summaryrefslogtreecommitdiffstats
path: root/commandline
diff options
context:
space:
mode:
Diffstat (limited to 'commandline')
0 files changed, 0 insertions, 0 deletions
74' href='#n74'>74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 *  nextpnr -- Next Generation Place and Route
 *
 *  Copyright (C) 2018  David Shah <david@symbioticeda.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

/*
 * Timing-optimised detailed placement algorithm using BFS of the neighbour graph created from cells
 * on a critical path
 *
 * Based on "An Effective Timing-Driven Detailed Placement Algorithm for FPGAs"
 * https://www.cerc.utexas.edu/utda/publications/C205.pdf
 *
 * Modifications made to deal with the smaller Bels that nextpnr uses instead of swapping whole tiles,
 * and deal with the fact that not every cell on the crit path may be swappable.
 */

#include "timing_opt.h"
#include <boost/range/adaptor/reversed.hpp>
#include <queue>
#include "nextpnr.h"
#include "timing.h"
#include "util.h"

#include "hash_table.h"

NEXTPNR_NAMESPACE_BEGIN

class TimingOptimiser
{
  public:
    TimingOptimiser(Context *ctx, TimingOptCfg cfg) : ctx(ctx), cfg(cfg), tmg(ctx){};
    bool optimise()
    {
        log_info("Running timing-driven placement optimisation...\n");
        ctx->lock();
        if (ctx->verbose)
            timing_analysis(ctx, false, true, false, false);
        tmg.setup();
        for (int i = 0; i < 30; i++) {
            log_info("   Iteration %d...\n", i);
            tmg.run();
            setup_delay_limits();
            auto crit_paths = find_crit_paths(0.98, 50000);
            for (auto &path : crit_paths)
                optimise_path(path);
            if (ctx->verbose)
                timing_analysis(ctx, false, true, false, false);
        }
        ctx->unlock();
        return true;
    }

  private:
    void setup_delay_limits()
    {
        max_net_delay.clear();
        for (auto net : sorted(ctx->nets)) {
            NetInfo *ni = net.second;
            if (ni->driver.cell == nullptr)
                continue;
            for (auto usr : ni->users) {
                max_net_delay[std::make_pair(usr.cell->name, usr.port)] = std::numeric_limits<delay_t>::max();
            }
            for (size_t i = 0; i < ni->users.size(); i++) {
                auto &usr = ni->users.at(i);
                delay_t net_delay = ctx->getNetinfoRouteDelay(ni, usr);
                delay_t slack = tmg.get_setup_slack(CellPortKey(usr));
                delay_t domain_slack = tmg.get_domain_setup_slack(CellPortKey(usr));
                if (slack == std::numeric_limits<delay_t>::max())
                    continue;
                max_net_delay[std::make_pair(usr.cell->name, usr.port)] = net_delay + ((slack - domain_slack) / 10);
            }
        }
    }

    bool check_cell_delay_limits(CellInfo *cell)
    {
        for (const auto &port : cell->ports) {
            int nc;
            if (ctx->getPortTimingClass(cell, port.first, nc) == TMG_IGNORE)
                continue;
            NetInfo *net = port.second.net;
            if (net == nullptr)
                continue;
            if (port.second.type == PORT_IN) {
                if (net->driver.cell == nullptr || net->driver.cell->bel == BelId())
                    continue;
                for (auto user : net->users) {
                    if (user.cell == cell && user.port == port.first) {
                        if (ctx->predictDelay(net, user) >
                            1.1 * max_net_delay.at(std::make_pair(cell->name, port.first)))
                            return false;
                    }
                }

            } else if (port.second.type == PORT_OUT) {
                for (auto user : net->users) {
                    // This could get expensive for high-fanout nets??
                    BelId dstBel = user.cell->bel;
                    if (dstBel == BelId())
                        continue;
                    if (ctx->predictDelay(net, user) >
                        1.1 * max_net_delay.at(std::make_pair(user.cell->name, user.port))) {

                        return false;
                    }
                }
            }
        }
        return true;
    }

