#define CONCAT_I(a, b) a ## b #define CONCAT(a, b) CONCAT_I(a, b) #define pixel_t CONCAT(uint, CONCAT(BPP, _t)) #ifdef GENERIC #define NAME generic #else #define NAME BPP #endif static void CONCAT(send_hextile_tile_, NAME)(VncState *vs, int x, int y, int w, int h, uint32_t *last_bg32, uint32_t *last_fg32, int *has_bg, int *has_fg) { char *row = (vs->ds->data + y * vs->ds->linesize + x * vs->depth); pixel_t *irow = (pixel_t *)row; int j, i; pixel_t *last_bg = (pixel_t *)last_bg32; pixel_t *last_fg = (pixel_t *)last_fg32; pixel_t bg = 0; pixel_t fg = 0; int n_colors = 0; int bg_count = 0; int fg_count = 0; int flags = 0; uint8_t data[(sizeof(pixel_t) + 2) * 16 * 16]; int n_data = 0; int n_subtiles = 0; for (j = 0; j < h; j++) { for (i = 0; i < w; i++) { switch (n_colors) { case 0: bg = irow[i]; n_colors = 1; break; case 1: if (irow[i] != bg) { fg = irow[i]; n_colors = 2; } break; case 2: if (irow[i] != bg && irow[i] != fg) { n_colors = 3; } else { if (irow[i] == bg) bg_count++; else if (irow[i] == fg) fg_count++; } break; default: break; } } if (n_colors > 2) break; irow += vs->ds->linesize / sizeof(pixel_t); } if (n_colors > 1 && fg_count > bg_count) { pixel_t tmp = fg; fg = bg; bg = tmp; } if (!*has_bg || *last_bg != bg) { flags |= 0x02; *has_bg = 1; *last_bg = bg; } if (!*has_fg || *last_fg != fg) { flags |= 0x04; *has_fg = 1; *last_fg = fg; } switch (n_colors) { case 1: n_data = 0; break; case 2: flags |= 0x08; irow = (pixel_t *)row; for (j = 0; j < h; j++) { int min_x = -1; for (i = 0; i < w; i++) { if (irow[i] == fg) { if (min_x == -1) min_x = i; } else if (min_x != -1) { hextile_enc_cord(data + n_data, min_x, j, i - min_x, 1); n_data += 2; n_subtiles++; min_x = -1; } } if (min_x != -1) { hextile_enc_cord(data + n_data, min_x, j, i - min_x, 1); n_data += 2; n_subtiles++; } irow += vs->ds->linesize / sizeof(pixel_t); } break; case 3: flags |= 0x18; irow = (pixel_t *)row; if (!*has_bg || *last_bg != bg) flags |= 0x02; for (j = 0; j < h; j++) { int has_color = 0; int min_x = -1; pixel_t color; for (i = 0; i < w; i++) { if (!has_color) { if (irow[i] == bg) continue; color = irow[i]; min_x = i; has_color = 1; } else if (irow[i] != color) { has_color = 0; #ifdef GENERIC vnc_convert_pixel(vs, data + n_data, color); n_data += vs->pix_bpp; #else memcpy(data + n_data, &color, sizeof(color)); n_data += sizeof(pixel_t); #endif hextile_enc_cord(data + n_data, min_x, j, i - min_x, 1); n_data += 2; n_subtiles++; min_x = -1; if (irow[i] != bg) { color = irow[i]; min_x = i; has_color = 1; } } } if (has_color) { #ifdef GENERIC vnc_convert_pixel(vs, data + n_data, color); n_data += vs->pix_bpp; #else memcpy(data + n_data, &color, sizeof(color)); n_data += sizeof(pixel_t); #endif hextile_enc_cord(data + n_data, min_x, j, i - min_x, 1); n_data += 2; n_subtiles++; } irow += vs->ds->linesize / sizeof(pixel_t); } /* A SubrectsColoured subtile invalidates the foreground color */ *has_fg = 0; if (n_data > (w * h * sizeof(pixel_t))) { n_colors = 4; flags = 0x01; *has_bg = 0; /* we really don't have to invalidate either the bg or fg but we've lost the old values. oh well. */ } default: break; } if (n_colors > 3) { flags = 0x01; *has_fg = 0; *has_bg = 0; n_colors = 4; } vnc_write_u8(vs, flags); if (n_colors < 4) { if (flags & 0x02) vs->write_pixels(vs, last_bg, sizeof(pixel_t)); if (flags & 0x04) vs->write_pixels(vs, last_fg, sizeof(pixel_t)); if (n_subtiles) { vnc_write_u8(vs, n_subtiles); vnc_write(vs, data, n_data); } } else { for (j = 0; j < h; j++) { vs->write_pixels(vs, row, w * vs->depth); row += vs->ds->linesize; } } } #undef NAME #undef pixel_t #undef CONCAT_I #undef CONCAT ef='#n17'>17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
LUFA Library
Copyright (C) Dean Camera, 2017.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the AudioInputHost demo. This file contains the main tasks of
* the demo and is responsible for the initial application hardware configuration.
