/* LUFA Library Copyright (C) Dean Camera, 2017. dean [at] fourwalledcubicle [dot] com www.lufa-lib.org */ /* Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com) Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the name of the author not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The author disclaims all warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall the author be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. */ /** \file * * ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices. */ #include "ISPProtocol.h" #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__) /** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on * the attached device, returning success or failure back to the host. */ void ISPProtocol_EnterISPMode(void) { struct { uint8_t TimeoutMS; uint8_t PinStabDelayMS; uint8_t ExecutionDelayMS; uint8_t SynchLoops; uint8_t ByteDelay; uint8_t PollValue; uint8_t PollIndex; uint8_t EnterProgBytes[4]; } Enter_ISP_Params; Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ResponseStatus = STATUS_CMD_FAILED; CurrentAddress = 0; /* Perform execution delay, initialize SPI bus */ ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS); ISPTarget_EnableTargetISP(); ISPTarget_ChangeTargetResetLine(true); ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); /* Continuously attempt to synchronize with the target until either the number of attempts specified * by the host has exceeded, or the the device sends back the expected response values */ while (Enter_ISP_Params.SynchLoops-- && TimeoutTicksRemaining) { uint8_t ResponseBytes[4]; for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++) { ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay); ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]); } /* Check if polling disabled, or if the polled value matches the expected value */ if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue)) { ResponseStatus = STATUS_CMD_OK; break; } else { ISPTarget_ChangeTargetResetLine(false); ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); ISPTarget_ChangeTargetResetLine(true); ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS); } } Endpoint_Write_8(CMD_ENTER_PROGMODE_ISP); Endpoint_Write_8(ResponseStatus); Endpoint_ClearIN(); } /** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */ void ISPProtocol_LeaveISPMode(void) { struct { uint8_t PreDelayMS; uint8_t PostDelayMS; } Leave_ISP_Params; Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */ ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS); ISPTarget_ChangeTargetResetLine(false); ISPTarget_DisableTargetISP(); ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS); Endpoint_Write_8(CMD_LEAVE_PROGMODE_ISP); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_ClearIN(); } /** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes, * words or pages of data to the attached device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_ProgramMemory(uint8_t V2Command) { struct { uint16_t BytesToWrite; uint8_t ProgrammingMode; uint8_t DelayMS; uint8_t ProgrammingCommands[3]; uint8_t PollValue1; uint8_t PollValue2; uint8_t ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the } Write_Memory_Params; // whole page and ACK the packet as fast as possible to prevent it from aborting Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)), NULL); Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite); if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData)) { Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_FAILED); Endpoint_ClearIN(); return; } Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NULL); // The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need // to catch this and discard it before continuing on with packet processing to prevent communication issues if (((sizeof(uint8_t) + sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)) + Write_Memory_Params.BytesToWrite) % AVRISP_DATA_EPSIZE == 0) { Endpoint_ClearOUT(); Endpoint_WaitUntilReady(); } Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ProgrammingStatus = STATUS_CMD_OK; uint8_t PollValue = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 : Write_Memory_Params.PollValue2; uint16_t PollAddress = 0; uint8_t* NextWriteByte = Write_Memory_Params.ProgData; uint16_t PageStartAddress = (CurrentAddress & 0xFFFF); for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++) { uint8_t ByteToWrite = *(NextWriteByte++); uint8_t ProgrammingMode = Write_Memory_Params.ProgrammingMode; /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */ if (MustLoadExtendedAddress) { ISPTarget_LoadExtendedAddress(); MustLoadExtendedAddress = false; } ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]); ISPTarget_SendByte(CurrentAddress >> 8); ISPTarget_SendByte(CurrentAddress & 0xFF); ISPTarget_SendByte(ByteToWrite); /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high * or low byte at the current word address */ if (V2Command == CMD_PROGRAM_FLASH_ISP) Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK; /* Check to see if we have a valid polling address */ if (!(PollAddress) && (ByteToWrite != PollValue)) { if ((CurrentByte & 0x01) && (V2Command == CMD_PROGRAM_FLASH_ISP)) Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK; else Write_Memory_Params.ProgrammingCommands[2] &= ~READ_WRITE_HIGH_BYTE_MASK; PollAddress = (CurrentAddress & 0xFFFF); } /* If in word programming mode, commit the byte to the target's memory */ if (!(ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK)) { /* If the current polling address is invalid, switch to timed delay write completion mode */ if (!(PollAddress) && !(ProgrammingMode & PROG_MODE_WORD_READYBUSY_MASK)) ProgrammingMode = (ProgrammingMode & ~PROG_MODE_WORD_VALUE_MASK) | PROG_MODE_WORD_TIMEDELAY_MASK; ProgrammingStatus = ISPTarget_WaitForProgComplete(ProgrammingMode, PollAddress, PollValue, Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]); /* Abort the programming loop early if the byte/word programming failed */ if (ProgrammingStatus != STATUS_CMD_OK) break; /* Must reset the polling address afterwards, so it is not erroneously used for the next byte */ PollAddress = 0; } /* EEPROM just increments the address each byte, flash needs to increment on each word and * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended * address boundary has been crossed during FLASH memory programming */ if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP)) { CurrentAddress++; if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF)) MustLoadExtendedAddress = true; } } /* If the current page must be committed, send the PROGRAM PAGE command to the target */ if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK) { ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]); ISPTarget_SendByte(PageStartAddress >> 8); ISPTarget_SendByte(PageStartAddress & 0xFF); ISPTarget_SendByte(0x00); /* Check if polling is enabled and possible, if not switch to timed delay mode */ if ((Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_VALUE_MASK) && !