    BelId cell_swap_bel(CellInfo *cell, BelId newBel)
    {
        BelId oldBel = cell->bel;
        if (oldBel == newBel)
            return oldBel;
        CellInfo *other_cell = ctx->getBoundBelCell(newBel);
        NPNR_ASSERT(other_cell == nullptr || other_cell->belStrength <= STRENGTH_WEAK);
        ctx->unbindBel(oldBel);
        if (other_cell != nullptr) {
            ctx->unbindBel(newBel);
            ctx->bindBel(oldBel, other_cell, STRENGTH_WEAK);
        }
        ctx->bindBel(newBel, cell, STRENGTH_WEAK);
        return oldBel;
    }

    // Check that a series of moves are both legal and remain within maximum delay bounds
    // Moves are specified as a vector of pairs <cell, oldBel>
    bool acceptable_move(std::vector<std::pair<CellInfo *, BelId>> &move, bool check_delays = true)
    {
        for (auto &entry : move) {
            if (!ctx->isBelLocationValid(entry.first->bel))
                return false;
            if (!ctx->isBelLocationValid(entry.second))
                return false;
            if (!check_delays)
                continue;
            if (!check_cell_delay_limits(entry.first))
                return false;
            // We might have swapped another cell onto the original bel. Check this for max delay violations
            // too
            CellInfo *swapped = ctx->getBoundBelCell(entry.second);
            if (swapped != nullptr && !check_cell_delay_limits(swapped))
                return false;
        }
        return true;
    }

    int find_neighbours(CellInfo *cell, IdString prev_cell, int d, bool allow_swap)
    {
        BelId curr = cell->bel;
        Loc curr_loc = ctx->getBelLocation(curr);
        int found_count = 0;
        cell_neighbour_bels[cell->name] = std::unordered_set<BelId>{};
        for (int dy = -d; dy <= d; dy++) {
            for (int dx = -d; dx <= d; dx++) {
                // Go through all the Bels at this location
                // First, find all bels of the correct type that are either unbound or bound normally
                // Strongly bound bels are ignored
                // FIXME: This means that we cannot touch carry chains or similar relatively constrained macros
                std::vector<BelId> free_bels_at_loc;
                std::vector<BelId> bound_bels_at_loc;
                for (auto bel : ctx->getBelsByTile(curr_loc.x + dx, curr_loc.y + dy)) {
                    if (!ctx->isValidBelForCellType(cell->type, bel))
                        continue;
                    CellInfo *bound = ctx->getBoundBelCell(bel);
                    if (bound == nullptr) {
                        free_bels_at_loc.push_back(bel);
                    } else if (bound->belStrength <= STRENGTH_WEAK && bound->cluster == ClusterId()) {
                        bound_bels_at_loc.push_back(bel);
                    }
                }
                BelId candidate;

                while (!free_bels_at_loc.empty() || !bound_bels_at_loc.empty()) {
                    BelId try_bel;
                    if (!free_bels_at_loc.empty()) {
                        int try_idx = ctx->rng(int(free_bels_at_loc.size()));
                        try_bel = free_bels_at_loc.at(try_idx);
                        free_bels_at_loc.erase(free_bels_at_loc.begin() + try_idx);
                    } else {
                        int try_idx = ctx->rng(int(bound_bels_at_loc.size()));
                        try_bel = bound_bels_at_loc.at(try_idx);
                        bound_bels_at_loc.erase(bound_bels_at_loc.begin() + try_idx);
                    }
                    if (bel_candidate_cells.count(try_bel) && !allow_swap) {
                        // Overlap is only allowed if it is with the previous cell (this is handled by removing those
                        // edges in the graph), or if allow_swap is true to deal with cases where overlap means few
                        // neighbours are identified
                        if (bel_candidate_cells.at(try_bel).size() > 1 ||
                            (bel_candidate_cells.at(try_bel).size() == 1 &&
                             *(bel_candidate_cells.at(try_bel).begin()) != prev_cell))
                            continue;
                    }
                    // TODO: what else to check here?
                    candidate = try_bel;
                    break;
                }

                if (candidate != BelId()) {
                    cell_neighbour_bels[cell->name].insert(candidate);
                    bel_candidate_cells[candidate].insert(cell->name);
                    // Work out if we need to delete any overlap
                    std::vector<IdString> overlap;
                    for (auto other : bel_candidate_cells[candidate])
                        if (other != cell->name && other != prev_cell)
                            overlap.push_back(other);
                    if (overlap.size() > 0)
                        NPNR_ASSERT(allow_swap);
                    for (auto ov : overlap) {
                        bel_candidate_cells[candidate].erase(ov);
                        cell_neighbour_bels[ov].erase(candidate);
                    }
                }
            }
        }
        return found_count;
    }

