(**Note:** If you get compiler errors that you don't understand, be sure to consult [Google Mock Doctor](FrequentlyAskedQuestions.md#how-am-i-supposed-to-make-sense-of-these-horrible-template-errors).) # What Is Google C++ Mocking Framework? # When you write a prototype or test, often it's not feasible or wise to rely on real objects entirely. A **mock object** implements the same interface as a real object (so it can be used as one), but lets you specify at run time how it will be used and what it should do (which methods will be called? in which order? how many times? with what arguments? what will they return? etc). **Note:** It is easy to confuse the term _fake objects_ with mock objects. Fakes and mocks actually mean very different things in the Test-Driven Development (TDD) community: * **Fake** objects have working implementations, but usually take some shortcut (perhaps to make the operations less expensive), which makes them not suitable for production. An in-memory file system would be an example of a fake. * **Mocks** are objects pre-programmed with _expectations_, which form a specification of the calls they are expected to receive. If all this seems too abstract for you, don't worry - the most important thing to remember is that a mock allows you to check the _interaction_ between itself and code that uses it. The difference between fakes and mocks will become much clearer once you start to use mocks. **Google C++ Mocking Framework** (or **Google Mock** for short) is a library (sometimes we also call it a "framework" to make it sound cool) for creating mock classes and using them. It does to C++ what [jMock](http://www.jmock.org/) and [EasyMock](http://www.easymock.org/) do to Java. Using Google Mock involves three basic steps: 1. Use some simple macros to describe the interface you want to mock, and they will expand to the implementation of your mock class; 1. Create some mock objects and specify its expectations and behavior using an intuitive syntax; 1. Exercise code that uses the mock objects. Google Mock will catch any violation of the expectations as soon as it arises. # Why Google Mock? # While mock objects help you remove unnecessary dependencies in tests and make them fast and reliable, using mocks manually in C++ is _hard_: * Someone has to implement the mocks. The job is usually tedious and error-prone. No wonder people go great distances to avoid it. * The quality of those manually written mocks is a bit, uh, unpredictable. You may see some really polished ones, but you may also see some that were hacked up in a hurry and have all sorts of ad-hoc restrictions. * The knowledge you gained from using one mock doesn't transfer to the next. In contrast, Java and Python programmers have some fine mock frameworks, which automate the creation of mocks. As a result, mocking is a proven effective technique and widely adopted practice in those communities. Having the right tool absolutely makes the difference. Google Mock was built to help C++ programmers. It was inspired by [jMock](http://www.jmock.org/) and [EasyMock](http://www.easymock.org/), but designed with C++'s specifics in mind. It is your friend if any of the following problems is bothering you: * You are stuck with a sub-optimal design and wish you had done more prototyping before it was too late, but prototyping in C++ is by no means "rapid". * Your tests are slow as they depend on too many libraries or use expensive resources (e.g. a database). * Your tests are brittle as some resources they use are unreliable (e.g. the network). * You want to test how your code handles a failure (e.g. a file checksum error), but it's not easy to cause one. * You need to make sure that your module interacts with other modules in the right way, but it's hard to observe the interaction; therefore you resort to observing the side effects at the end of the action, which is awkward at best. * You want to "mock out" your dependencies, except that they don't have mock implementations yet; and, frankly, you aren't thrilled by some of those hand-written mocks. We encourage you to use Google Mock as: * a _design_ tool, for it lets you experiment with your interface design early and often. More iterations lead to better designs! * a _testing_ tool to cut your tests' outbound dependencies and probe the interaction between your module and its collaborators. # Getting Started # Using Google Mock is easy! Inside your C++ source file, just `#include` `"gtest/gtest.h"` and `"gmock/gmock.h"`, and you are ready to go. # A Case for Mock Turtles # Let's look at an example. Suppose you are developing a graphics program that relies on a LOGO-like API for drawing. How would you test that it does the right thing? Well, you can run it and compare the screen with a golden screen snapshot, but let's admit it: tests like this are expensive to run and fragile (What if you just upgraded to a shiny new graphics card that