(PollAddress)) { Write_Memory_Params.ProgrammingMode = (Write_Memory_Params.ProgrammingMode & ~PROG_MODE_PAGED_VALUE_MASK) | PROG_MODE_PAGED_TIMEDELAY_MASK; } ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue, Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]); /* Check to see if the FLASH address has crossed the extended address boundary */ if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF)) MustLoadExtendedAddress = true; } Endpoint_Write_8(V2Command); Endpoint_Write_8(ProgrammingStatus); Endpoint_ClearIN(); } /** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes, * words or pages of data from the attached device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_ReadMemory(uint8_t V2Command) { struct { uint16_t BytesToRead; uint8_t ReadMemoryCommand; } Read_Memory_Params; Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NULL); Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_OK); /* Read each byte from the device and write them to the packet for the host */ for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++) { /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */ if (MustLoadExtendedAddress) { ISPTarget_LoadExtendedAddress(); MustLoadExtendedAddress = false; } /* Read the next byte from the desired memory space in the device */ ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand); ISPTarget_SendByte(CurrentAddress >> 8); ISPTarget_SendByte(CurrentAddress & 0xFF); Endpoint_Write_8(ISPTarget_ReceiveByte()); /* Check if the endpoint bank is currently full, if so send the packet */ if (!(Endpoint_IsReadWriteAllowed())) { Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high * or low byte at the current word address */ if (V2Command == CMD_READ_FLASH_ISP) Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK; /* EEPROM just increments the address each byte, flash needs to increment on each word and * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended * address boundary has been crossed */ if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP)) { CurrentAddress++; if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF)) MustLoadExtendedAddress = true; } } Endpoint_Write_8(STATUS_CMD_OK); bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed()); Endpoint_ClearIN(); /* Ensure last packet is a short packet to terminate the transfer */ if (IsEndpointFull) { Endpoint_WaitUntilReady(); Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } } /** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */ void ISPProtocol_ChipErase(void) { struct { uint8_t EraseDelayMS; uint8_t PollMethod; uint8_t EraseCommandBytes[4]; } Erase_Chip_Params; Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ResponseStatus = STATUS_CMD_OK; /* Send the chip erase commands as given by the host to the device */ for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++) ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]); /* Use appropriate command completion check as given by the host (delay or busy polling) */ if (!(Erase_Chip_Params.PollMethod)) ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS); else ResponseStatus = ISPTarget_WaitWhileTargetBusy(); Endpoint_Write_8(CMD_CHIP_ERASE_ISP); Endpoint_Write_8(ResponseStatus); Endpoint_ClearIN(); } /** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands, * reading the requested configuration byte from the device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command) { struct { uint8_t RetByte; uint8_t ReadCommandBytes[4]; } Read_FuseLockSigOSCCAL_Params; Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); uint8_t ResponseBytes[4]; /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */ for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++) ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_Write_8(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_ClearIN(); } /** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration * byte to the device. * * \param[in] V2Command Issued V2 Protocol command byte from the host */ void ISPProtocol_WriteFuseLock(uint8_t V2Command) { struct { uint8_t WriteCommandBytes[4]; } Write_FuseLockSig_Params; Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); /* Send the Fuse or Lock byte program commands as given by the host to the device */ for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++) ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]); Endpoint_Write_8(V2Command); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_Write_8(STATUS_CMD_OK); Endpoint_ClearIN(); } /** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */ void ISPProtocol_SPIMulti(void) { struct { uint8_t TxBytes; uint8_t RxBytes; uint8_t RxStartAddr; uint8_t TxData[255]; } SPI_Multi_Params; Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NULL); Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NULL); Endpoint_ClearOUT(); Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR); Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN); Endpoint_Write_8(CMD_SPI_MULTI); Endpoint_Write_8(STATUS_CMD_OK); uint8_t CurrTxPos = 0; uint8_t CurrRxPos = 0; /* Write out bytes to transmit until the start of the bytes to receive is met */ while (CurrTxPos < SPI_Multi_Params.RxStartAddr) { if (CurrTxPos < SPI_Multi_Params.TxBytes) ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]); else ISPTarget_SendByte(0); CurrTxPos++; } /* Transmit remaining bytes with padding as needed, read in response bytes */ while (CurrRxPos < SPI_Multi_Params.RxBytes) { if (CurrTxPos < SPI_Multi_Params.TxBytes) Endpoint_Write_8(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++])); else Endpoint_Write_8(ISPTarget_ReceiveByte()); /* Check to see if we have filled the endpoint bank and need to send the packet */ if (!(Endpoint_IsReadWriteAllowed())) { Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } CurrRxPos++; } Endpoint_Write_8(STATUS_CMD_OK); bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed()); Endpoint_ClearIN(); /* Ensure last packet is a short packet to terminate the transfer */ if (IsEndpointFull) { Endpoint_WaitUntilReady(); Endpoint_ClearIN(); Endpoint_WaitUntilReady(); } } /** Blocking delay for a given number of milliseconds. This provides a simple wrapper around * the avr-libc provided delay function, so that the delay function can be called with a * constant value (to prevent run-time floating point operations being required). * * \param[in] DelayMS Number of milliseconds to delay for */ void ISPProtocol_DelayMS(uint8_t DelayMS) { while (DelayMS-- && TimeoutTicksRemaining) Delay_MS(1); } #endif id='n447' href='#n447'>447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873