with a given public key was used to sign that specific message.  You can obtain
a public key to use in verification using
:func:`~cryptography.hazmat.primitives.serialization.load_pem_public_key`,
:func:`~cryptography.hazmat.primitives.serialization.load_der_public_key`,
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers.public_key`
, or
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey.public_key`.

.. doctest::

    >>> public_key = private_key.public_key()
    >>> verifier = public_key.verifier(
    ...     signature,
    ...     padding.PSS(
    ...         mgf=padding.MGF1(hashes.SHA256()),
    ...         salt_length=padding.PSS.MAX_LENGTH
    ...     ),
    ...     hashes.SHA256()
    ... )
    >>> verifier.update(message)
    >>> verifier.verify()

If the signature does not match, ``verify()`` will raise an
:class:`~cryptography.exceptions.InvalidSignature` exception.

Encryption
~~~~~~~~~~

RSA encryption is interesting because encryption is performed using the
**public** key, meaning anyone can encrypt data. The data is then decrypted
using the **private** key.

Like signatures, RSA supports encryption with several different padding
options. Here's an example using a secure padding and hash function:

.. doctest::

    >>> message = b"encrypted data"
    >>> ciphertext = public_key.encrypt(
    ...     message,
    ...     padding.OAEP(
    ...         mgf=padding.MGF1(algorithm=hashes.SHA1()),
    ...         algorithm=hashes.SHA1(),
    ...         label=None
    ...     )
    ... )

Valid paddings for encryption are
:class:`~cryptography.hazmat.primitives.asymmetric.padding.OAEP` and
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``OAEP``
is the recommended choice for any new protocols or applications, ``PKCS1v15``
should only be used to support legacy protocols.


Decryption
~~~~~~~~~~

Once you have an encrypted message, it can be decrypted using the private key:

.. doctest::

    >>> plaintext = private_key.decrypt(
    ...     ciphertext,
    ...     padding.OAEP(
    ...         mgf=padding.MGF1(algorithm=hashes.SHA1()),
    ...         algorithm=hashes.SHA1(),
    ...         label=None
    ...     )
    ... )
    >>> plaintext == message
    True

Padding
~~~~~~~

.. module:: cryptography.hazmat.primitives.asymmetric.padding

.. class:: AsymmetricPadding

    .. versionadded:: 0.2

    .. attribute:: name

.. class:: PSS(mgf, salt_length)

    .. versionadded:: 0.3

    .. versionchanged:: 0.4
        Added ``salt_length`` parameter.

    PSS (Probabilistic Signature Scheme) is a signature scheme defined in
    :rfc:`3447`. It is more complex than PKCS1 but possesses a `security proof`_.
    This is the `recommended padding algorithm`_ for RSA signatures. It cannot
    be used with RSA encryption.

    :param mgf: A mask generation function object. At this time the only
        supported MGF is :class:`MGF1`.

    :param int salt_length: The length of the salt. It is recommended that this
        be set to ``PSS.MAX_LENGTH``.

    .. attribute:: MAX_LENGTH

        Pass this attribute to ``salt_length`` to get the maximum salt length
        available.

.. class:: OAEP(mgf, label)

    .. versionadded:: 0.4

    OAEP (Optimal Asymmetric Encryption Padding) is a padding scheme defined in
    :rfc:`3447`. It provides probabilistic encryption and is `proven secure`_
    against several attack types. This is the `recommended padding algorithm`_
    for RSA encryption. It cannot be used with RSA signing.

    :param mgf: A mask generation function object. At this time the only
        supported MGF is :class:`MGF1`.

    :param bytes label: A label to apply. This is a rarely used field and
        should typically be set to ``None`` or ``b""``, which are equivalent.

.. class:: PKCS1v15()

    .. versionadded:: 0.3

    PKCS1 v1.5 (also known as simply PKCS1) is a simple padding scheme
    developed for use with RSA keys. It is defined in :rfc:`3447`. This padding
    can be used for signing and encryption.

    It is not recommended that ``PKCS1v15`` be used for new applications,
    :class:`OAEP` should be preferred for encryption and :class:`PSS` should be
    preferred for signatures.

Mask generation functions
-------------------------

.. class:: MGF1(algorithm)

    .. versionadded:: 0.3

    .. versionchanged:: 0.6
        Removed the deprecated ``salt_length`` parameter.

    MGF1 (Mask Generation Function 1) is used as the mask generation function
    in :class:`PSS` padding. It takes a hash algorithm and a salt length.

    :param algorithm: An instance of a
        :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`
        provider.

Numbers
~~~~~~~

.. currentmodule:: cryptography.hazmat.primitives.asymmetric.rsa

These classes hold the constituent components of an RSA key. They are useful
only when more traditional :doc:`/hazmat/primitives/asymmetric/serialization`
is unavailable.