has better anti-aliasing? Suddenly you have to update all your golden images.). It would be too painful if all your tests are like this. Fortunately, you learned about Dependency Injection and know the right thing to do: instead of having your application talk to the drawing API directly, wrap the API in an interface (say, `Turtle`) and code to that interface: ``` class Turtle { ... virtual ~Turtle() {} virtual void PenUp() = 0; virtual void PenDown() = 0; virtual void Forward(int distance) = 0; virtual void Turn(int degrees) = 0; virtual void GoTo(int x, int y) = 0; virtual int GetX() const = 0; virtual int GetY() const = 0; }; ``` (Note that the destructor of `Turtle` **must** be virtual, as is the case for **all** classes you intend to inherit from - otherwise the destructor of the derived class will not be called when you delete an object through a base pointer, and you'll get corrupted program states like memory leaks.) You can control whether the turtle's movement will leave a trace using `PenUp()` and `PenDown()`, and control its movement using `Forward()`, `Turn()`, and `GoTo()`. Finally, `GetX()` and `GetY()` tell you the current position of the turtle. Your program will normally use a real implementation of this interface. In tests, you can use a mock implementation instead. This allows you to easily check what drawing primitives your program is calling, with what arguments, and in which order. Tests written this way are much more robust (they won't break because your new machine does anti-aliasing differently), easier to read and maintain (the intent of a test is expressed in the code, not in some binary images), and run _much, much faster_. # Writing the Mock Class # If you are lucky, the mocks you need to use have already been implemented by some nice people. If, however, you find yourself in the position to write a mock class, relax - Google Mock turns this task into a fun game! (Well, almost.) ## How to Define It ## Using the `Turtle` interface as example, here are the simple steps you need to follow: 1. Derive a class `MockTurtle` from `Turtle`. 1. Take a _virtual_ function of `Turtle` (while it's possible to [mock non-virtual methods using templates](CookBook.md#mocking-nonvirtual-methods), it's much more involved). Count how many arguments it has. 1. In the `public:` section of the child class, write `MOCK_METHODn();` (or `MOCK_CONST_METHODn();` if you are mocking a `const` method), where `n` is the number of the arguments; if you counted wrong, shame on you, and a compiler error will tell you so. 1. Now comes the fun part: you take the function signature, cut-and-paste the _function name_ as the _first_ argument to the macro, and leave what's left as the _second_ argument (in case you're curious, this is the _type of the function_). 1. Repeat until all virtual functions you want to mock are done. After the process, you should have something like: ``` #include "gmock/gmock.h" // Brings in Google Mock. class MockTurtle : public Turtle { public: ... MOCK_METHOD0(PenUp, void()); MOCK_METHOD0(PenDown, void()); MOCK_METHOD1(Forward, void(int distance)); MOCK_METHOD1(Turn, void(int degrees)); MOCK_METHOD2(GoTo, void(int x, int y)); MOCK_CONST_METHOD0(GetX, int()); MOCK_CONST_METHOD0(GetY, int()); }; ``` You don't need to define these mock methods somewhere else - the `MOCK_METHOD*` macros will generate the definitions for you. It's that simple! Once you get the hang of it, you can pump out mock classes faster than your source-control system can handle your check-ins. **Tip:** If even this is too much work for you, you'll find the `gmock_gen.py` tool in Google Mock's `scripts/generator/` directory (courtesy of the [cppclean](http://code.google.com/p/cppclean/) project) useful. This command-line tool requires that you have Python 2.4 installed. You give it a C++ file and the name of an abstract class defined in it, and it will print the definition of the mock class for you. Due to the complexity of the C++ language, this script may not always work, but it can be quite handy when it does. For more details, read the [user documentation](../scripts/generator/README). ## Where to Put It ## When you define a mock class, you need to decide where to put its definition. Some people put it in a `*_test.cc`. This is fine when the interface being mocked (say, `Foo`) is owned by the same person or team. Otherwise, when the owner of `Foo` changes it, your test could break. (You can't really expect `Foo`'s maintainer to fix every test that uses `Foo`, can you?) So, the rule of thumb is: if you need to mock `Foo` and it's owned by others, define the mock class in `Foo`'s package (better, in a `testing` sub-package such that you can clearly separate production code and testing utilities), and put it in a `mock_foo.h`. Then everyone can reference `mock_foo.h` from their tests. If `Foo` ever changes, there is only one copy of `MockFoo` to change, and only