aboutsummaryrefslogtreecommitdiffstats
path: root/xen/arch/x86/hpet.c
blob: e0b865955481574cacd9658e3a835d1a5eb98d67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/******************************************************************************
 * arch/x86/hpet.c
 * 
 * HPET management.
 */

#include <xen/config.h>
#include <xen/errno.h>
#include <xen/time.h>
#include <xen/timer.h>
#include <xen/smp.h>
#include <xen/softirq.h>
#include <xen/irq.h>
#include <asm/fixmap.h>
#include <asm/div64.h>
#include <asm/hpet.h>
#include <asm/msi.h>
#include <mach_apic.h>
#include <xen/cpuidle.h>

#define MAX_DELTA_NS MILLISECS(10*1000)
#define MIN_DELTA_NS MICROSECS(20)

#define MAX_HPET_NUM 32

#define HPET_EVT_USED_BIT    0
#define HPET_EVT_USED       (1 << HPET_EVT_USED_BIT)
#define HPET_EVT_DISABLE_BIT 1
#define HPET_EVT_DISABLE    (1 << HPET_EVT_DISABLE_BIT)

struct hpet_event_channel
{
    unsigned long mult;
    int           shift;
    s_time_t      next_event;
    cpumask_t     cpumask;
    spinlock_t    lock;
    void          (*event_handler)(struct hpet_event_channel *);

    unsigned int idx;   /* physical channel idx */
    int cpu;            /* msi target */
    int irq;            /* msi irq */
    unsigned int flags; /* HPET_EVT_x */
} __cacheline_aligned;
static struct hpet_event_channel legacy_hpet_event;
static struct hpet_event_channel hpet_events[MAX_HPET_NUM] = 
    { [0 ... MAX_HPET_NUM-1].irq = -1 };
static unsigned int num_hpets_used; /* msi hpet channels used for broadcast */

DEFINE_PER_CPU(struct hpet_event_channel *, cpu_bc_channel);

static int *irq_channel;

#define irq_to_channel(irq)   irq_channel[irq]

unsigned long hpet_address;

/*
 * force_hpet_broadcast: by default legacy hpet broadcast will be stopped
 * if RTC interrupts are enabled. Enable this option if want to always enable
 * legacy hpet broadcast for deep C state
 */
int force_hpet_broadcast;
boolean_param("hpetbroadcast", force_hpet_broadcast);

/*
 * Calculate a multiplication factor for scaled math, which is used to convert
 * nanoseconds based values to clock ticks:
 *
 * clock_ticks = (nanoseconds * factor) >> shift.
 *
 * div_sc is the rearranged equation to calculate a factor from a given clock
 * ticks / nanoseconds ratio:
 *
 * factor = (clock_ticks << shift) / nanoseconds
 */
static inline unsigned long div_sc(unsigned long ticks, unsigned long nsec,
                                   int shift)
{
    uint64_t tmp = ((uint64_t)ticks) << shift;

    do_div(tmp, nsec);
    return (unsigned long) tmp;
}

/*
 * Convert nanoseconds based values to clock ticks:
 *
 * clock_ticks = (nanoseconds * factor) >> shift.
 */
static inline unsigned long ns2ticks(unsigned long nsec, int shift,
                                     unsigned long factor)
{
    uint64_t tmp = ((uint64_t)nsec * factor) >> shift;

    return (unsigned long) tmp;
}

static int hpet_next_event(unsigned long delta, int timer)
{
    uint32_t cnt, cmp;
    unsigned long flags;

    local_irq_save(flags);
    cnt = hpet_read32(HPET_COUNTER);
    cmp = cnt + delta;
    hpet_write32(cmp, HPET_Tn_CMP(timer));
    cmp = hpet_read32(HPET_COUNTER);
    local_irq_restore(flags);