    std::vector<std::vector<PortRef *>> find_crit_paths(float crit_thresh, size_t max_count)
    {
        std::vector<std::vector<PortRef *>> crit_paths;
        std::vector<std::pair<NetInfo *, int>> crit_nets;
        std::vector<IdString> netnames;
        std::transform(ctx->nets.begin(), ctx->nets.end(), std::back_inserter(netnames),
                       [](const std::pair<const IdString, std::unique_ptr<NetInfo>> &kv) { return kv.first; });
        ctx->sorted_shuffle(netnames);
        for (auto net : netnames) {
            if (crit_nets.size() >= max_count)
                break;
            float highest_crit = 0;
            size_t crit_user_idx = 0;
            NetInfo *ni = ctx->nets.at(net).get();
            for (size_t i = 0; i < ni->users.size(); i++) {
                float crit = tmg.get_criticality(CellPortKey(ni->users.at(i)));
                if (crit > highest_crit) {
                    highest_crit = crit;
                    crit_user_idx = i;
                }
            }
            if (highest_crit > crit_thresh)
                crit_nets.push_back(std::make_pair(ni, crit_user_idx));
        }

        auto port_user_index = [](CellInfo *cell, PortInfo &port) -> size_t {
            NPNR_ASSERT(port.net != nullptr);
            for (size_t i = 0; i < port.net->users.size(); i++) {
                auto &usr = port.net->users.at(i);
                if (usr.cell == cell && usr.port == port.name)
                    return i;
            }
            NPNR_ASSERT_FALSE("port user not found on net");
        };
        std::unordered_set<PortRef *> used_ports;

        for (auto crit_net : crit_nets) {

            if (used_ports.count(&(crit_net.first->users.at(crit_net.second))))
                continue;

            std::deque<PortRef *> crit_path;

            // FIXME: This will fail badly on combinational loops

            // Iterate backwards following greatest criticality
            NetInfo *back_cursor = crit_net.first;
            while (back_cursor != nullptr) {
                float max_crit = 0;
                std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
                CellInfo *cell = back_cursor->driver.cell;
                if (cell == nullptr)
                    break;
                for (auto port : cell->ports) {
                    if (port.second.type != PORT_IN)
                        continue;
                    NetInfo *pn = port.second.net;
                    if (pn == nullptr)
                        continue;
                    int ccount;
                    DelayQuad combDelay;
                    TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
                    if (tpclass != TMG_COMB_INPUT)
                        continue;
                    bool is_path = ctx->getCellDelay(cell, port.first, back_cursor->driver.port, combDelay);
                    if (!is_path)
                        continue;
                    size_t user_idx = port_user_index(cell, port.second);
                    float usr_crit = tmg.get_criticality(CellPortKey(cell->name, port.first));
                    if (used_ports.count(&(pn->users.at(user_idx))))
                        continue;
                    if (usr_crit >= max_crit) {
                        max_crit = usr_crit;
                        crit_sink = std::make_pair(pn, user_idx);
                    }
                }

                if (crit_sink.first != nullptr) {
                    crit_path.push_front(&(crit_sink.first->users.at(crit_sink.second)));
                    used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
                }
                back_cursor = crit_sink.first;
            }
            // Iterate forwards following greatest criticiality
            PortRef *fwd_cursor = &(crit_net.first->users.at(crit_net.second));
            while (fwd_cursor != nullptr) {
                crit_path.push_back(fwd_cursor);
                float max_crit = 0;
                std::pair<NetInfo *, size_t> crit_sink{nullptr, 0};
                CellInfo *cell = fwd_cursor->cell;
                for (auto port : cell->ports) {
                    if (port.second.type != PORT_OUT)
                        continue;
                    NetInfo *pn = port.second.net;
                    if (pn == nullptr)
                        continue;

