/* * 2002-10-18 written by Jim Houston jim.houston@ccur.com * Copyright (C) 2002 by Concurrent Computer Corporation * Distributed under the GNU GPL license version 2. * * Modified by George Anzinger to reuse immediately and to use * find bit instructions. Also removed _irq on spinlocks. * * Modified by Nadia Derbey to make it RCU safe. * * Small id to pointer translation service. * * It uses a radix tree like structure as a sparse array indexed * by the id to obtain the pointer. The bitmap makes allocating * a new id quick. * * You call it to allocate an id (an int) an associate with that id a * pointer or what ever, we treat it as a (void *). You can pass this * id to a user for him to pass back at a later time. You then pass * that id to this code and it returns your pointer. * You can release ids at any time. When all ids are released, most of * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we * don't need to go to the memory "store" during an id allocate, just * so you don't need to be too concerned about locking and conflicts * with the slab allocator. */ #ifndef TEST // to test in user space... #include #include #include #endif #include #include #include static struct kmem_cache *idr_layer_cache; static struct idr_layer *get_from_free_list(struct idr *idp) { struct idr_layer *p; unsigned long flags; spin_lock_irqsave(&idp->lock, flags); if ((p = idp->id_free)) { idp->id_free = p->ary[0]; idp->id_free_cnt--; p->ary[0] = NULL; } spin_unlock_irqrestore(&idp->lock, flags); return(p); } static void idr_layer_rcu_free(struct rcu_head *head) { struct idr_layer *layer; layer = container_of(head, struct idr_layer, rcu_head); kmem_cache_free(idr_layer_cache, layer); } static inline void free_layer(struct idr_layer *p) { call_rcu(&p->rcu_head, idr_layer_rcu_free); } /* only called when idp->lock is held */ static void __move_to_free_list(struct idr *idp, struct idr_layer *p) { p->ary[0] = idp->id_free; idp->id_free = p; idp->id_free_cnt++; } static void move_to_free_list(struct idr *idp, struct idr_layer *p) { unsigned long flags; /* * Depends on the return element being zeroed. */ spin_lock_irqsave(&idp->lock, flags); __move_to_free_list(idp, p); spin_unlock_irqrestore(&idp->lock, flags); } static void idr_mark_full(struct idr_layer **pa, int id) { struct idr_layer *p = pa[0]; int l = 0; __set_bit(id & IDR_MASK, &p->bitmap); /* * If this layer is full mark the bit in the layer above to * show that this part of the radix tree is full. This may * complete the layer above and require walking up the radix * tree. */ while (p->bitmap == IDR_FULL) { if (!(p = pa[++l])) break; id = id >> IDR_BITS; __set_bit((id & IDR_MASK), &p->bitmap); } } /** * idr_pre_get - reserve resources for idr allocation * @idp: idr handle * @gfp_mask: memory allocation flags * * This function should be called prior to calling the idr_get_new* functions. * It preallocates enough memory to satisfy the worst possible allocation. The * caller should pass in GFP_KERNEL if possible. This of course requires that * no spinning locks be held. * * If the system is REALLY out of memory this function returns %0, * otherwise %1. */ int idr_pre_get(struct idr *idp, gfp_t gfp_mask) { while (idp->id_free_cnt < IDR_FREE_MAX) { struct idr_layer *new; new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); if (new == NULL) return (0); move_to_free_list(idp, new); } return 1; } EXPORT_SYMBOL(idr_pre_get); static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa) { int n, m, sh; struct idr_layer *p, *new; int l, id, oid; unsigned long bm; id = *starting_id; restart: p = idp->top; l = idp->layers; pa[l--] = NULL; while (1) { /* * We run around this while until we reach the leaf node... */ n = (id >> (IDR_BITS*l)) & IDR_MASK; bm = ~p->bitmap; m = find_next_bit(&bm, IDR_SIZE, n); if (m == IDR_SIZE) { /* no space available go back to previous layer. */ l++; oid = id; id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; /* if already at the top layer, we need to grow */ if (id >= 1 << (idp->layers * IDR_BITS)) { *starting_id = id; return IDR_NEED_TO_GROW; } p = pa[l]; BUG_ON(!p); /* If we need to go up one layer, continue the * loop; otherwise, restart from the top. */ sh = IDR_BITS * (l + 1); if (oid >> sh == id >> sh) continue; else goto restart; } if (m != n) { sh = IDR_BITS*l; id = ((id >> sh) ^ n ^ m) << sh; } if ((id >= MAX_ID_BIT) || (id < 0)) return IDR_NOMORE_SPACE; if (l == 0) break; /* * Create the layer below if it is missing. */ if (!p->ary[m]) { new = get_from_free_list(idp); if (!new) return -1; new->layer = l-1; rcu_assign_pointer(p->ary[m], new); p->count++; } pa[l--] = p; p = p->ary[m]; } pa[l] = p; return id; } static int idr_get_empty_slot(struct idr *idp, int starting_id, struct idr_layer **pa) { struct idr_layer *p, *new; int layers, v, id; unsigned long flags; id = starting_id; build_up: p = idp->top; layers = idp->layers; if (unlikely(!p)) { if (!(p = get_from_free_list(idp))) return -1; p->layer = 0; layers = 1; } /* * Add a new layer to the top of the tree if the requested * id is larger than the currently allocated space. */ while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { layers++; if (!p->count) { /* special case: if the tree is currently empty, * then we grow the tree by moving the top node * upwards. */ p->layer++; continue; } if (!