/* tests/test_smart_ptr.cpp -- binding classes with custom reference counting, implicit conversions between types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #if defined(_MSC_VER) && _MSC_VER < 1910 # pragma warning(disable: 4702) // unreachable code in system header #endif #include "pybind11_tests.h" #include "object.h" // Make pybind aware of the ref-counted wrapper type (s): // ref is a wrapper for 'Object' which uses intrusive reference counting // It is always possible to construct a ref from an Object* pointer without // possible inconsistencies, hence the 'true' argument at the end. PYBIND11_DECLARE_HOLDER_TYPE(T, ref, true); // Make pybind11 aware of the non-standard getter member function namespace pybind11 { namespace detail { template struct holder_helper> { static const T *get(const ref &p) { return p.get_ptr(); } }; } // namespace detail } // namespace pybind11 // The following is not required anymore for std::shared_ptr, but it should compile without error: PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr); // This is just a wrapper around unique_ptr, but with extra fields to deliberately bloat up the // holder size to trigger the non-simple-layout internal instance layout for single inheritance with // large holder type: template class huge_unique_ptr { std::unique_ptr ptr; uint64_t padding[10]; public: huge_unique_ptr(T *p) : ptr(p) {}; T *get() { return ptr.get(); } }; PYBIND11_DECLARE_HOLDER_TYPE(T, huge_unique_ptr); // Simple custom holder that works like unique_ptr template class custom_unique_ptr { std::unique_ptr impl; public: custom_unique_ptr(T* p) : impl(p) { } T* get() const { return impl.get(); } T* release_ptr() { return impl.release(); } }; PYBIND11_DECLARE_HOLDER_TYPE(T, custom_unique_ptr); // Simple custom holder that works like shared_ptr and has operator& overload // To obtain address of an instance of this holder pybind should use std::addressof // Attempt to get address via operator& may leads to segmentation fault template class shared_ptr_with_addressof_operator { std::shared_ptr impl; public: shared_ptr_with_addressof_operator( ) = default; shared_ptr_with_addressof_operator(T* p) : impl(p) { } T* get() const { return impl.get(); } T** operator&() { throw std::logic_error("Call of overloaded operator& is not expected"); } }; PYBIND11_DECLARE_HOLDER_TYPE(T, shared_ptr_with_addressof_operator); // Simple custom holder that works like unique_ptr and has operator& overload // To obtain address of an instance of this holder pybind should use std::addressof // Attempt to get address via operator& may leads to segmentation fault template class unique_ptr_with_addressof_operator { std::unique_ptr impl; public: unique_ptr_with_addressof_operator() = default; unique_ptr_with_addressof_operator(T* p) : impl(p) { } T* get() const { return impl.get(); } T* release_ptr() { return impl.release(); } T** operator&() { throw std::logic_error("Call of overloaded operator& is not expected"); } }; PYBIND11_DECLARE_HOLDER_TYPE(T, unique_ptr_with_addressof_operator); TEST_SUBMODULE(smart_ptr, m) { // test_smart_ptr // Object implementation in `object.h` py::class_> obj(m, "Object"); obj.def("getRefCount", &Object::getRefCount); // Custom object with builtin reference counting (see 'object.h' for the implementation) class MyObject1 : public Object { public: MyObject1(int value) : value(value) { print_created(this, toString()); } std::string toString() const override { return "MyObject1[" + std::to_string(value) + "]"; } protected: ~MyObject1() override { print_destroyed(this); } private: int value; }; py::class_>(m, "MyObject1", obj) .def(py::init()); py::implicitly_convertible(); m.def("make_object_1", []() -> Object * { return new MyObject1(1); }); m.def("make_object_2", []() -> ref { return new MyObject1(2); }); m.def("make_myobject1_1", []() -> MyObject1 * { return new MyObject1(4); }); m.def("make_myobject1_2", []() -> ref { return new MyObject1(5); }); m.def("print_object_1", [](const Object *obj) { py::print(obj->toString()); }); m.def("print_object_2", [](ref obj) { py::print(obj->toString()); }); m.def("print_object_3", [](const ref &obj) { py::print(obj->toString()); }); m.def("print_object_4", [](const ref *obj) { py::print((*obj)->toString()); }); m.def("print_myobject1_1", [](const MyObject1 *obj) { py::print(obj->toString()); }); m.def("print_myobject1_2", [](ref obj) { py::print(obj->toString()); }); m.def("print_myobject1_3", [](const ref &obj) { py::print(obj->toString()); }); m.def("print_myobject1_4", [](const ref *obj) { py::print((*obj)->toString()); }); // Expose constructor stats for the ref type m.def("cstats_ref", &ConstructorStats::get); // Object managed by a std::shared_ptr<> class MyObject2 { public: MyObject2(const MyObject2 &) = default; MyObject2(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject2[" + std::to_string(value) + "]"; } virtual ~MyObject2() { print_destroyed(this); } private: int value; }; py::class_>(m, "MyObject2") .def(py::init()); m.def("make_myobject2_1", []() { return new MyObject2(6); }); m.def("make_myobject2_2", []() { return std::make_shared(7); }); m.def("print_myobject2_1", [](const MyObject2 *obj) { py::print(obj->toString()); }); m.def("print_myobject2_2", [](std::shared_ptr obj) { py::print(obj->toString()); }); m.def("print_myobject2_3", [](const std::shared_ptr &obj) { py::print(obj->toString()); }); m.def("print_myobject2_4", [](const std::shared_ptr *obj) { py::print((*obj)->toString()); }); // Object managed by a std::shared_ptr<>, additionally derives from std::enable_shared_from_this<> class MyObject3 : public std::enable_shared_from_this { public: MyObject3(const MyObject3 &) = default; MyObject3(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject3[" + std::to_string(value) + "]"; } virtual ~MyObject3() { print_destroyed(this); } private: int value; }; py::class_>(m, "MyObject3") .def(py::init()); m.def("make_myobject3_1", []() { return new MyObject3(8); }); m.def("make_myobject3_2", []() { return std::make_shared(9); }); m.def("print_myobject3_1", [](const MyObject3 *obj) { py::print(obj->toString()); }); m.def("print_myobject3_2", [](std::shared_ptr obj) { py::print(obj->toString()); }); m.def("print_myobject3_3", [](const std::shared_ptr &obj) { py::print(obj->toString()); }); m.def("print_myobject3_4", [](const std::shared_ptr *obj) { py::print((*obj)->toString()); }); // test_smart_ptr_refcounting m.def("test_object1_refcounting", []() { ref o = new MyObject1(0); bool good = o->getRefCount() == 1; py::object o2 = py::cast(o, py::return_value_policy::reference); // always request (partial) ownership for objects with intrusive // reference counting even when using the 'reference' RVP good &= o->getRefCount() == 2; return good; }); // test_unique_nodelete // Object with a private destructor class MyObject4 { public: MyObject4(int value) : value{value} { print_created(this); } int value; private: ~MyObject4() { print_destroyed(this); }
/*
             LUFA Library
     Copyright (C) Dean Camera, 2017.