tests that depend on the changed methods need to be fixed. Another way to do it: you can introduce a thin layer `FooAdaptor` on top of `Foo` and code to this new interface. Since you own `FooAdaptor`, you can absorb changes in `Foo` much more easily. While this is more work initially, carefully choosing the adaptor interface can make your code easier to write and more readable (a net win in the long run), as you can choose `FooAdaptor` to fit your specific domain much better than `Foo` does. # Using Mocks in Tests # Once you have a mock class, using it is easy. The typical work flow is: 1. Import the Google Mock names from the `testing` namespace such that you can use them unqualified (You only have to do it once per file. Remember that namespaces are a good idea and good for your health.). 1. Create some mock objects. 1. Specify your expectations on them (How many times will a method be called? With what arguments? What should it do? etc.). 1. Exercise some code that uses the mocks; optionally, check the result using Google Test assertions. If a mock method is called more than expected or with wrong arguments, you'll get an error immediately. 1. When a mock is destructed, Google Mock will automatically check whether all expectations on it have been satisfied. Here's an example: ``` #include "path/to/mock-turtle.h" #include "gmock/gmock.h" #include "gtest/gtest.h" using ::testing::AtLeast; // #1 TEST(PainterTest, CanDrawSomething) { MockTurtle turtle; // #2 EXPECT_CALL(turtle, PenDown()) // #3 .Times(AtLeast(1)); Painter painter(&turtle); // #4 EXPECT_TRUE(painter.DrawCircle(0, 0, 10)); } // #5 int main(int argc, char** argv) { // The following line must be executed to initialize Google Mock // (and Google Test) before running the tests. ::testing::InitGoogleMock(&argc, argv); return RUN_ALL_TESTS(); } ``` As you might have guessed, this test checks that `PenDown()` is called at least once. If the `painter` object didn't call this method, your test will fail with a message like this: ``` path/to/my_test.cc:119: Failure Actual function call count doesn't match this expectation: Actually: never called; Expected: called at least once. ``` **Tip 1:** If you run the test from an Emacs buffer, you can hit `` on the line number displayed in the error message to jump right to the failed expectation. **Tip 2:** If your mock objects are never deleted, the final verification won't happen. Therefore it's a good idea to use a heap leak checker in your tests when you allocate mocks on the heap. **Important note:** Google Mock requires expectations to be set **before** the mock functions are called, otherwise the behavior is **undefined**. In particular, you mustn't interleave `EXPECT_CALL()`s and calls to the mock functions. This means `EXPECT_CALL()` should be read as expecting that a call will occur _in the future_, not that a call has occurred. Why does Google Mock work like that? Well, specifying the expectation beforehand allows Google Mock to report a violation as soon as it arises, when the context (stack trace, etc) is still available. This makes debugging much easier. Admittedly, this test is contrived and doesn't do much. You can easily achieve the same effect without using Google Mock. However, as we shall reveal soon, Google Mock allows you to do _much more_ with the mocks. ## Using Google Mock with Any Testing Framework ## If you want to use something other than Google Test (e.g. [CppUnit](http://sourceforge.net/projects/cppunit/) or [CxxTest](http://cxxtest.tigris.org/)) as your testing framework, just change the `main()` function in the previous section to: ``` int main(int argc, char** argv) { // The following line causes Google Mock to throw an exception on failure, // which will be interpreted by your testing framework as a test failure. ::testing::GTEST_FLAG(throw_on_failure) = true; ::testing::InitGoogleMock(&argc, argv); ... whatever your testing framework requires ... } ``` This approach has a catch: it makes Google Mock throw an exception from a mock object's destructor sometimes. With some compilers, this sometimes causes the test program to crash. You'll still be able to notice that the test has failed, but it's not a graceful failure. A better solution is to use Google Test's [event listener API](../../googletest/docs/AdvancedGuide.md#extending-google-test-by-handling-test-events) to report a test failure to your testing framework properly. You'll need to implement the `OnTestPartResult()` method of the event listener interface, but it should be straightforward. If this turns out to be too much work, we suggest that you stick with Google Test, which works with Google Mock seamlessly (in fact, it is technically part of Google Mock.). If there is a reason that you cannot use Google Test, please let us know. # Setting Expectations # The key to using a mock object successfully is to set the _right expectations_ on it. If you set the expectations too strict, your test will fail as the result of unrelated changes. If you set them too loose, bugs can slip through. You want to do it just right such that your test can catch exactly the kind of bugs you intend it to catch. Google Mock provides the necessary means for you to do it "just right." ## General Syntax ## In Google Mock we use the `EXPECT_CALL()` macro to set an expectation on a mock method. The general syntax is: ``` EXPECT_CALL(mock_object, method(matchers)) .Times(cardinality) .WillOnce(action) .WillRepeatedly(action); ``` The macro has two arguments: first the mock object, and then the method and its arguments. Note that the two are separated by a comma (`,`), not a period (`.