/** * @file STM32/i2c_lld.c * @brief STM32 I2C subsystem low level driver source. Slave mode not implemented. * @addtogroup STM32_I2C * @{ */ #include "ch.h" #include "hal.h" #include "i2c_lld.h" #if HAL_USE_I2C || defined(__DOXYGEN__) /*===========================================================================*/ /* Driver exported variables. */ /*===========================================================================*/ /** @brief I2C1 driver identifier.*/ #if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__) I2CDriver I2CD1; #endif /** @brief I2C2 driver identifier.*/ #if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__) I2CDriver I2CD2; #endif /*===========================================================================*/ /* Driver local variables. */ /*===========================================================================*/ /*===========================================================================*/ /* Driver local functions. */ /*===========================================================================*/ static void i2c_serve_error_interrupt(I2CDriver *i2cp) { chSysLockFromIsr(); i2cp->id_slave_config->id_err_callback(i2cp, i2cp->id_slave_config); chSysUnlockFromIsr(); } /* helper function, not API * write bytes in DR register * return TRUE if last byte written */ inline bool_t i2c_lld_txbyte(I2CDriver *i2cp) { #define _txbufhead (i2cp->id_slave_config->txbufhead) #define _txbytes (i2cp->id_slave_config->txbytes) #define _txbuf (i2cp->id_slave_config->txbuf) if (_txbufhead < _txbytes){ /* disable interrupt to avoid jumping to ISR */ if ( _txbytes - _txbufhead == 1) i2cp->id_i2c->CR2 &= (~I2C_CR2_ITBUFEN); i2cp->id_i2c->DR = _txbuf[_txbufhead]; (_txbufhead)++; return(FALSE); } _txbufhead = 0; return(TRUE); // last byte written #undef _txbufhead #undef _txbytes #undef _txbuf } /* helper function, not API * read bytes from DR register * return TRUE if last byte read */ inline bool_t i2c_lld_rxbyte(I2CDriver *i2cp) { // temporal variables #define _rxbuf (i2cp->id_slave_config->rxbuf) #define _rxbufhead (i2cp->id_slave_config->rxbufhead) #define _rxdepth (i2cp->id_slave_config->rxdepth) #define _rxbytes (i2cp->id_slave_config->rxbytes) /* In order to generate the non-acknowledge pulse after the last received * data byte, the ACK bit must be cleared just after reading the second * last data byte (after second last RxNE event). */ if (_rxbufhead < (_rxbytes - 1)){ _rxbuf[_rxbufhead] = i2cp->id_i2c->DR; if ((_rxbytes - _rxbufhead) <= 2){ i2cp->id_i2c->CR1 &= (~I2C_CR1_ACK);// clear ACK bit for automatically send NACK } (_rxbufhead)++; return(FALSE); } /* disable interrupt to avoid jumping to ISR */ i2cp->id_i2c->CR2 &= (~I2C_CR2_ITBUFEN); _rxbuf[_rxbufhead] = i2cp->id_i2c->DR; // read last byte _rxbufhead = 0; return(TRUE); // last byte read #undef _rxbuf #undef _rxbufhead #undef _rxdepth #undef _rxbytes } /* * This function handle all regular interrupt conditions */ static void