aboutsummaryrefslogtreecommitdiffstats
path: root/testhal/STM32/STM32F37x/UART/main.c
blob: d8499f98b10c28a8cb99db6699d08330b65a95a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*
    ChibiOS - Copyright (C) 2006..2018 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#include "ch.h"
#include "hal.h"

static virtual_timer_t vt1, vt2;

static void restart(void *p) {

  (void)p;

  chSysLockFromISR();
  uartStartSendI(&UARTD2, 14, "Hello World!\r\n");
  chSysUnlockFromISR();
}

static void ledoff(void *p) {

  (void)p;
  palSetPad(GPIOC, GPIOC_LED1);
}

/*
 * This callback is invoked when a transmission buffer has been completely
 * read by the driver.
 */
static void txend1(UARTDriver *uartp) {

  (void)uartp;
  palSetPad(GPIOC, GPIOC_LED1);
}

/*
 * This callback is invoked when a transmission has physically completed.
 */
static void txend2(UARTDriver *uartp) {

  (void)uartp;
  palSetPad(GPIOC, GPIOC_LED1);
  chSysLockFromISR();
  chVTResetI(&vt1);
  chVTDoSetI(&vt1, TIME_MS2I(5000), restart, NULL);
  chSysUnlockFromISR();
}

/*
 * This callback is invoked on a receive error, the errors mask is passed
 * as parameter.
 */
static void rxerr(UARTDriver *uartp, uartflags_t e) {

  (void)uartp;
  (void)e;
}

/*
 * This callback is invoked when a character is received but the application
 * was not ready to receive it, the character is passed as parameter.
 */
static void rxchar(UARTDriver *uartp, uint16_t c) {

  (void)uartp;
  (void)c;
  /* Flashing the LED each time a character is received.*/
  palClearPad(GPIOC, GPIOC_LED1);
  chSysLockFromISR();
  chVTResetI(&vt2);
  chVTDoSetI(&vt2, TIME_MS2I(200), ledoff, NULL);
  chSysUnlockFromISR();
}

/*
 * This callback is invoked when a receive buffer has been completely written.
 */
static void rxend(UARTDriver *uartp) {

  (void)uartp;
}

/*
 * This callback is invoked when configured timeout reached.
 */
static void rxtimeout(UARTDriver *uartp) {

  (void)uartp;
}

/*
 * UART driver configuration structure.
 */
static UARTConfig uart_cfg_1 = {
  txend1,
  txend2,
  rxend,
  rxchar,
  rxerr,
  rxtimeout,
  0,
  38400,
  0,
  USART_CR2_LINEN,
  0
};

/*
 * Application entry point.
 */
int main(void) {

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Activates the serial driver 1, PA9 and PA10 are routed to USART2.
   */
  uartStart(&UARTD2, &uart_cfg_1);

  /*
   * Starts the transmission, it will be handled entirely in background.
   */
  uartStartSend(&UARTD2, 13, "Starting...\r\n");