  dean [at] fourwalledcubicle [dot] com
           www.lufa-lib.org
*/

/*
  Copyright 2017  Dean Camera (dean [at] fourwalledcubicle [dot] com)

  Permission to use, copy, modify, distribute, and sell this
  software and its documentation for any purpose is hereby granted
  without fee, provided that the above copyright notice appear in
  all copies and that both that the copyright notice and this
  permission notice and warranty disclaimer appear in supporting
  documentation, and that the name of the author not be used in
  advertising or publicity pertaining to distribution of the
  software without specific, written prior permission.

  The author disclaims all warranties with regard to this
  software, including all implied warranties of merchantability
  and fitness.  In no event shall the author be liable for any
  special, indirect or consequential damages or any damages
  whatsoever resulting from loss of use, data or profits, whether
  in an action of contract, negligence or other tortious action,
  arising out of or in connection with the use or performance of
  this software.
*/

/** \file
 *
 *  Header file for XPROGTarget.c.
 */

#ifndef _XPROG_TARGET_
#define _XPROG_TARGET_

	/* Includes: */
		#include <avr/io.h>
		#include <avr/interrupt.h>
		#include <stdbool.h>

		#include <LUFA/Common/Common.h>

		#include "../V2Protocol.h"
		#include "XPROGProtocol.h"
		#include "Config/AppConfig.h"

	/* Preprocessor Checks: */
		#if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
			#undef ENABLE_ISP_PROTOCOL