i2c_serve_event_interrupt(I2CDriver *i2cp) { // debug variables int i = 0; int n = 0; int m = 0; if ((i2cp->id_state == I2C_READY) && (i2cp->id_i2c->SR1 & I2C_SR1_SB)){// start bit sent i2cp->id_state = I2C_MACTIVE; //TODO: 10 bit address handling i2cp->id_i2c->DR = (i2cp->id_slave_config->addr7 << 1) | i2cp->id_slave_config->rw_bit; // write slave address in DR return; } // "wait" interrupt with ADDR flag if ((i2cp->id_state == I2C_MACTIVE) && (i2cp->id_i2c->SR1 & I2C_SR1_ADDR)){// address successfully sent if(i2cp->id_i2c->SR2 & I2C_SR2_TRA){ i2c_lld_txbyte(i2cp); // send first byte i2cp->id_state = I2C_MTRANSMIT; // change state return; } else { /* In order to generate the non-acknowledge pulse after the last received * data byte, the ACK bit must be cleared just after reading the second * last data byte (after second last RxNE event). */ if (i2cp->id_slave_config->rxbytes > 1) i2cp->id_i2c->CR1 |= I2C_CR1_ACK; // set ACK bit i2cp->id_state = I2C_MRECEIVE; // change status return; } } // transmitting bytes one by one if ((i2cp->id_state == I2C_MTRANSMIT) && (i2cp->id_i2c->SR1 & I2C_SR1_TXE)){ if (i2c_lld_txbyte(i2cp)) i2cp->id_state = I2C_MWAIT_TF; // last byte written return; } //receiving bytes one by one if ((i2cp->id_state == I2C_MRECEIVE) && (i2cp->id_i2c->SR1 & I2C_SR1_RXNE)){ if (i2c_lld_rxbyte(i2cp)) i2cp->id_state = I2C_MWAIT_TF; // last byte read return; } // "wait" BTF bit in status register if ((i2cp->id_state == I2C_MWAIT_TF) && (i2cp->id_i2c->SR1 & I2C_SR1_BTF)){ chSysLockFromIsr(); i2cp->id_i2c->CR2 &= (~I2C_CR2_ITEVTEN); // disable BTF interrupt i2cp->id_slave_config->id_callback(i2cp, i2cp->id_slave_config); chSysUnlockFromIsr(); return; } else{ // debugging trap i = i2cp->id_i2c->SR1; n = i2cp->id_i2c->SR2; m = i2cp->id_i2c->CR1; return; } } #if STM32_I2C_USE_I2C1 || defined(__DOXYGEN__) /** * @brief I2C1 event interrupt handler. */ CH_IRQ_HANDLER(VectorBC) { CH_IRQ_PROLOGUE(); i2c_serve_event_interrupt(&I2CD1); CH_IRQ_EPILOGUE(); } /** * @brief I2C1 error interrupt handler. */ CH_IRQ_HANDLER(VectorC0) { CH_IRQ_PROLOGUE(); i2c_serve_error_interrupt(&I2CD1); CH_IRQ_EPILOGUE(); } #endif #if STM32_I2C_USE_I2C2 || defined(__DOXYGEN__) /** * @brief I2C2 event interrupt handler. */ CH_IRQ_HANDLER(VectorC4) { CH_IRQ_PROLOGUE(); i2c_serve_event_interrupt(&I2CD2); CH_IRQ_EPILOGUE(); } /** * @brief I2C2 error interrupt handler. */ CH_IRQ_HANDLER(VectorC8) { CH_IRQ_PROLOGUE(); i2c_serve_error_interrupt(&I2CD2); CH_IRQ_EPILOGUE(); } #endif /** * @brief Low level I2C driver initialization. */ void i2c_lld_init(void) { #if STM32_I2C_USE_I2C1 RCC->APB1RSTR = RCC_APB1RSTR_I2C1RST; // reset I2C 1 RCC->APB1RSTR = 0; i2cObjectInit(&I2CD1); I2CD1.id_i2c = I2C1; #endif #if STM32_I2C_USE_I2C2 RCC->APB1RSTR = RCC_APB1RSTR_I2C2RST; // reset I2C 2 RCC->APB1RSTR = 0; i2cObjectInit(&I2CD2); I2CD2.id_i2c = I2C2; #endif } /** * @brief Configures and activates the I2C peripheral. * * @param[in] i2cp pointer to the @p I2CDriver object */ void i2c_lld_start(I2CDriver *i2cp) { /* If in stopped state then enables the I2C clock.