1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
// Upgrade is an in-place firmware upgrader for tiny85 chips - just fill in the
// 'bootloaderAddress' variable in bootloader_data.h, and the bootloaderData
// progmem array with the bootloader data, and you're ready to go.
//
// Upgrade will firstly rewrite the interrupt vector table to disable the bootloader,
// rewriting it to just run the upgrade app. Next it erases and writes each page of the
// bootloader in sequence, erasing over any remaining pages leaving them set to 0xFFFF
// Finally upgrader erases it's interrupt table again and fills it with RJMPs to
// bootloaderAddress, effectively bridging the interrupts in to the new bootloader's
// interrupts table.
//
// While upgrade has been written with attiny85 and micronucleus in mind, it should
// work with other bootloaders and other chips with flash self program but no hardware
// bootloader protection, where the bootloader exists at the end of flash
//
// Be very careful to not power down the AVR while upgrader is running.
// If you connect a piezo between pb0 and pb1 you'll hear a bleep when the update
// is complete. You can also connect an LED with pb0 positive and pb1 or gnd negative and
// it will blink
#include "./utils.h"
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/wdt.h>
#include <avr/boot.h>
#include "./bootloader_data.c"
void secure_interrupt_vector_table(void);
void write_new_bootloader(void);
void forward_interrupt_vector_table(void);
void beep(void);
void load_table(uint16_t address, uint16_t words[SPM_PAGESIZE / 2]);
void erase_page(uint16_t address);
void write_page(uint16_t address, uint16_t words[SPM_PAGESIZE / 2]);
int main(void) {
pinsOff(0xFF); // pull down all pins
outputs(0xFF); // all to ground - force usb disconnect
delay(250); // milliseconds
inputs(0xFF); // let them float
delay(250);
cli();
secure_interrupt_vector_table(); // reset our vector table to it's original state
write_new_bootloader();
forward_interrupt_vector_table();
beep();
reboot();
return 0;
}
// erase first page, removing any interrupt table hooks the bootloader added when
// upgrade was uploaded
void secure_interrupt_vector_table(void) {
uint16_t table[SPM_PAGESIZE / 2];
load_table(0, table);
// wipe out any interrupt hooks the bootloader rewrote
int i = 0;
while (i < SPM_PAGESIZE / 2) {
table[0] = 0xFFFF;
i++;
}
erase_page(0);
write_page(0, table);
}
// erase bootloader's section and write over it with new bootloader code
void write_new_bootloader(void) {
uint16_t outgoing_page[SPM_PAGESIZE / 2];
int iter = 0;
while (iter < sizeof(bootloader_data)) {
// read in one page's worth of data from progmem
int word_addr = 0;
while (word_addr < SPM_PAGESIZE) {
int subaddress = ((int) bootloader_data) + iter + word_addr;
if (subaddress >= ((int) bootloader_data) + sizeof(bootloader_data)) {
outgoing_page[word_addr / 2] = 0xFFFF;
} else {
outgoing_page[word_addr / 2] = pgm_read_word(subaddress);
}
word_addr += 2;
}
// erase page in destination
erase_page(bootloader_address + iter);
// write updated page
write_page(bootloader_address + iter, outgoing_page);
iter += 64;
}
}
// write in forwarding interrupt vector table
void forward_interrupt_vector_table(void) {
uint16_t vector_table[SPM_PAGESIZE / 2];
int iter = 0;
while (iter < SPM_PAGESIZE / 2) {
// rjmp to bootloader_address's interrupt table
vector_table[iter] = 0xC000 + (bootloader_address / 2) - 1;
iter++;
}
erase_page(0);
write_page(0, vector_table);
}
void load_table(uint16_t address, uint16_t words[SPM_PAGESIZE / 2]) {
uint16_t subaddress = 0;
address -= address % SPM_PAGESIZE; // round down to nearest page start
while (subaddress < SPM_PAGESIZE) {
words[subaddress / 2] = pgm_read_word(address + subaddress);
subaddress += 2;
}
}
void erase_page(uint16_t address) {
boot_page_erase(address - (address % SPM_PAGESIZE));
boot_spm_busy_wait();
}
void write_page(uint16_t address, uint16_t words[SPM_PAGESIZE / 2]) {
// fill buffer
uint16_t iter = 0;
while (iter < SPM_PAGESIZE / 2) {
boot_page_fill(address + (iter * 2), words[iter]);
iter++;
}
boot_page_write(address);
boot_spm_busy_wait(); // Wait until the memory is written.
}
// beep for a quarter of a second
void beep(void) {
outputs(pin(0) | pin(1));
pinOff(1);
byte i = 0;
while (i < 250) {
delay(1);
pinOn(pin(0));
delay(1);
pinOff(pin(0));
i++;
}
}
void reboot(void) {
void (*ptrToFunction)(); // pointer to a function
ptrToFunction = 0x0000;
(*ptrToFunction)(); // reset!
}
////////////// Add padding to start of program so no program code could reasonably be erased while program is running
// this never needs to be called - avr-gcc stuff happening: http://www.nongnu.org/avr-libc/user-manual/mem_sections.html
volatile void FakeISR (void) __attribute__ ((naked)) __attribute__ ((section (".init0")));
volatile void FakeISR (void) {
// 16 nops to pad out first section of program
asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop"); asm("nop");
}
|