FE_GET_PROPERTY/FE_SET_PROPERTY /* Reserved fields should be set to 0 */ struct dtv_property { __u32 cmd; union { __u32 data; struct { __u8 data[32]; __u32 len; __u32 reserved1[3]; void *reserved2; } buffer; } u; int result; } __attribute__ ((packed)); /* num of properties cannot exceed DTV_IOCTL_MAX_MSGS per ioctl */ #define DTV_IOCTL_MAX_MSGS 64 struct dtv_properties { __u32 num; struct dtv_property *props; };
FE_GET_PROPERTY DESCRIPTION This ioctl call returns one or more frontend properties. This call only requires read-only access to the device. SYNOPSIS int ioctl(int fd, int request = FE_GET_PROPERTY, dtv_properties ⋆props); PARAMETERS int fd File descriptor returned by a previous call to open(). int num Equals FE_GET_PROPERTY for this command. struct dtv_property *props Points to the location where the front-end property commands are stored. ERRORS EINVAL Invalid parameter(s) received or number of parameters out of the range. ENOMEM Out of memory. EFAULT Failure while copying data from/to userspace. EOPNOTSUPP Property type not supported.
FE_SET_PROPERTY DESCRIPTION This ioctl call sets one or more frontend properties. This call only requires read-only access to the device. SYNOPSIS int ioctl(int fd, int request = FE_SET_PROPERTY, dtv_properties ⋆props); PARAMETERS int fd File descriptor returned by a previous call to open(). int num Equals FE_SET_PROPERTY for this command. struct dtv_property *props Points to the location where the front-end property commands are stored. ERRORS EINVAL Invalid parameter(s) received or number of parameters out of the range. ENOMEM Out of memory. EFAULT Failure while copying data from/to userspace. EOPNOTSUPP Property type not supported.
Property types On FE_GET_PROPERTY/FE_SET_PROPERTY, the actual action is determined by the dtv_property cmd/data pairs. With one single ioctl, is possible to get/set up to 64 properties. The actual meaning of each property is described on the next sections. The available frontend property types are: #define DTV_UNDEFINED 0 #define DTV_TUNE 1 #define DTV_CLEAR 2 #define DTV_FREQUENCY 3 #define DTV_MODULATION 4 #define DTV_BANDWIDTH_HZ 5 #define DTV_INVERSION 6 #define DTV_DISEQC_MASTER 7 #define DTV_SYMBOL_RATE 8 #define DTV_INNER_FEC 9 #define DTV_VOLTAGE 10 #define DTV_TONE 11 #define DTV_PILOT 12 #define DTV_ROLLOFF 13 #define DTV_DISEQC_SLAVE_REPLY 14 #define DTV_FE_CAPABILITY_COUNT 15 #define DTV_FE_CAPABILITY 16 #define DTV_DELIVERY_SYSTEM 17 #define DTV_ISDBT_PARTIAL_RECEPTION 18 #define DTV_ISDBT_SOUND_BROADCASTING 19 #define DTV_ISDBT_SB_SUBCHANNEL_ID 20 #define DTV_ISDBT_SB_SEGMENT_IDX 21 #define DTV_ISDBT_SB_SEGMENT_COUNT 22 #define DTV_ISDBT_LAYERA_FEC 23 #define DTV_ISDBT_LAYERA_MODULATION 24 #define DTV_ISDBT_LAYERA_SEGMENT_COUNT 25 #define DTV_ISDBT_LAYERA_TIME_INTERLEAVING 26 #define DTV_ISDBT_LAYERB_FEC 27 #define DTV_ISDBT_LAYERB_MODULATION 28 #define DTV_ISDBT_LAYERB_SEGMENT_COUNT 29 #define DTV_ISDBT_LAYERB_TIME_INTERLEAVING 30 #define DTV_ISDBT_LAYERC_FEC 31 #define DTV_ISDBT_LAYERC_MODULATION 32 #define DTV_ISDBT_LAYERC_SEGMENT_COUNT 33 #define DTV_ISDBT_LAYERC_TIME_INTERLEAVING 34 #define DTV_API_VERSION 35 #define DTV_CODE_RATE_HP 36 #define DTV_CODE_RATE_LP 37 #define DTV_GUARD_INTERVAL 38 #define DTV_TRANSMISSION_MODE 39 #define DTV_HIERARCHY 40 #define DTV_ISDBT_LAYER_ENABLED 41 #define DTV_ISDBS_TS_ID 42
Parameters that are common to all Digital TV standards
<constant>DTV_FREQUENCY</constant> Central frequency of the channel, in HZ. Notes: 1)For ISDB-T, the channels are usually transmitted with an offset of 143kHz. E.g. a valid frequncy could be 474143 kHz. The stepping is bound to the bandwidth of the channel which is 6MHz. 2)As in ISDB-Tsb the channel consists of only one or three segments the frequency step is 429kHz, 3*429 respectively. As for ISDB-T the central frequency of the channel is expected.