*/ if (i2cp->id_state == I2C_STOP) { #if STM32_I2C_USE_I2C1 if (&I2CD1 == i2cp) { NVICEnableVector(I2C1_EV_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY); NVICEnableVector(I2C1_ER_IRQn, STM32_I2C_I2C1_IRQ_PRIORITY); RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // I2C 1 clock enable } #endif #if STM32_I2C_USE_I2C2 if (&I2CD2 == i2cp) { NVICEnableVector(I2C2_EV_IRQn, STM32_I2C2_IRQ_PRIORITY); NVICEnableVector(I2C2_ER_IRQn, STM32_I2C2_IRQ_PRIORITY); RCC->APB1ENR |= RCC_APB1ENR_I2C2EN; // I2C 2 clock enable } #endif } /* I2C setup.*/ i2cp->id_i2c->CR1 = I2C_CR1_SWRST; // reset i2c peripherial i2cp->id_i2c->CR1 = 0; i2c_lld_set_clock(i2cp); i2c_lld_set_opmode(i2cp); i2cp->id_i2c->CR2 |= I2C_CR2_ITERREN | I2C_CR2_ITEVTEN | I2C_CR2_ITBUFEN; i2cp->id_i2c->CR1 |= 1; // enable interface } //TODO: dox here void i2c_lld_set_clock(I2CDriver *i2cp) { volatile uint16_t regCCR, regCR2, freq, clock_div; volatile uint16_t pe_bit_saved; int32_t clock_speed = i2cp->id_config->ClockSpeed; I2C_DutyCycle_t duty = i2cp->id_config->FastModeDutyCycle; chDbgCheck((i2cp != NULL) && (clock_speed > 0) && (clock_speed <= 4000000), "i2c_lld_set_clock"); /*---------------------------- CR2 Configuration ------------------------*/ /* Get the I2Cx CR2 value */ regCR2 = i2cp->id_i2c->CR2; /* Clear frequency FREQ[5:0] bits */ regCR2 &= (uint16_t)~I2C_CR2_FREQ; /* Set frequency bits depending on pclk1 value */ freq = (uint16_t)(STM32_PCLK1 / 1000000); chDbgCheck((freq >= 2) && (freq <= 36), "i2c_lld_set_clock() : Peripheral clock freq. out of range"); regCR2 |= freq; i2cp->id_i2c->CR2 = regCR2; /*---------------------------- CCR Configuration ------------------------*/ pe_bit_saved = (i2cp->id_i2c->CR1 & I2C_CR1_PE); /* Disable the selected I2C peripheral to configure TRISE */ i2cp->id_i2c->CR1 &= (uint16_t)~I2C_CR1_PE; /* Clear F/S, DUTY and CCR[11:0] bits */ regCCR = 0; clock_div = I2C_CCR_CCR; /* Configure clock_div in standard mode */ if (clock_speed <= 100000) { chDbgAssert(duty == stdDutyCycle, "i2c_lld_set_clock(), #1", "Invalid standard mode duty cycle"); /* Standard mode clock_div calculate: Tlow/Thigh = 1/1 */ clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 2)); /* Test if CCR value is under 0x4, and set the minimum allowed value */ if (clock_div < 0x04) clock_div = 0x04; /* Set clock_div value for standard mode */ regCCR |= (clock_div & I2C_CCR_CCR); /* Set Maximum Rise Time for standard mode */ i2cp->id_i2c->TRISE = freq + 1; } /* Configure clock_div in fast mode */ else if(clock_speed <= 400000) { chDbgAssert((duty == fastDutyCycle_2) || (duty == fastDutyCycle_16_9), "i2c_lld_set_clock(), #2", "Invalid fast mode duty cycle"); if(duty == fastDutyCycle_2) { /* Fast mode clock_div calculate: Tlow/Thigh = 2/1 */ clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 3)); } else if(duty == fastDutyCycle_16_9) { /* Fast mode clock_div calculate: Tlow/Thigh = 16/9 */ clock_div = (uint16_t)(STM32_PCLK1 / (clock_speed * 25)); /* Set DUTY bit */ regCCR |= I2C_CCR_DUTY; } /* Test if CCR value is under 0x1, and set the minimum allowed value */ if(clock_div < 0x01) clock_div = 0x01; /* Set clock_div value and F/S bit for fast mode*/ regCCR |= (I2C_CCR_FS | (clock_div & I2C_CCR_CCR)); /* Set Maximum Rise Time for fast mode */ i2cp->id_i2c->TRISE = (freq * 300 / 1000) + 1; } chDbgAssert((clock_div <= I2C_CCR_CCR), "i2c_lld_set_clock(), #3", "Too low clock clock speed selected"); /* Write to I2Cx CCR */ i2cp->id_i2c->CCR = regCCR; /* restore the I2C peripheral enabled state */ i2cp->id_i2c->CR1 |= pe_bit_saved; } void i2c_lld_set_opmode(I2CDriver *i2cp) { I2C_opMode_t opmode = i2cp->id_config->opMode; uint16_t regCR1; /*---------------------------- CR1 Configuration ------------------------*/ /* Get the I2Cx CR1 value */ regCR1 = i2cp->id_i2c->CR1; switch(opmode){ case opmodeI2C: regCR1 &= (uint16_t)~(I2C_CR1_SMBUS|I2C_CR1_SMBTYPE); break; case opmodeSMBusDevice: regCR1 |= I2C_CR1_SMBUS; regCR1 &= (uint16_t)~(I2C_CR1_SMBTYPE); break; case opmodeSMBusHost: regCR1 |= (I2C_CR1_SMBUS|I2C_CR1_SMBTYPE); break; } /* Write to I2Cx CR1 */ i2cp->id_i2c->CR1 = regCR1; } void i2c_lld_set_own_address(I2CDriver *i2cp) { //TODO: dual address mode /*---------------------------- OAR1 Configuration -----------------------*/ i2cp->id_i2c->OAR1 |= 1 << 14; if (&(i2cp->id_config->OwnAddress10) == NULL){// only 7-bit address i2cp->id_i2c->OAR1 &= (~I2C_OAR1_ADDMODE); i2cp->id_i2c->OAR1 |= i2cp->id_config->OwnAddress7 << 1; } else { chDbgAssert((i2cp->id_config->OwnAddress10 < 1024), "i2c_lld_set_own_address(), #1", "10-bit address longer then 10 bit") i2cp->id_i2c->OAR1 |= I2C_OAR1_ADDMODE; i2cp->id_i2c->OAR1 |= i2cp->id_config->OwnAddress10; } } /** * @brief Deactivates the I2C peripheral. * * @param[in] i2cp pointer to the @p I2CDriver object */ void i2c_lld_stop(I2CDriver *i2cp) { /* If in ready state then disables the I2C clock.*/ if (i2cp->id_state == I2C_READY) { #if STM32_I2C_USE_I2C1 if (&I2CD1 == i2cp) { NVICDisableVector(I2C1_EV_IRQn); NVICDisableVector(I2C1_ER_IRQn); RCC->APB1ENR &= ~RCC_APB1ENR_I2C1EN; } #endif #if STM32_I2C_USE_I2C2 if (&I2CD2 == i2cp) { NVICDisableVector(I2C2_EV_IRQn); NVICDisableVector(I2C2_ER_IRQn); RCC->APB1ENR &= ~RCC_APB1ENR_I2C2EN; } #endif } i2cp->id_state = I2C_STOP; } void i2c_lld_master_start(I2CDriver *i2cp){ i2cp->id_i2c->CR1 |= I2C_CR1_START; while (i2cp->id_i2c->CR1 & I2C_CR1_START); // enable interrupts i2cp->id_i2c->CR2 |= I2C_CR2_ITEVTEN | I2C_CR2_ITBUFEN; } void i2c_lld_master_stop(I2CDriver *i2cp){ i2cp->id_i2c->CR1 |= I2C_CR1_STOP; while (i2cp->id_i2c->CR1 & I2C_CR1_STOP); } void i2c_lld_master_transmitI(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg){ //TODO: check txbytes <= sizeof(i2cscfg->txbuf) here, or in hylevel API i2cp->id_slave_config = i2cscfg; i2cp->id_slave_config->rw_bit = I2C_WRITE; // generate start condition. Later transmission goes in background i2c_lld_master_start(i2cp); } void i2c_lld_master_receiveI(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg){ //TODO: check txbytes <= sizeof(i2cscfg->txbuf) here, or in hylevel API i2cp->id_slave_config = i2cscfg; i2cp->id_slave_config->rw_bit = I2C_READ; // generate (re)start condition. Later connection goes asynchronously i2c_lld_master_start(i2cp); } /** * @brief Transmits data ever the I2C bus as masteri2cp. * * @param[in] i2cp pointer to the @p I2CDriver object * @param[in] i2cscfg pointer to the @p I2CSlaveConfig object * @param[in] restart bool. If TRUE then generate restart condition insted of stop */ void i2c_lld_master_transmit(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg, bool_t restart) { //TODO: check txbytes <= sizeof(i2cscfg->txbuf) here, or in hylevel API int i = 0; i2cp->id_slave_config = i2cscfg; i2cp->id_slave_config->rw_bit = I2C_WRITE; i2cp->id_i2c->CR1 |= I2C_CR1_START; // generate start condition while (!(i2cp->id_i2c->SR1 & I2C_SR1_SB)); // wait Address sent i2cp->id_i2c->DR = (i2cp->id_slave_config->addr7 << 1) | I2C_WRITE; // write slave addres in DR while (!(i2cp->id_i2c->SR1 & I2C_SR1_ADDR)); // wait Address sent i = i2cp->id_i2c->SR2; i = i2cp->id_i2c->SR1; //i2cp->id_i2c->SR1 &= (~I2C_SR1_ADDR); // clear ADDR bit // now write data byte by byte in DR register uint32_t n = 0; for (n = 0; n < i2cp->id_slave_config->txbytes; n++){ i2cp->id_i2c->DR = i2cscfg->txbuf[n]; while (!(i2cp->id_i2c->SR1 & I2C_SR1_TXE)); } while (!(i2cp->id_i2c->SR1 & I2C_SR1_BTF)); if (restart){ i2cp->id_i2c->CR1 |= I2C_CR1_START; // generate restart condition while (!(i2cp->id_i2c->SR1 & I2C_SR1_SB)); // wait start bit } else i2cp->id_i2c->CR1 |= I2C_CR1_STOP; // generate stop condition } /** * @brief Receives data from the I2C bus. * @details Before receive data from I2C slave you must manually sent them some * control bytes first (refer to you device datasheet). * * @param[in] i2cp pointer to the @p I2CDriver object * @param[in] i2cscfg pointer to the @p I2CSlaveConfig object */ void i2c_lld_master_receive(I2CDriver *i2cp, I2CSlaveConfig *i2cscfg) { i2cp->id_slave_config = i2cscfg; uint16_t i = 0; // send slave addres with read-bit i2cp->id_i2c->DR = (i2cp->id_slave_config->addr7 << 1) | I2C_READ; while (!(i2cp->id_i2c->SR1 & I2C_SR1_ADDR)); // wait Address sent i = i2cp->id_i2c->SR2; i = i2cp->id_i2c->SR1; //i2cp->id_i2c->SR1 &= (~I2C_SR1_ADDR); // clear ADDR bit // set ACK bit i2cp->id_i2c->CR1 |= I2C_CR1_ACK; // collect data from slave for (i = 0; i < i2cp->id_slave_config->rxbytes; i++){ if ((i2cp->id_slave_config->rxbytes - i) == 1){ // clear ACK bit for automatically send NACK i2cp->id_i2c->CR1 &= (~I2C_CR1_ACK);} while (!(i2cp->id_i2c->SR1 & I2C_SR1_RXNE)); i2cp->id_slave_config->rxbuf[i] = i2cp->id_i2c->DR; } // generate STOP i2cp->id_i2c->CR1 |= I2C_CR1_STOP; } #endif // HAL_USE_I2C