                    int ccount;
                    DelayQuad combDelay;
                    TimingPortClass tpclass = ctx->getPortTimingClass(cell, port.first, ccount);
                    if (tpclass != TMG_COMB_OUTPUT && tpclass != TMG_REGISTER_OUTPUT)
                        continue;
                    bool is_path = ctx->getCellDelay(cell, fwd_cursor->port, port.first, combDelay);
                    if (!is_path)
                        continue;
                    for (size_t i = 0; i < pn->users.size(); i++) {
                        if (used_ports.count(&(pn->users.at(i))))
                            continue;
                        float crit = tmg.get_criticality(CellPortKey(pn->users.at(i)));
                        if (crit >= max_crit) {
                            max_crit = crit;
                            crit_sink = std::make_pair(pn, i);
                        }
                    }
                }
                if (crit_sink.first != nullptr) {
                    fwd_cursor = &(crit_sink.first->users.at(crit_sink.second));
                    used_ports.insert(&(crit_sink.first->users.at(crit_sink.second)));
                } else {
                    fwd_cursor = nullptr;
                }
            }

            std::vector<PortRef *> crit_path_vec;
            std::copy(crit_path.begin(), crit_path.end(), std::back_inserter(crit_path_vec));
            crit_paths.push_back(crit_path_vec);
        }

        return crit_paths;
    }

    void optimise_path(std::vector<PortRef *> &path)
    {
        path_cells.clear();
        cell_neighbour_bels.clear();
        bel_candidate_cells.clear();
        if (ctx->debug)
            log_info("Optimising the following path: \n");

        auto front_port = path.front();
        NetInfo *front_net = front_port->cell->ports.at(front_port->port).net;
        if (front_net != nullptr && front_net->driver.cell != nullptr) {
            auto front_cell = front_net->driver.cell;
            if (front_cell->belStrength <= STRENGTH_WEAK && cfg.cellTypes.count(front_cell->type) &&
                front_cell->cluster == ClusterId()) {
                path_cells.push_back(front_cell->name);
            }
        }

        for (auto port : path) {
            if (ctx->debug) {
                float crit = tmg.get_criticality(CellPortKey(*port));
                log_info("    %s.%s at %s crit %0.02f\n", port->cell->name.c_str(ctx), port->port.c_str(ctx),
                         ctx->nameOfBel(port->cell->bel), crit);
            }
            if (std::find(path_cells.begin(), path_cells.end(), port->cell->name) != path_cells.end())
                continue;
            if (port->cell->belStrength > STRENGTH_WEAK || !cfg.cellTypes.count(port->cell->type) ||
                port->cell->cluster != ClusterId())
                continue;
            if (ctx->debug)
                log_info("        can move\n");
            path_cells.push_back(port->cell->name);
        }

        if (path_cells.size() < 2) {
            if (ctx->debug) {
                log_info("Too few moveable cells; skipping path\n");
                log_break();
            }

            return;
        }

        // Calculate original delay before touching anything
        delay_t original_delay = 0;

        for (size_t i = 0; i < path.size(); i++) {
            NetInfo *pn = path.at(i)->cell->ports.at(path.at(i)->port).net;
            for (size_t j = 0; j < pn->users.size(); j++) {
                auto &usr = pn->users.at(j);
                if (usr.cell == path.at(i)->cell && usr.port == path.at(i)->port) {
                    original_delay += ctx->predictDelay(pn, usr);
                    break;
                }
            }
        }

        IdString last_cell;
        const int d = 2; // FIXME: how to best determine d
        for (auto cell : path_cells) {
            // FIXME: when should we allow swapping due to a lack of candidates
            find_neighbours(ctx->cells[cell].get(), last_cell, d, false);
            last_cell = cell;
        }

        if (ctx->debug) {
            for (auto cell : path_cells) {
                log_info("Candidate neighbours for %s (%s):\n", cell.c_str(ctx), ctx->nameOfBel(ctx->cells[cell]->bel));
                for (auto neigh : cell_neighbour_bels.at(cell)) {
                    log_info("    %s\n", ctx->nameOfBel(neigh));
                }
            }
        }

        // Actual BFS path optimisation algorithm
        std::unordered_map<IdString, std::unordered_map<BelId, delay_t>> cumul_costs;
        std::unordered_map<std::pair<IdString, BelId>, std::pair<IdString, BelId>, PairHash> backtrace;
        std::queue<std::pair<int, BelId>> visit;
        std::unordered_set<std::pair<int, BelId>, PairHash> to_visit;

        for (auto startbel : cell_neighbour_bels[path_cells.front()]) {
            // Swap for legality check
            CellInfo *cell = ctx->cells.at(path_cells.front()).get();