<constant>DTV_BANDWIDTH_HZ</constant> Bandwidth for the channel, in HZ. Possible values: 1712000, 5000000, 6000000, 7000000, 8000000, 10000000. Notes: 1) For ISDB-T it should be always 6000000Hz (6MHz) 2) For ISDB-Tsb it can vary depending on the number of connected segments 3) Bandwidth doesn't apply for DVB-C transmissions, as the bandwidth for DVB-C depends on the symbol rate 4) Bandwidth in ISDB-T is fixed (6MHz) or can be easily derived from other parameters (DTV_ISDBT_SB_SEGMENT_IDX, DTV_ISDBT_SB_SEGMENT_COUNT). 5) DVB-T supports 6, 7 and 8MHz. 6) In addition, DVB-T2 supports 1.172, 5 and 10MHz.
<constant>DTV_DELIVERY_SYSTEM</constant> Specifies the type of Delivery system Possible values: typedef enum fe_delivery_system { SYS_UNDEFINED, SYS_DVBC_ANNEX_AC, SYS_DVBC_ANNEX_B, SYS_DVBT, SYS_DSS, SYS_DVBS, SYS_DVBS2, SYS_DVBH, SYS_ISDBT, SYS_ISDBS, SYS_ISDBC, SYS_ATSC, SYS_ATSCMH, SYS_DMBTH, SYS_CMMB, SYS_DAB, SYS_DVBT2, } fe_delivery_system_t;
<constant>DTV_TRANSMISSION_MODE</constant> Specifies the number of carriers used by the standard Possible values are: typedef enum fe_transmit_mode { TRANSMISSION_MODE_2K, TRANSMISSION_MODE_8K, TRANSMISSION_MODE_AUTO, TRANSMISSION_MODE_4K, TRANSMISSION_MODE_1K, TRANSMISSION_MODE_16K, TRANSMISSION_MODE_32K, } fe_transmit_mode_t; Notes: 1) ISDB-T supports three carrier/symbol-size: 8K, 4K, 2K. It is called 'mode' in the standard: Mode 1 is 2K, mode 2 is 4K, mode 3 is 8K 2) If DTV_TRANSMISSION_MODE is set the TRANSMISSION_MODE_AUTO the hardware will try to find the correct FFT-size (if capable) and will use TMCC to fill in the missing parameters. 3) DVB-T specifies 2K and 8K as valid sizes. 4) DVB-T2 specifies 1K, 2K, 4K, 8K, 16K and 32K.
<constant>DTV_GUARD_INTERVAL</constant> Possible values are: typedef enum fe_guard_interval { GUARD_INTERVAL_1_32, GUARD_INTERVAL_1_16, GUARD_INTERVAL_1_8, GUARD_INTERVAL_1_4, GUARD_INTERVAL_AUTO, GUARD_INTERVAL_1_128, GUARD_INTERVAL_19_128, GUARD_INTERVAL_19_256, } fe_guard_interval_t; Notes: 1) If DTV_GUARD_INTERVAL is set the GUARD_INTERVAL_AUTO the hardware will try to find the correct guard interval (if capable) and will use TMCC to fill in the missing parameters. 2) Intervals 1/128, 19/128 and 19/256 are used only for DVB-T2 at present
ISDB-T frontend This section describes shortly what are the possible parameters in the Linux DVB-API called "S2API" and now DVB API 5 in order to tune an ISDB-T/ISDB-Tsb demodulator: This ISDB-T/ISDB-Tsb API extension should reflect all information needed to tune any ISDB-T/ISDB-Tsb hardware. Of course it is possible that some very sophisticated devices won't need certain parameters to tune. The information given here should help application writers to know how to handle ISDB-T and ISDB-Tsb hardware using the Linux DVB-API. The details given here about ISDB-T and ISDB-Tsb are just enough to basically show the dependencies between the needed parameter values, but surely some information is left out. For more detailed information see the following documents: ARIB STD-B31 - "Transmission System for Digital Terrestrial Television Broadcasting" and ARIB TR-B14 - "Operational Guidelines for Digital Terrestrial Television Broadcasting". In order to read this document one has to have some knowledge the channel structure in ISDB-T and ISDB-Tsb. I.e. it has to be known to the reader that an ISDB-T channel consists of 13 segments, that it can have up to 3 layer sharing those segments, and things like that. Parameters used by ISDB-T and ISDB-Tsb.
ISDB-T only parameters
<constant>DTV_ISDBT_PARTIAL_RECEPTION</constant> If DTV_ISDBT_SOUND_BROADCASTING is '0' this bit-field represents whether the channel is in partial reception mode or not. If '1' DTV_ISDBT_LAYERA_* values are assigned to the center segment and DTV_ISDBT_LAYERA_SEGMENT_COUNT has to be '1'. If in addition DTV_ISDBT_SOUND_BROADCASTING is '1' DTV_ISDBT_PARTIAL_RECEPTION represents whether this ISDB-Tsb channel is consisting of one segment and layer or three segments and two layers. Possible values: 0, 1, -1 (AUTO)