			#if !defined(ENABLE_XPROG_PROTOCOL)
				#define ENABLE_XPROG_PROTOCOL
			#endif
		#endif

		/** Serial carrier TPI/PDI speed in Hz, when hardware TPI/PDI mode is used. */
		#define XPROG_HARDWARE_SPEED       2000000

		/** Total number of bits in a single USART frame. */
		#define BITS_IN_USART_FRAME        12

 		/** \name PDI Related Constants
 		 * @{
 		 */
		#define PDI_CMD_LDS(AddressSize, DataSize)  (0x00 | (  AddressSize << 2) | DataSize)
		#define PDI_CMD_LD(PointerAccess, DataSize) (0x20 | (PointerAccess << 2) | DataSize)
		#define PDI_CMD_STS(AddressSize, DataSize)  (0x40 | (  AddressSize << 2) | DataSize)
		#define PDI_CMD_ST(PointerAccess, DataSize) (0x60 | (PointerAccess << 2) | DataSize)
		#define PDI_CMD_LDCS(PDIReg)                (0x80 | PDIReg)
		#define PDI_CMD_REPEAT(DataSize)            (0xA0 | DataSize)
		#define PDI_CMD_STCS(PDIReg)                (0xC0 | PDIReg)
		#define PDI_CMD_KEY                         0xE0

		#define PDI_REG_STATUS             0
		#define PDI_REG_RESET              1
		#define PDI_REG_CTRL               2

		#define PDI_STATUS_NVM             (1 << 1)

		#define PDI_RESET_KEY              0x59
		#define PDI_NVMENABLE_KEY          (uint8_t[]){0x12, 0x89, 0xAB, 0x45, 0xCD, 0xD8, 0x88, 0xFF}

		#define PDI_DATASIZE_1BYTE         0
		#define PDI_DATASIZE_2BYTES        1
		#define PDI_DATASIZE_3BYTES        2
		#define PDI_DATASIZE_4BYTES        3

		#define PDI_POINTER_INDIRECT       0
		#define PDI_POINTER_INDIRECT_PI    1
		#define PDI_POINTER_DIRECT         2
 		/** @} */

 		/** \name TPI Related Constants
 		 * @{
 		 */
 		#define TPI_CMD_SLD(PointerAccess) (0x20 | PointerAccess)
		#define TPI_CMD_SST(PointerAccess) (0x60 | PointerAccess)
		#define TPI_CMD_SSTPR              0x68
		#define TPI_CMD_SIN(Address)       (0x10 | ((Address & 0x30) << 1) | (Address & 0x0F))
		#define TPI_CMD_SOUT(Address)      (0x90 | ((Address & 0x30) << 1) | (Address & 0x0F))
		#define TPI_CMD_SLDCS(TPIReg)      (0x80 | TPIReg)
		#define TPI_CMD_SSTCS(TPIReg)      (0xC0 | TPIReg)
		#define TPI_CMD_SKEY               0xE0

		#define TPI_REG_STATUS             0x00
		#define TPI_REG_CTRL               0x02
		#define TPI_REG_ID                 0x0F

		#define TPI_STATUS_NVM             (1 << 1)

		#define TPI_NVMENABLE_KEY          (uint8_t[]){0x12, 0x89, 0xAB, 0x45, 0xCD, 0xD8, 0x88, 0xFF}

		#define TPI_POINTER_INDIRECT       0
		#define TPI_POINTER_INDIRECT_PI    4
 		/** @} */

	/* Function Prototypes: */
		void    XPROGTarget_EnableTargetPDI(void);
		void    XPROGTarget_EnableTargetTPI(void);
		void    XPROGTarget_DisableTargetPDI(void);
		void    XPROGTarget_DisableTargetTPI(void);
		void    XPROGTarget_SendByte(const uint8_t Byte);
		uint8_t XPROGTarget_ReceiveByte(void);
		void    XPROGTarget_SendIdle(void);
		bool    XPROGTarget_WaitWhileNVMBusBusy(void);

		#if (defined(INCLUDE_FROM_XPROGTARGET_C) && defined(ENABLE_XPROG_PROTOCOL))
			static void XPROGTarget_SetTxMode(void);
			static void XPROGTarget_SetRxMode(void);
		#endif

#endif