.. class:: RSAPublicNumbers(e, n)

    .. versionadded:: 0.5

    The collection of integers that make up an RSA public key.

    .. attribute:: n

        :type: int

        The public modulus.

    .. attribute:: e

        :type: int

        The public exponent.

    .. method:: public_key(backend)

        :param backend: A
            :class:`~cryptography.hazmat.backends.interfaces.RSABackend`
            provider.

        :returns: A new instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey`
            provider.

.. class:: RSAPrivateNumbers(p, q, d, dmp1, dmq1, iqmp, public_numbers)

    .. versionadded:: 0.5

    The collection of integers that make up an RSA private key.

    .. warning::

        With the exception of the integers contained in the
        :class:`RSAPublicNumbers` all attributes of this class must be kept
        secret. Revealing them will compromise the security of any
        cryptographic operations performed with a key loaded from them.

    .. attribute:: public_numbers

        :type: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`

        The :class:`RSAPublicNumbers` which makes up the RSA public key
        associated with this RSA private key.

    .. attribute:: p

        :type: int

        ``p``, one of the two primes composing ``n``.

    .. attribute:: q

        :type: int

        ``q``, one of the two primes composing ``n``.

    .. attribute:: d

        :type: int

        The private exponent.

    .. attribute:: dmp1

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: d mod (p-1)

    .. attribute:: dmq1

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: d mod (q-1)

    .. attribute:: iqmp

        :type: int

        A `Chinese remainder theorem`_ coefficient used to speed up RSA
        operations. Calculated as: q\ :sup:`-1` mod p

    .. method:: private_key(backend)

        :param backend: A new instance of a
            :class:`~cryptography.hazmat.backends.interfaces.RSABackend`
            provider.

        :returns: A
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`
            provider.

Handling partial RSA private keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you are trying to load RSA private keys yourself you may find that not all
parameters required by ``RSAPrivateNumbers`` are available. In particular the
`Chinese Remainder Theorem`_ (CRT) values ``dmp1``, ``dmq1``, ``iqmp`` may be
missing or present in a different form. For example, `OpenPGP`_ does not include
the ``iqmp``, ``dmp1`` or ``dmq1`` parameters.

The following functions are provided for users who want to work with keys like
this without having to do the math themselves.

.. function:: rsa_crt_iqmp(p, q)

    .. versionadded:: 0.4

    Computes the ``iqmp`` (also known as ``qInv``) parameter from the RSA
    primes ``p`` and ``q``.

.. function:: rsa_crt_dmp1(private_exponent, p)

    .. versionadded:: 0.4

    Computes the ``dmp1`` parameter from the RSA private exponent and prime
    ``p``.

.. function:: rsa_crt_dmq1(private_exponent, q)

    .. versionadded:: 0.4

    Computes the ``dmq1`` parameter from the RSA private exponent and prime
    ``q``.

.. function:: rsa_recover_prime_factors(n, e, d)

    .. versionadded:: 0.8

    Computes the prime factors ``(p, q)`` given the modulus, public exponent,
    and private exponent.

    .. note::

        When recovering prime factors this algorithm will always return ``p``
        and ``q`` such that ``p < q``.