<constant>DTV_ISDBT_SOUND_BROADCASTING</constant> This field represents whether the other DTV_ISDBT_*-parameters are referring to an ISDB-T and an ISDB-Tsb channel. (See also DTV_ISDBT_PARTIAL_RECEPTION). Possible values: 0, 1, -1 (AUTO)
<constant>DTV_ISDBT_SB_SUBCHANNEL_ID</constant> This field only applies if DTV_ISDBT_SOUND_BROADCASTING is '1'. (Note of the author: This might not be the correct description of the SUBCHANNEL-ID in all details, but it is my understanding of the technical background needed to program a device) An ISDB-Tsb channel (1 or 3 segments) can be broadcasted alone or in a set of connected ISDB-Tsb channels. In this set of channels every channel can be received independently. The number of connected ISDB-Tsb segment can vary, e.g. depending on the frequency spectrum bandwidth available. Example: Assume 8 ISDB-Tsb connected segments are broadcasted. The broadcaster has several possibilities to put those channels in the air: Assuming a normal 13-segment ISDB-T spectrum he can align the 8 segments from position 1-8 to 5-13 or anything in between. The underlying layer of segments are subchannels: each segment is consisting of several subchannels with a predefined IDs. A sub-channel is used to help the demodulator to synchronize on the channel. An ISDB-T channel is always centered over all sub-channels. As for the example above, in ISDB-Tsb it is no longer as simple as that. The DTV_ISDBT_SB_SUBCHANNEL_ID parameter is used to give the sub-channel ID of the segment to be demodulated. Possible values: 0 .. 41, -1 (AUTO)
<constant>DTV_ISDBT_SB_SEGMENT_IDX</constant> This field only applies if DTV_ISDBT_SOUND_BROADCASTING is '1'. DTV_ISDBT_SB_SEGMENT_IDX gives the index of the segment to be demodulated for an ISDB-Tsb channel where several of them are transmitted in the connected manner. Possible values: 0 .. DTV_ISDBT_SB_SEGMENT_COUNT - 1 Note: This value cannot be determined by an automatic channel search.
<constant>DTV_ISDBT_SB_SEGMENT_COUNT</constant> This field only applies if DTV_ISDBT_SOUND_BROADCASTING is '1'. DTV_ISDBT_SB_SEGMENT_COUNT gives the total count of connected ISDB-Tsb channels. Possible values: 1 .. 13 Note: This value cannot be determined by an automatic channel search.
Hierarchical layers ISDB-T channels can be coded hierarchically. As opposed to DVB-T in ISDB-T hierarchical layers can be decoded
/*
Copyright 2011, 2012, 2013 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <stdint.h>
#include "keyboard.h"
#include "matrix.h"
#include "keymap.h"
#include "host.h"
#include "led.h"
#include "keycode.h"
#include "timer.h"
#include "print.h"
#include "debug.h"
#include "command.h"
#include "util.h"
#include "sendchar.h"
#include "eeconfig.h"
#include "backlight.h"
#include "action_layer.h"
#ifdef BOOTMAGIC_ENABLE
#   include "bootmagic.h"
#else
#   include "magic.h"
#endif
#ifdef MOUSEKEY_ENABLE
#   include "mousekey.h"
#endif
#ifdef PS2_MOUSE_ENABLE
#   include "ps2_mouse.h"
#endif
#ifdef SERIAL_MOUSE_ENABLE
#   include "serial_mouse.h"
#endif
#ifdef ADB_MOUSE_ENABLE
#   include "adb.h"
#endif
#ifdef RGBLIGHT_ENABLE
#   include "rgblight.h"
#endif
#ifdef STENO_ENABLE
#   include "process_steno.h"
#endif
#ifdef FAUXCLICKY_ENABLE
#   include "fauxclicky.h"
#endif
#ifdef SERIAL_LINK_ENABLE
#   include "serial_link/system/serial_link.h"
#endif
#ifdef VISUALIZER_ENABLE
#   include "visualizer/visualizer.h"
#endif
#ifdef POINTING_DEVICE_ENABLE
#   include "pointing_device.h"
#endif
#ifdef MIDI_ENABLE
#   include "process_midi.h"
#endif
#ifdef HD44780_ENABLE
#   include "hd44780.h"
#endif
#ifdef QWIIC_ENABLE
#   include "qwiic.h"
#endif
#ifdef OLED_DRIVER_ENABLE
    #include "oled_driver.h"
#endif
#ifdef VELOCIKEY_ENABLE
  #include "velocikey.h"
#endif