`). (Why using a comma? The answer is that it was necessary for technical reasons.) The macro can be followed by some optional _clauses_ that provide more information about the expectation. We'll discuss how each clause works in the coming sections. This syntax is designed to make an expectation read like English. For example, you can probably guess that ``` using ::testing::Return; ... EXPECT_CALL(turtle, GetX()) .Times(5) .WillOnce(Return(100)) .WillOnce(Return(150)) .WillRepeatedly(Return(200)); ``` says that the `turtle` object's `GetX()` method will be called five times, it will return 100 the first time, 150 the second time, and then 200 every time. Some people like to call this style of syntax a Domain-Specific Language (DSL). **Note:** Why do we use a macro to do this? It serves two purposes: first it makes expectations easily identifiable (either by `grep` or by a human reader), and second it allows Google Mock to include the source file location of a failed expectation in messages, making debugging easier. ## Matchers: What Arguments Do We Expect? ## When a mock function takes arguments, we must specify what arguments we are expecting; for example: ``` // Expects the turtle to move forward by 100 units. EXPECT_CALL(turtle, Forward(100)); ``` Sometimes you may not want to be too specific (Remember that talk about tests being too rigid? Over specification leads to brittle tests and obscures the intent of tests. Therefore we encourage you to specify only what's necessary - no more, no less.). If you care to check that `Forward()` will be called but aren't interested in its actual argument, write `_` as the argument, which means "anything goes": ``` using ::testing::_; ... // Expects the turtle to move forward. EXPECT_CALL(turtle, Forward(_)); ``` `_` is an instance of what we call **matchers**. A matcher is like a predicate and can test whether an argument is what we'd expect. You can use a matcher inside `EXPECT_CALL()` wherever a function argument is expected. A list of built-in matchers can be found in the [CheatSheet](CheatSheet.md). For example, here's the `Ge` (greater than or equal) matcher: ``` using ::testing::Ge; ... EXPECT_CALL(turtle, Forward(Ge(100))); ``` This checks that the turtle will be told to go forward by at least 100 units. ## Cardinalities: How Many Times Will It Be Called? ## The first clause we can specify following an `EXPECT_CALL()` is `Times()`. We call its argument a **cardinality** as it tells _how many times_ the call should occur. It allows us to repeat an expectation many times without actually writing it as many times. More importantly, a cardinality can be "fuzzy", just like a matcher can be. This allows a user to express the intent of a test exactly. An interesting special case is when we say `Times(0)`. You may have guessed - it means that the function shouldn't be called with the given arguments at all, and Google Mock will report a Google Test failure whenever the function is (wrongfully) called. We've seen `AtLeast(n)` as an example of fuzzy cardinalities earlier. For the list of built-in cardinalities you can use, see the [CheatSheet](CheatSheet.md). The `Times()` clause can be omitted. **If you omit `Times()`, Google Mock will infer the cardinality for you.** The rules are easy to remember: * If **neither** `WillOnce()` **nor** `WillRepeatedly()` is in the `EXPECT_CALL()`, the inferred cardinality is `Times(1)`. * If there are `n WillOnce()`'s but **no** `WillRepeatedly()`, where `n` >= 1, the cardinality is `Times(n)`. * If there are `n WillOnce()`'s and **one** `WillRepeatedly()`, where `n` >= 0, the cardinality is `Times(AtLeast(n))`. **Quick quiz:** what do you think will happen if a function is expected to be called twice but actually called four times? ## Actions: What Should It Do? ## Remember that a mock object doesn't really have a working implementation? We as users have to tell it what to do when a method is invoked. This is easy in Google Mock. First, if the return type of a mock function is a built-in type or a pointer, the function has a **default action** (a `void` function will just return, a `bool` function will return `false`, and other functions will return 0). In addition, in C++ 11 and