(new = get_from_free_list(idp))) { /* * The allocation failed. If we built part of * the structure tear it down. */ spin_lock_irqsave(&idp->lock, flags); for (new = p; p && p != idp->top; new = p) { p = p->ary[0]; new->ary[0] = NULL; new->bitmap = new->count = 0; __move_to_free_list(idp, new); } spin_unlock_irqrestore(&idp->lock, flags); return -1; } new->ary[0] = p; new->count = 1; new->layer = layers-1; if (p->bitmap == IDR_FULL) __set_bit(0, &new->bitmap); p = new; } rcu_assign_pointer(idp->top, p); idp->layers = layers; v = sub_alloc(idp, &id, pa); if (v == IDR_NEED_TO_GROW) goto build_up; return(v); } static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) { struct idr_layer *pa[MAX_LEVEL]; int id; id = idr_get_empty_slot(idp, starting_id, pa); if (id >= 0) { /* * Successfully found an empty slot. Install the user * pointer and mark the slot full. */ rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); pa[0]->count++; idr_mark_full(pa, id); } return id; } /** * idr_get_new_above - allocate new idr entry above or equal to a start id * @idp: idr handle * @ptr: pointer you want associated with the id * @starting_id: id to start search at * @id: pointer to the allocated handle * * This is the allocate id function. It should be called with any * required locks. * * If allocation from IDR's private freelist fails, idr_get_new_above() will * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill * IDR's preallocation and then retry the idr_get_new_above() call. * * If the idr is full idr_get_new_above() will return %-ENOSPC. * * @id returns a value in the range @starting_id ... %0x7fffffff */ int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) { int rv; rv = idr_get_new_above_int(idp, ptr, starting_id); /* * This is a cheap hack until the IDR code can be fixed to * return proper error values. */ if (rv < 0) return _idr_rc_to_errno(rv); *id = rv; return 0; } EXPORT_SYMBOL(idr_get_new_above); /** * idr_get_new - allocate new idr entry * @idp: idr handle * @ptr: pointer you want associated with the id * @id: pointer to the allocated handle * * If allocation from IDR's private freelist fails, idr_get_new_above() will * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill * IDR's preallocation and then retry the idr_get_new_above() call. * * If the idr is full idr_get_new_above() will return %-ENOSPC. * * @id returns a value in the range %0 ... %0x7fffffff */ int idr_get_new(struct idr *idp, void *ptr, int *id) { int rv; rv = idr_get_new_above_int(idp, ptr, 0); /* * This is a cheap hack until the IDR code can be fixed to * return proper error values. */ if (rv < 0) return _idr_rc_to_errno(rv); *id = rv; return 0; } EXPORT_SYMBOL(idr_get_new); static void idr_remove_warning(int id) { printk(KERN_WARNING "idr_remove called for id=%d which is not allocated.\n", id); dump_stack(); } static void sub_remove(struct idr *idp, int shift, int id) { struct idr_layer *p = idp->top; struct idr_layer **pa[MAX_LEVEL]; struct idr_layer ***paa = &pa[0]; struct idr_layer *to_free; int n; *paa = NULL; *++paa = &idp->top; while ((shift > 0) && p) { n = (id >> shift) & IDR_MASK; __clear_bit(n, &p->bitmap); *++paa = &p->ary[n]; p = p->ary[n]; shift -= IDR_BITS; } n = id & IDR_MASK; if (likely(p != NULL && test_bit(n, &p->bitmap))){ __clear_bit(n, &p->bitmap); rcu_assign_pointer(p->ary[n], NULL); to_free = NULL; while(*paa && ! --((**paa)->count)){ if (to_free) free_layer(to_free); to_free = **paa; **paa-- = NULL; } if (!*paa) idp->layers = 0; if (to_free) free_layer(to_free); } else idr_remove_warning(id); } /** * idr_remove - remove the given id and free its slot * @idp: idr handle * @id: unique key */ void idr_remove(struct idr *idp, int id) { struct idr_layer *p; struct idr_layer *to_free; /* Mask off upper bits we don't use for the search. */ id &= MAX_ID_MASK; sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); if (idp->top && idp->top->count == 1 && (idp->layers > 1) && idp->top->ary[0]) { /* * Single child at leftmost slot: we can shrink the tree. * This level is not needed anymore since when layers are * inserted, they are inserted at the top of the existing * tree. */ to_free = idp->top; p = idp->top->ary[0]; rcu_assign_pointer(idp->top, p); --idp->layers; to_free->bitmap = to_free->count = 0; free_layer(to_free); } while (idp->id_free_cnt >= IDR_FREE_MAX) { p = get_from_free_list(idp); /* * Note: we don't call the rcu callback here, since the only * layers that fall into the freelist are those that have been * preallocated. */ kmem_cache_free(idr_layer_cache, p); } return; } EXPORT_SYMBOL(idr_remove); /** * idr_remove_all - remove all ids from the given idr tree * @idp: idr handle * * idr_destroy() only frees up unused, cached idp_layers, but this * function will remove all id mappings and leave all idp_layers * unused. * * A typical clean-up sequence for objects stored in an idr tree will * use idr_for_each() to free all objects, if necessay, then * idr_remove_all() to remove all ids, and idr_destroy() to free * up the cached idr_layers. */ void idr_remove_all(struct idr *idp) { int n, id, max; int bt_mask; struct idr_layer *p; struct idr_layer *pa[MAX_LEVEL]; struct idr_layer **paa = &pa[0]; n = idp->layers * IDR_BITS; p = idp->top; rcu_assign_pointer(idp->top, NULL); max = 1 << n; id = 0; while (id < max) { while (n > IDR_BITS && p) { n -= IDR_BITS; *paa++ = p; p = p->ary[(id >> n) & IDR_MASK]; } bt_mask = id; id += 1 << n; /* Get the highest bit that the above add changed from 0->1. */ while (n < fls(id ^ bt_mask)) { if (p) free_layer(p); n += IDR_BITS; p = *--paa; } } idp->layers = 0; } EXPORT_SYMBOL(idr_remove_all); /** * idr_destroy - release all cached layers within an idr tree * @idp: idr handle */ void idr_destroy(struct idr *idp) { while (idp->id_free_cnt) { struct idr_layer *p = get_from_free_list(idp); kmem_cache_free(idr_layer_cache, p); } } EXPORT_SYMBOL(idr_destroy); /** * idr_find - return pointer for given id * @idp: idr handle * @id: lookup key * * Return the pointer given the id it has been registered with. A %NULL * return indicates that @id is not valid or you passed %NULL in * idr_get_new(). * * This function can be called under rcu_read_lock(), given that the leaf * pointers lifetimes are correctly managed. */ void *idr_find(struct idr *idp, int id) { int n; struct idr_layer *p; p = rcu_dereference_raw(idp->top); if (!p) return NULL; n = (p->layer+1) * IDR_BITS; /* Mask off upper bits we don't use for the search. */ id &= MAX_ID_MASK; if (id >= (1 << n)) return NULL; BUG_ON(n == 0); while (n > 0 && p) { n -= IDR_BITS; BUG_ON(n != p->layer*IDR_BITS); p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); } return((vo
/*
    ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