#ifdef MATRIX_HAS_GHOST
extern const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS];
static matrix_row_t get_real_keys(uint8_t row, matrix_row_t rowdata){
    matrix_row_t out = 0;
    for (uint8_t col = 0; col < MATRIX_COLS; col++) {
        //read each key in the row data and check if the keymap defines it as a real key
        if (pgm_read_byte(&keymaps[0][row][col]) && (rowdata & (1<<col))){
            //this creates new row data, if a key is defined in the keymap, it will be set here
            out |= 1<<col;
        }
    }
    return out;
}

static inline bool popcount_more_than_one(matrix_row_t rowdata)
{
    rowdata &= rowdata-1; //if there are less than two bits (keys) set, rowdata will become zero
    return rowdata;
}

static inline bool has_ghost_in_row(uint8_t row, matrix_row_t rowdata)
{
    /* No ghost exists when less than 2 keys are down on the row.
    If there are "active" blanks in the matrix, the key can't be pressed by the user,
    there is no doubt as to which keys are really being pressed.
    The ghosts will be ignored, they are KC_NO.   */
    rowdata = get_real_keys(row, rowdata);
    if ((popcount_more_than_one(rowdata)) == 0){
        return false;
    }
    /* Ghost occurs when the row shares a column line with other row,
    and two columns are read on each row. Blanks in the matrix don't matter,
    so they are filtered out.
    If there are two or more real keys pressed and they match columns with
    at least two of another row's real keys, the row will be ignored. Keep in mind,
    we are checking one row at a time, not all of them at once.
    */
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        if (i != row && popcount_more_than_one(get_real_keys(i, matrix_get_row(i)) & rowdata)){
            return true;
        }
    }
    return false;
}

#endif

void disable_jtag(void) {
// To use PORTF disable JTAG with writing JTD bit twice within four cycles.
#if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega32U4__))
    MCUCR |= _BV(JTD);
    MCUCR |= _BV(JTD);
#endif
}

/** \brief matrix_setup
 *
 * FIXME: needs doc
 */
__attribute__ ((weak))
void matrix_setup(void) {
}

/** \brief keyboard_pre_init_user
 *
 * FIXME: needs doc
 */
__attribute__ ((weak))
void keyboard_pre_init_user(void) { }

/** \brief keyboard_pre_init_kb
 *
 * FIXME: needs doc
 */
__attribute__ ((weak))
void keyboard_pre_init_kb(void) {
  keyboard_pre_init_user();
}

/** \brief keyboard_post_init_user
 *
 * FIXME: needs doc
 */

__attribute__ ((weak))
void keyboard_post_init_user() {}

/** \brief keyboard_post_init_kb
 *
 * FIXME: needs doc
 */

__attribute__ ((weak))
void keyboard_post_init_kb(void) {
  keyboard_post_init_user();
}

/** \brief keyboard_setup
 *
 * FIXME: needs doc
 */
void keyboard_setup(void) {
    disable_jtag();
    matrix_setup();
    keyboard_pre_init_kb();
}

/** \brief is_keyboard_master
 *
 * FIXME: needs doc
 */
__attribute__((weak))
bool is_keyboard_master(void) {
    return true;
}