*/
#include "AudioInputHost.h"
/** Main program entry point. This routine configures the hardware required by the application, then
* enters a loop to run the application tasks in sequence.
*/
int main(void)
{
SetupHardware();
puts_P(PSTR(ESC_FG_CYAN "Audio Input Host Demo running.\r\n" ESC_FG_WHITE));
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
GlobalInterruptEnable();
for (;;)
{
USB_USBTask();
}
}
/** Configures the board hardware and chip peripherals for the demo's functionality. */
void SetupHardware(void)
{
#if (ARCH == ARCH_AVR8)
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
#endif
/* Hardware Initialization */
Serial_Init(9600, false);
LEDs_Init();
USB_Init();
/* Create a stdio stream for the serial port for stdin and stdout */
Serial_CreateStream(NULL);
}
/** Event handler for the USB_DeviceAttached event. This indicates that a device has been attached to the host, and
* starts the library USB task to begin the enumeration and USB management process.
*/
void EVENT_USB_Host_DeviceAttached(void)
{
puts_P(PSTR(ESC_FG_GREEN "Device Attached.\r\n" ESC_FG_WHITE));
LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
}
/** Event handler for the USB_DeviceUnattached event. This indicates that a device has been removed from the host, and
* stops the library USB task management process.
*/
void EVENT_USB_Host_DeviceUnattached(void)
{
puts_P(PSTR(ESC_FG_GREEN "Device Unattached.\r\n" ESC_FG_WHITE));
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
}
/** Event handler for the USB_DeviceEnumerationComplete event. This indicates that a device has been successfully
* enumerated by the host and is now ready to be used by the application.
*/
void EVENT_USB_Host_DeviceEnumerationComplete(void)
{
puts_P(PSTR("Getting Config Data.\r\n"));
uint8_t ErrorCode;
/* Get and process the configuration descriptor data */
if ((ErrorCode = ProcessConfigurationDescriptor()) != SuccessfulConfigRead)
{
if (ErrorCode == ControlError)
puts_P(PSTR(ESC_FG_RED "Control Error (Get Configuration).\r\n"));
else
puts_P(PSTR(ESC_FG_RED "Invalid Device.\r\n"));
printf_P(PSTR(" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
return;
}
/* Set the device configuration to the first configuration (rarely do devices use multiple configurations) */
if ((ErrorCode = USB_Host_SetDeviceConfiguration(1)) != HOST_SENDCONTROL_Successful)
{
printf_P(PSTR(ESC_FG_RED "Control Error (Set Configuration).\r\n"
" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
return;
}
if ((ErrorCode = USB_Host_SetInterfaceAltSetting(StreamingInterfaceIndex,
StreamingInterfaceAltSetting)) != HOST_SENDCONTROL_Successful)
{
printf_P(PSTR(ESC_FG_RED "Could not set alternative streaming interface setting.\r\n"
" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
USB_Host_SetDeviceConfiguration(0);
return;
}
USB_ControlRequest = (USB_Request_Header_t)
{
.bmRequestType = (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_ENDPOINT),
.bRequest = AUDIO_REQ_SetCurrent,
.wValue = (AUDIO_EPCONTROL_SamplingFreq << 8),