above, a mock function whose return type is default-constructible (i.e. has a default constructor) has a default action of returning a default-constructed value. If you don't say anything, this behavior will be used. Second, if a mock function doesn't have a default action, or the default action doesn't suit you, you can specify the action to be taken each time the expectation matches using a series of `WillOnce()` clauses followed by an optional `WillRepeatedly()`. For example, ``` using ::testing::Return; ... EXPECT_CALL(turtle, GetX()) .WillOnce(Return(100)) .WillOnce(Return(200)) .WillOnce(Return(300)); ``` This says that `turtle.GetX()` will be called _exactly three times_ (Google Mock inferred this from how many `WillOnce()` clauses we've written, since we didn't explicitly write `Times()`), and will return 100, 200, and 300 respectively. ``` using ::testing::Return; ... EXPECT_CALL(turtle, GetY()) .WillOnce(Return(100)) .WillOnce(Return(200)) .WillRepeatedly(Return(300)); ``` says that `turtle.GetY()` will be called _at least twice_ (Google Mock knows this as we've written two `WillOnce()` clauses and a `WillRepeatedly()` while having no explicit `Times()`), will return 100 the first time, 200 the second time, and 300 from the third time on. Of course, if you explicitly write a `Times()`, Google Mock will not try to infer the cardinality itself. What if the number you specified is larger than there are `WillOnce()` clauses? Well, after all `WillOnce()`s are used up, Google Mock will do the _default_ action for the function every time (unless, of course, you have a `WillRepeatedly()`.). What can we do inside `WillOnce()` besides `Return()`? You can return a reference using `ReturnRef(variable)`, or invoke a pre-defined function, among [others](CheatSheet.md#actions). **Important note:** The `EXPECT_CALL()` statement evaluates the action clause only once, even though the action may be performed many times. Therefore you must be careful about side effects. The following may not do what you want: ``` int n = 100; EXPECT_CALL(turtle, GetX()) .Times(4) .WillRepeatedly(Return(n++)); ``` Instead of returning 100, 101, 102, ..., consecutively, this mock function will always return 100 as `n++` is only evaluated once. Similarly, `Return(new Foo)` will create a new `Foo` object when the `EXPECT_CALL()` is executed, and will return the same pointer every time. If you want the side effect to happen every time, you need to define a custom action, which we'll teach in the [CookBook](CookBook.md). Time for another quiz! What do you think the following means? ``` using ::testing::Return; ... EXPECT_CALL(turtle, GetY()) .Times(4) .WillOnce(Return(100)); ``` Obviously `turtle.GetY()` is expected to be called four times. But if you think it will return 100 every time, think twice! Remember that one `WillOnce()` clause will be consumed each time the function is invoked and the default action will be taken afterwards. So the right answer is that `turtle.GetY()` will return 100 the first time, but **return 0 from the second time on**, as returning 0 is the default action for `int` functions. ## Using Multiple Expectations ## So far we've only shown examples where you have a single expectation. More realistically, you're going to specify expectations on multiple mock methods, which may be from multiple mock objects. By default, when a mock method is invoked, Google Mock will search the expectations in the **reverse order** they are defined, and stop when an active expectation that matches the arguments is found (you can think of it as "newer rules override older ones."). If the matching expectation cannot take any more calls, you will get an upper-bound-violated failure. Here's an example: ``` using ::testing::_; ... EXPECT_CALL(turtle, Forward(_)); // #1 EXPECT_CALL(turtle, Forward(10)) // #2 .Times(2); ``` If `Forward(10)` is called three times in a row, the third time it will be an error, as the last matching expectation (#2) has been saturated. If, however, the third `Forward(10)` call is replaced by `Forward(20)`, then it would be OK, as now #1 will be the matching expectation. **Side note:** Why does Google Mock search for a match in the _reverse_ order of the expectations? The reason is that this allows a user to set up the default expectations in a mock object's constructor or the test fixture's set-up phase and then customize the mock by writing more specific expectations in the test body. So, if you have two expectations on the same method, you want to put the one with more specific matchers **after** the other, or the more specific rule would be shadowed by the more general one that comes after it. ## Ordered vs Unordered Calls ## By default, an expectation can match a call even though an earlier expectation hasn't been satisfied. In other words, the calls don't have to occur in the order the expectations are specified. Sometimes, you may want all the expected