/** \brief keyboard_init
 *
 * FIXME: needs doc
 */
void keyboard_init(void) {
    timer_init();
    matrix_init();
#ifdef QWIIC_ENABLE
    qwiic_init();
#endif
#ifdef OLED_DRIVER_ENABLE
    oled_init(OLED_ROTATION_0);
#endif
#ifdef PS2_MOUSE_ENABLE
    ps2_mouse_init();
#endif
#ifdef SERIAL_MOUSE_ENABLE
    serial_mouse_init();
#endif
#ifdef ADB_MOUSE_ENABLE
    adb_mouse_init();
#endif
#ifdef BOOTMAGIC_ENABLE
    bootmagic();
#else
    magic();
#endif
#ifdef BACKLIGHT_ENABLE
    backlight_init();
#endif
#ifdef RGBLIGHT_ENABLE
    rgblight_init();
#endif
#ifdef STENO_ENABLE
    steno_init();
#endif
#ifdef FAUXCLICKY_ENABLE
    fauxclicky_init();
#endif
#ifdef POINTING_DEVICE_ENABLE
    pointing_device_init();
#endif
#if defined(NKRO_ENABLE) && defined(FORCE_NKRO)
    keymap_config.nkro = 1;
#endif
    keyboard_post_init_kb(); /* Always keep this last */
}

/** \brief Keyboard task: Do keyboard routine jobs
 *
 * Do routine keyboard jobs:
 *
 * * scan matrix
 * * handle mouse movements
 * * run visualizer code
 * * handle midi commands
 * * light LEDs
 *
 * This is repeatedly called as fast as possible.
 */
void keyboard_task(void)
{
    static matrix_row_t matrix_prev[MATRIX_ROWS];
    static uint8_t led_status = 0;
    matrix_row_t matrix_row = 0;
    matrix_row_t matrix_change = 0;
#ifdef QMK_KEYS_PER_SCAN
    uint8_t keys_processed = 0;
#endif

#if defined(OLED_DRIVER_ENABLE) && !defined(OLED_DISABLE_TIMEOUT)
    uint8_t ret = matrix_scan();
#else
    matrix_scan();
#endif

    if (is_keyboard_master()) {
        for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
            matrix_row = matrix_get_row(r);
            matrix_change = matrix_row ^ matrix_prev[r];
            if (matrix_change) {
#ifdef MATRIX_HAS_GHOST
                if (has_ghost_in_row(r, matrix_row)) { continue; }
#endif
                if (debug_matrix) matrix_print();
                for (uint8_t c = 0; c < MATRIX_COLS; c++) {
                    if (matrix_change & ((matrix_row_t)1<<c)) {
                        action_exec((keyevent_t){
                            .key = (keypos_t){ .row = r, .col = c },
                            .pressed = (matrix_row & ((matrix_row_t)1<<c)),
                            .time = (timer_read() | 1) /* time should not be 0 */
                        });
                        // record a processed key
                        matrix_prev[r] ^= ((matrix_row_t)1<<c);
#ifdef QMK_KEYS_PER_SCAN
                        // only jump out if we have processed "enough" keys.
                        if (++keys_processed >= QMK_KEYS_PER_SCAN)
#endif
                        // process a key per task call
                        goto MATRIX_LOOP_END;
                    }
                }
            }
        }
    }
    // call with pseudo tick event when no real key event.
#ifdef QMK_KEYS_PER_SCAN
    // we can get here with some keys processed now.
    if (!keys_processed)
#endif
    action_exec(TICK);

MATRIX_LOOP_END:

#ifdef QWIIC_ENABLE
    qwiic_task();
#endif

#ifdef OLED_DRIVER_ENABLE
    oled_task();
#ifndef OLED_DISABLE_TIMEOUT
    // Wake up oled if user is using those fabulous keys!
    if (ret)
        oled_on();
#endif
#endif

#ifdef MOUSEKEY_ENABLE
    // mousekey repeat & acceleration
    mousekey_task();
#endif

#ifdef PS2_MOUSE_ENABLE
    ps2_mouse_task();
#endif

#ifdef SERIAL_MOUSE_ENABLE
    serial_mouse_task();
#endif

#ifdef ADB_MOUSE_ENABLE
    adb_mouse_task();
#endif

#ifdef SERIAL_LINK_ENABLE
	serial_link_update();
#endif

#ifdef VISUALIZER_ENABLE
    visualizer_update(default_layer_state, layer_state, visualizer_get_mods(), host_keyboard_leds());
#endif

#ifdef POINTING_DEVICE_ENABLE
    pointing_device_task();
#endif

#ifdef MIDI_ENABLE
    midi_task();
#endif

#ifdef VELOCIKEY_ENABLE
    if (velocikey_enabled()) { velocikey_decelerate();  }
#endif

    // update LED
    if (led_status != host_keyboard_leds()) {
        led_status = host_keyboard_leds();
        keyboard_set_leds(led_status);
    }
}

/** \brief keyboard set leds
 *
 * FIXME: needs doc
 */
void keyboard_set_leds(uint8_t leds)
{
    if (debug_keyboard) { debug("keyboard_set_led: "); debug_hex8(leds); debug("\n"); }
    led_set(leds);
}