/**
 * @file    ch_test.c
 * @brief   Unit Tests Engine module code.
 *
 * @addtogroup CH_TEST
 * @{
 */

#include "hal.h"
#include "ch_test.h"
#include "test_root.h"

/*===========================================================================*/
/* Module local definitions.                                                 */
/*===========================================================================*/

/*===========================================================================*/
/* Module exported variables.                                                */
/*===========================================================================*/

/**
 * @brief   Test step being executed.
 */
unsigned test_step;

/**
 * @brief   Test result flag.
 */
bool test_global_fail;

/*===========================================================================*/
/* Module local types.                                                       */
/*===========================================================================*/

/*===========================================================================*/
/* Module local variables.                                                   */
/*===========================================================================*/

static bool test_local_fail;
static const char *test_failure_message;
static char test_tokens_buffer[TEST_MAX_TOKENS];
static char *test_tokp;
static BaseSequentialStream *test_chp;

/*===========================================================================*/
/* Module local functions.                                                   */
/*===========================================================================*/

static void clear_tokens(void) {

  test_tokp = test_tokens_buffer;
}

static void print_tokens(void) {
  char *cp = test_tokens_buffer;

  while (cp < test_tokp)
    streamPut(test_chp, *cp++);
}

static void execute_test(const testcase_t *tcp) {

  /* Initialization */
  clear_tokens();
  test_local_fail = false;

  if (tcp->setup != NULL)
    tcp->setup();
  tcp->execute();
  if (tcp->teardown != NULL)
    tcp->teardown();
}

static void print_line(void) {
  unsigned i;

  for (i = 0; i < 76; i++)
    streamPut(test_chp, '-');
  streamWrite(test_chp, (const uint8_t *)"\r\n", 2);
}