calls to occur in a strict order. To say this in Google Mock is easy: ``` using ::testing::InSequence; ... TEST(FooTest, DrawsLineSegment) { ... { InSequence dummy; EXPECT_CALL(turtle, PenDown()); EXPECT_CALL(turtle, Forward(100)); EXPECT_CALL(turtle, PenUp()); } Foo(); } ``` By creating an object of type `InSequence`, all expectations in its scope are put into a _sequence_ and have to occur _sequentially_. Since we are just relying on the constructor and destructor of this object to do the actual work, its name is really irrelevant. In this example, we test that `Foo()` calls the three expected functions in the order as written. If a call is made out-of-order, it will be an error. (What if you care about the relative order of some of the calls, but not all of them? Can you specify an arbitrary partial order? The answer is ... yes! If you are impatient, the details can be found in the [CookBook](CookBook.md#expecting-partially-ordered-calls).) ## All Expectations Are Sticky (Unless Said Otherwise) ## Now let's do a quick quiz to see how well you can use this mock stuff already. How would you test that the turtle is asked to go to the origin _exactly twice_ (you want to ignore any other instructions it receives)? After you've come up with your answer, take a look at ours and compare notes (solve it yourself first - don't cheat!): ``` using ::testing::_; ... EXPECT_CALL(turtle, GoTo(_, _)) // #1 .Times(AnyNumber()); EXPECT_CALL(turtle, GoTo(0, 0)) // #2 .Times(2); ``` Suppose `turtle.GoTo(0, 0)` is called three times. In the third time, Google Mock will see that the arguments match expectation #2 (remember that we always pick the last matching expectation). Now, since we said that there should be only two such calls, Google Mock will report an error immediately. This is basically what we've told you in the "Using Multiple Expectations" section above. This example shows that **expectations in Google Mock are "sticky" by default**, in the sense that they remain active even after we have reached their invocation upper bounds. This is an important rule to remember, as it affects the meaning of the spec, and is **different** to how it's done in many other mocking frameworks (Why'd we do that? Because we think our rule makes the common cases easier to express and understand.). Simple? Let's see if you've really understood it: what does the following code say? ``` using ::testing::Return; ... for (int i = n; i > 0; i--) { EXPECT_CALL(turtle, GetX()) .WillOnce(Return(10*i)); } ``` If you think it says that `turtle.GetX()` will be called `n` times and will return 10, 20, 30, ..., consecutively, think twice! The problem is that, as we said, expectations are sticky. So, the second time `turtle.GetX()` is called, the last (latest) `EXPECT_CALL()` statement will match, and will immediately lead to an "upper bound exceeded" error - this piece of code is not very useful! One correct way of saying that `turtle.GetX()` will return 10, 20, 30, ..., is to explicitly say that the expectations are _not_ sticky. In other words, they should _retire_ as soon as they are saturated: ``` using ::testing::Return; ... for (int i = n; i > 0; i--) { EXPECT_CALL(turtle, GetX()) .WillOnce(Return(10*i)) .RetiresOnSaturation(); } ``` And, there's a better way to do it: in this case, we expect the calls to occur in a specific order, and we line up the actions to match the order. Since the order is important here, we should make it explicit using a sequence: ``` using ::testing::InSequence; using ::testing::Return; ... { InSequence s; for (int i = 1; i <= n; i++) { EXPECT_CALL(turtle, GetX()) .WillOnce(Return(10*i)) .RetiresOnSaturation(); } } ``` By the way, the other situation where an expectation may _not_ be sticky is when it's in a sequence - as soon as another expectation that comes after it in the sequence has been used, it automatically retires (and will never be used to match any call). ## Uninteresting Calls ## A mock object may have many methods, and not all of them are that interesting. For example, in some tests we may not care about how many times `GetX()` and `GetY()` get called. In Google Mock, if you are not interested in a method, just don't say anything about it. If a call to this method occurs, you'll see a warning in the test output, but it won't be a failure. # What Now? # Congratulations! You've learned enough about Google Mock to start using it. Now, you might want to join the [googlemock](http://groups.google.com/group/googlemock) discussion group and actually write some tests using Google Mock - it will be fun. Hey, it may even be addictive - you've been warned. Then, if you feel like increasing your mock quotient, you should move on to the [CookBook](CookBook.md). You can learn many advanced features of Google Mock there -- and advance your level of enjoyment and testing bliss. a id='n782' href='#n782'>782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121