    :return: A tuple ``(p, q)``


Key interfaces
~~~~~~~~~~~~~~

.. class:: RSAPrivateKey

    .. versionadded:: 0.2

    An `RSA`_ private key.

    .. method:: signer(padding, algorithm)

        .. versionadded:: 0.3

        Sign data which can be verified later by others using the public key.

        :param padding: An instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :param algorithm: An instance of a
            :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`
            provider.

        :returns:
            :class:`~cryptography.hazmat.primitives.asymmetric.AsymmetricSignatureContext`

    .. method:: decrypt(ciphertext, padding)

        .. versionadded:: 0.4

        Decrypt data that was encrypted with the public key.

        :param bytes ciphertext: The ciphertext to decrypt.

        :param padding: An instance of an
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :return bytes: Decrypted data.

    .. method:: public_key()

        :return: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey`

        An RSA public key object corresponding to the values of the private key.

    .. attribute:: key_size

        :type: int

        The bit length of the modulus.


.. class:: RSAPrivateKeyWithSerialization

    .. versionadded:: 0.8

    Extends :class:`RSAPrivateKey`.

    .. method:: private_numbers()

        Create a
        :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
        object.

        :returns: An
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
            instance.

    .. method:: private_bytes(encoding, format, encryption_algorithm)

        Allows serialization of the key to bytes. Encoding (
        :attr:`~cryptography.hazmat.primitives.serialization.Encoding.PEM` or
        :attr:`~cryptography.hazmat.primitives.serialization.Encoding.DER`),
        format (
        :attr:`~cryptography.hazmat.primitives.serialization.PrivateFormat.TraditionalOpenSSL`
        or
        :attr:`~cryptography.hazmat.primitives.serialization.PrivateFormat.PKCS8`)
        and encryption algorithm (such as
        :class:`~cryptography.hazmat.primitives.serialization.BestAvailableEncryption`
        or :class:`~cryptography.hazmat.primitives.serialization.NoEncryption`)
        are chosen to define the exact serialization.

        :param encoding: A value from the
            :class:`~cryptography.hazmat.primitives.serialization.Encoding` enum.

        :param format: A value from the
            :class:`~cryptography.hazmat.primitives.serialization.PrivateFormat`
            enum.

        :param encryption_algorithm: An instance of an object conforming to the
            :class:`~cryptography.hazmat.primitives.serialization.KeySerializationEncryption`
            interface.

        :return bytes: Serialized key.


.. class:: RSAPublicKey

    .. versionadded:: 0.2

    An `RSA`_ public key.

    .. method:: verifier(signature, padding, algorithm)

        .. versionadded:: 0.3

        Verify data was signed by the private key associated with this public
        key.

        :param bytes signature: The signature to verify.

        :param padding: An instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :param algorithm: An instance of a
            :class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`
            provider.

        :returns:
            :class:`~cryptography.hazmat.primitives.asymmetric.AsymmetricVerificationContext`

    .. method:: encrypt(plaintext, padding)

        .. versionadded:: 0.4

        Encrypt data with the public key.

        :param bytes plaintext: The plaintext to encrypt.

        :param padding: An instance of a
            :class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`
            provider.

        :return bytes: Encrypted data.

    .. attribute:: key_size

        :type: int

        The bit length of the modulus.

    .. method:: public_numbers()

        Create a
        :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`
        object.

        :returns: An
            :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`
            instance.

    .. method:: public_bytes(encoding, format)

        Allows serialization of the key to bytes. Encoding (
        :attr:`~cryptography.hazmat.primitives.serialization.Encoding.PEM` or
        :attr:`~cryptography.hazmat.primitives.serialization.Encoding.DER`) and
        format (
        :attr:`~cryptography.hazmat.primitives.serialization.PublicFormat.SubjectPublicKeyInfo`
        or
        :attr:`~cryptography.hazmat.primitives.serialization.PublicFormat.PKCS1`)
        are chosen to define the exact serialization.

        :param encoding: A value from the
            :class:`~cryptography.hazmat.primitives.serialization.Encoding` enum.

        :param format: A value from the
            :class:`~cryptography.hazmat.primitives.serialization.PublicFormat` enum.

        :return bytes: Serialized key.


.. class:: RSAPublicKeyWithSerialization

    .. versionadded:: 0.8

    Alias for :class:`RSAPublicKey`.


.. _`RSA`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)
.. _`public-key`: https://en.wikipedia.org/wiki/Public-key_cryptography
.. _`specific mathematical properties`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation
.. _`use 65537`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
.. _`at least 2048`: http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
.. _`OpenPGP`: https://en.wikipedia.org/wiki/Pretty_Good_Privacy
.. _`Chinese Remainder Theorem`: https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm
.. _`security proof`: http://eprint.iacr.org/2001/062.pdf
.. _`recommended padding algorithm`: http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
.. _`proven secure`: https://cseweb.ucsd.edu/~mihir/papers/oae.pdf