.wIndex = StreamingEndpointAddress,
.wLength = sizeof(USB_Audio_SampleFreq_t),
};
USB_Audio_SampleFreq_t SampleRate = AUDIO_SAMPLE_FREQ(48000);
/* Select the control pipe for the request transfer */
Pipe_SelectPipe(PIPE_CONTROLPIPE);
/* Set the sample rate on the streaming interface endpoint */
if ((ErrorCode = USB_Host_SendControlRequest(&SampleRate)) != HOST_SENDCONTROL_Successful)
{
printf_P(PSTR(ESC_FG_RED "Could not set requested Audio sample rate.\r\n"
" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
USB_Host_SetDeviceConfiguration(0);
return;
}
/* Sample reload timer initialization */
TIMSK0 = (1 << OCIE0A);
OCR0A = ((F_CPU / 8 / 48000) - 1);
TCCR0A = (1 << WGM01); // CTC mode
TCCR0B = (1 << CS01); // Fcpu/8 speed
/* Set speaker as output */
DDRC |= (1 << 6);
/* PWM speaker timer initialization */
TCCR3A = ((1 << WGM30) | (1 << COM3A1) | (1 << COM3A0)); // Set on match, clear on TOP
TCCR3B = ((1 << WGM32) | (1 << CS30)); // Fast 8-Bit PWM, F_CPU speed
puts_P(PSTR("Microphone Enumerated.\r\n"));
LEDs_SetAllLEDs(LEDMASK_USB_READY);
}
/** Event handler for the USB_HostError event. This indicates that a hardware error occurred while in host mode. */
void EVENT_USB_Host_HostError(const uint8_t ErrorCode)
{
USB_Disable();
printf_P(PSTR(ESC_FG_RED "Host Mode Error\r\n"
" -- Error Code %d\r\n" ESC_FG_WHITE), ErrorCode);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
for(;;);
}
/** Event handler for the USB_DeviceEnumerationFailed event. This indicates that a problem occurred while
* enumerating an attached USB device.
*/
void EVENT_USB_Host_DeviceEnumerationFailed(const uint8_t ErrorCode,
const uint8_t SubErrorCode)
{
printf_P(PSTR(ESC_FG_RED "Dev Enum Error\r\n"
" -- Error Code %d\r\n"
" -- Sub Error Code %d\r\n"
" -- In State %d\r\n" ESC_FG_WHITE), ErrorCode, SubErrorCode, USB_HostState);
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
}
/** ISR to handle the reloading of the PWM timer with the next sample. */
ISR(TIMER0_COMPA_vect, ISR_BLOCK)
{
uint8_t PrevPipe = Pipe_GetCurrentPipe();
Pipe_SelectPipe(AUDIO_DATA_IN_PIPE);
Pipe_Unfreeze();
/* Check if the current pipe can be read from (contains a packet) and the device is sending data */
if (Pipe_IsINReceived())
{
/* Retrieve the signed 16-bit audio sample, convert to 8-bit */
int8_t Sample_8Bit = (Pipe_Read_16_LE() >> 8);
/* Check to see if the bank is now empty */
if (!(Pipe_IsReadWriteAllowed()))
{
/* Acknowledge the packet, clear the bank ready for the next packet */
Pipe_ClearIN();
}
/* Load the sample into the PWM timer channel */
OCR3A = (Sample_8Bit ^ (1 << 7));
uint8_t LEDMask = LEDS_NO_LEDS;
/* Turn on LEDs as the sample amplitude increases */
if (Sample_8Bit > 16)
LEDMask = (LEDS_LED1 | LEDS_LED2 | LEDS_LED3 | LEDS_LED4);
else if (Sample_8Bit > 8)
LEDMask = (LEDS_LED1 | LEDS_LED2 | LEDS_LED3);
else if (Sample_8Bit > 4)
LEDMask = (LEDS_LED1 | LEDS_LED2);
else if (Sample_8Bit > 2)
LEDMask = (LEDS_LED1);
LEDs_SetAllLEDs(LEDMask);
}
Pipe_Freeze();
Pipe_SelectPipe(PrevPipe);
}