  /*
   * Normal main() thread activity, in this demo it does nothing.
   */
  while (true) {
    chThdSleepMilliseconds(500);
  }
}
">0x03EB, .ProductID = 0x204D, .ReleaseNumber = VERSION_BCD(0,0,1), .ManufacturerStrIndex = STRING_ID_Manufacturer, .ProductStrIndex = STRING_ID_Product, .SerialNumStrIndex = NO_DESCRIPTOR, .NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS }; /** Configuration descriptor structure. This descriptor, located in FLASH memory, describes the usage * of the device in one of its supported configurations, including information about any device interfaces * and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting * a configuration so that the host may correctly communicate with the USB device. */ const USB_Descriptor_Configuration_t PROGMEM ConfigurationDescriptor = { .Config = { .Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration}, .TotalConfigurationSize = sizeof(USB_Descriptor_Configuration_t), .TotalInterfaces = 2, .ConfigurationNumber = 1, .ConfigurationStrIndex = NO_DESCRIPTOR, .ConfigAttributes = (USB_CONFIG_ATTR_RESERVED | USB_CONFIG_ATTR_SELFPOWERED), .MaxPowerConsumption = USB_CONFIG_POWER_MA(100) }, .HID1_KeyboardInterface = { .Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface}, .InterfaceNumber = INTERFACE_ID_Keyboard, .AlternateSetting = 0x00, .TotalEndpoints = 1, .Class = HID_CSCP_HIDClass, .SubClass = HID_CSCP_BootSubclass, .Protocol = HID_CSCP_KeyboardBootProtocol, .InterfaceStrIndex = NO_DESCRIPTOR }, .HID1_KeyboardHID = { .Header = {.Size = sizeof(USB_HID_Descriptor_HID_t), .Type = HID_DTYPE_HID}, .HIDSpec = VERSION_BCD(1,1,1), .CountryCode = 0x00, .TotalReportDescriptors = 1, .HIDReportType = HID_DTYPE_Report, .HIDReportLength = sizeof(KeyboardReport) }, .HID1_ReportINEndpoint = { .Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint}, .EndpointAddress = KEYBOARD_IN_EPADDR, .Attributes = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA), .EndpointSize = HID_EPSIZE, .PollingIntervalMS = 0x05 }, .HID2_MouseInterface = { .Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface}, .InterfaceNumber = INTERFACE_ID_Mouse, .AlternateSetting = 0x00, .TotalEndpoints = 1, .Class = HID_CSCP_HIDClass, .SubClass = HID_CSCP_BootSubclass, .Protocol = HID_CSCP_MouseBootProtocol, .InterfaceStrIndex = NO_DESCRIPTOR }, .HID2_MouseHID = { .Header = {.Size = sizeof(USB_HID_Descriptor_HID_t), .Type = HID_DTYPE_HID}, .HIDSpec = VERSION_BCD(1,1,1), .CountryCode = 0x00, .TotalReportDescriptors = 1, .HIDReportType = HID_DTYPE_Report, .HIDReportLength = sizeof(MouseReport) }, .HID2_ReportINEndpoint = { .Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint}, .EndpointAddress = MOUSE_IN_EPADDR, .Attributes = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA), .EndpointSize = HID_EPSIZE, .PollingIntervalMS = 0x05 } }; /** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests * the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate * via the language ID table available at USB.org what languages the device supports for its string descriptors. */ const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG); /** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable * form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device * Descriptor. */ const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"Dean Camera"); /** Product descriptor string. This is a Unicode string containing the product's details in human readable form, * and is read out upon request by the host when the appropriate string ID is requested, listed in the Device * Descriptor. */ const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"LUFA Mouse and Keyboard Demo"); /** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors" * documentation) by the application code so that the address and size of a requested descriptor can be given * to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function * is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the * USB host. */ uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, const void** const DescriptorAddress) { const uint8_t DescriptorType = (wValue >> 8); const uint8_t DescriptorNumber = (wValue & 0xFF); const void* Address = NULL; uint16_t Size = NO_DESCRIPTOR; switch (DescriptorType) { case DTYPE_Device: Address = &DeviceDescriptor; Size = sizeof(USB_Descriptor_Device_t); break; case DTYPE_Configuration: Address = &ConfigurationDescriptor; Size = sizeof(USB_Descriptor_Configuration_t); break; case DTYPE_String: switch (DescriptorNumber) { case STRING_ID_Language: Address = &LanguageString; Size = pgm_read_byte(&LanguageString.Header.Size); break; case STRING_ID_Manufacturer: Address = &ManufacturerString; Size = pgm_read_byte(&ManufacturerString.Header.Size); break; case STRING_ID_Product: Address = &ProductString; Size = pgm_read_byte(&ProductString.Header.Size); break; } break; case HID_DTYPE_HID: switch (wIndex) { case INTERFACE_ID_Keyboard: Address = &ConfigurationDescriptor.HID1_KeyboardHID; Size = sizeof(USB_HID_Descriptor_HID_t); break; case INTERFACE_ID_Mouse: Address = &ConfigurationDescriptor.HID2_MouseHID; Size = sizeof(USB_HID_Descriptor_HID_t); break; } break; case HID_DTYPE_Report: switch (wIndex) { case INTERFACE_ID_Keyboard: Address = &KeyboardReport; Size = sizeof(KeyboardReport); break; case INTERFACE_ID_Mouse: Address = &MouseReport; Size = sizeof(MouseReport); break; } break; } *DescriptorAddress = Address; return Size; }