/*===========================================================================*/
/* Module exported functions.                                                */
/*===========================================================================*/

bool _test_fail(const char *msg) {

  test_local_fail      = true;
  test_global_fail     = true;
  test_failure_message = msg;
  return true;
}

bool _test_assert(bool condition, const char *msg) {

  if (!condition)
    return _test_fail(msg);
  return false;
}

bool _test_assert_sequence(char *expected, const char *msg) {
  char *cp = test_tokens_buffer;

  while (cp < test_tokp) {
    if (*cp++ != *expected++)
     return _test_fail(msg);
  }

  if (*expected)
    return _test_fail(msg);

  clear_tokens();

  return false;
}

bool _test_assert_time_window(systime_t start,
                              systime_t end,
                              const char *msg) {

  return _test_assert(osalOsIsTimeWithinX(osalOsGetSystemTimeX(), start, end),
                      msg);
}

/**
 * @brief   Prints a decimal unsigned number.
 *
 * @param[in] n         the number to be printed
 *
 * @api
 */
void test_printn(uint32_t n) {
  char buf[16], *p;

  if (!n)
    streamPut(test_chp, '0');
  else {
    p = buf;
    while (n)
      *p++ = (n % 10) + '0', n /= 10;
    while (p > buf)
      streamPut(test_chp, *--p);
  }
}

/**
 * @brief   Prints a line without final end-of-line.
 *
 * @param[in] msgp      the message
 *
 * @api
 */
void test_print(const char *msgp) {

  while (*msgp)
    streamPut(test_chp, *msgp++);
}

/**
 * @brief   Prints a line.
 *
 * @param[in] msgp      the message
 *
 * @api
 */
void test_println(const char *msgp) {

  test_print(msgp);
  streamWrite(test_chp, (const uint8_t *)"\r\n", 2);
}

/**
 * @brief   Emits a token into the tokens buffer.
 *
 * @param[in] token     the token as a char
 *
 * @api
 */
void test_emit_token(char token) {

  osalSysLock();
  if (test_tokp < &test_tokens_buffer[TEST_MAX_TOKENS])
    *test_tokp++ = token;
  osalSysUnlock();
}

/**
 * @brief   Emits a token into the tokens buffer from a critical zone.
 *
 * @param[in] token     the token as a char
 *
 * @iclass
 */
void test_emit_token_i(char token) {

  if (test_tokp < &test_tokens_buffer[TEST_MAX_TOKENS])
    *test_tokp++ = token;
}

/**
 * @brief   Test execution thread function.
 *
 * @param[in] stream    pointer to a @p BaseSequentialStream object for test
 *                      output
 * @return              A failure boolean value casted to @p msg_t.
 * @retval false        if no errors occurred.
 * @retval true         if one or more tests failed.
 *
 * @api
 */
msg_t test_execute(BaseSequentialStream *stream) {
  int i, j;

  test_chp = stream;
  test_println("");
#if defined(TEST_SUITE_NAME)
  test_println("*** " TEST_SUITE_NAME);
#else
  test_println("*** ChibiOS test suite");
#endif
  test_println("***");
  test_print("*** Compiled:     ");
  test_println(__DATE__ " - " __TIME__);
#if defined(PLATFORM_NAME)
  test_print("*** Platform:     ");
  test_println(PLATFORM_NAME);
#endif
#if defined(BOARD_NAME)
  test_print("*** Test Board:   ");
  test_println(BOARD_NAME);
#endif
#if defined(TEST_REPORT_HOOK_HEADER)
  TEST_REPORT_HOOK_HEADER
#endif
  test_println("");

  test_global_fail = false;
  i = 0;
  while (test_suite[i]) {
    j = 0;
    while (test_suite[i][j]) {
      print_line();
      test_print("--- Test Case ");
      test_printn(i + 1);
      test_print(".");
      test_printn(j + 1);
      test_print(" (");
      test_print(test_suite[i][j]->name);
      test_println(")");
#if TEST_DELAY_BETWEEN_TESTS > 0
      osalThreadSleepMilliseconds(TEST_DELAY_BETWEEN_TESTS);
#endif
      execute_test(test_suite[i][j]);
      if (test_local_fail) {
        test_print("--- Result: FAILURE (#");
        test_printn(test_step);
        test_print(" [");
        print_tokens();
        test_print("] \"");
        test_print(test_failure_message);
        test_println("\")");
      }
      else
        test_println("--- Result: SUCCESS");
      j++;
    }
    i++;
  }
  print_line();
  test_println("");
  test_print("Final result: ");
  if (test_global_fail)
    test_println("FAILURE");
  else
    test_println("SUCCESS");

#if defined(TEST_REPORT_HOOK_END)
  TEST_REPORT_HOOK_END
#endif

  return (msg_t)test_global_fail;
}

/** @} */