    /* Are we within two ticks of the deadline passing? Then we may miss. */
    return ((cmp + 2 - cnt) > delta) ? -ETIME : 0;
}

static int reprogram_hpet_evt_channel(
    struct hpet_event_channel *ch,
    s_time_t expire, s_time_t now, int force)
{
    int64_t delta;
    int ret;

    if ( (ch->flags & HPET_EVT_DISABLE) || (expire == 0) )
        return 0;

    if ( unlikely(expire < 0) )
    {
        printk(KERN_DEBUG "reprogram: expire <= 0\n");
        return -ETIME;
    }

    delta = expire - now;
    if ( (delta <= 0) && !force )
        return -ETIME;

    ch->next_event = expire;

    if ( expire == STIME_MAX )
    {
        /* We assume it will take a long time for the timer to wrap. */
        hpet_write32(0, HPET_Tn_CMP(ch->idx));
        return 0;
    }

    delta = min_t(int64_t, delta, MAX_DELTA_NS);
    delta = max_t(int64_t, delta, MIN_DELTA_NS);
    delta = ns2ticks(delta, ch->shift, ch->mult);

    ret = hpet_next_event(delta, ch->idx);
    while ( ret && force )
    {
        delta += delta;
        ret = hpet_next_event(delta, ch->idx);
    }

    return ret;
}

static int evt_do_broadcast(cpumask_t mask)
{
    int ret = 0, cpu = smp_processor_id();

    if ( cpu_isset(cpu, mask) )
    {
        cpu_clear(cpu, mask);
        raise_softirq(TIMER_SOFTIRQ);
        ret = 1;
    }

    if ( !cpus_empty(mask) )
    {
       cpumask_raise_softirq(mask, TIMER_SOFTIRQ);
       ret = 1;
    }
    return ret;
}

static void handle_hpet_broadcast(struct hpet_event_channel *ch)
{
    cpumask_t mask;
    s_time_t now, next_event;
    int cpu;

    spin_lock_irq(&ch->lock);

again:
    ch->next_event = STIME_MAX;
    next_event = STIME_MAX;
    mask = (cpumask_t)CPU_MASK_NONE;
    now = NOW();

    /* find all expired events */
    for_each_cpu_mask(cpu, ch->cpumask)
    {
        if ( per_cpu(timer_deadline_start, cpu) <= now )
            cpu_set(cpu, mask);
        else if ( per_cpu(timer_deadline_end, cpu) < next_event )
            next_event = per_cpu(timer_deadline_end, cpu);
    }

    /* wakeup the cpus which have an expired event. */
    evt_do_broadcast(mask);

    if ( next_event != STIME_MAX )
    {
        if ( reprogram_hpet_evt_channel(ch, next_event, now, 0) )
            goto again;
    }
    spin_unlock_irq(&ch->lock);
}

static void hpet_interrupt_handler(int irq, void *data,
        struct cpu_user_regs *regs)
{
    struct hpet_event_channel *ch = (struct hpet_event_channel *)data;

    this_cpu(irq_count)--;

    if ( !ch->event_handler )
    {
        printk(XENLOG_WARNING "Spurious HPET timer interrupt on HPET timer %d\n", ch->idx);
        return;
    }

    ch->event_handler(ch);
}

static void hpet_msi_unmask(unsigned int irq)
{
    unsigned long cfg;
    int ch_idx = irq_to_channel(irq);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    cfg = hpet_read32(HPET_Tn_CFG(ch->idx));
    cfg |= HPET_TN_FSB;
    hpet_write32(cfg, HPET_Tn_CFG(ch->idx));
}

static void hpet_msi_mask(unsigned int irq)
{
    unsigned long cfg;
    int ch_idx = irq_to_channel(irq);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    cfg = hpet_read32(HPET_Tn_CFG(ch->idx));
    cfg &= ~HPET_TN_FSB;
    hpet_write32(cfg, HPET_Tn_CFG(ch->idx));
}

static void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
{
    int ch_idx = irq_to_channel(irq);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    hpet_write32(msg->data, HPET_Tn_ROUTE(ch->idx));
    hpet_write32(msg->address_lo, HPET_Tn_ROUTE(ch->idx) + 4);
}

static void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
{
    int ch_idx = irq_to_channel(irq);
    struct hpet_event_channel *ch;

    BUG_ON(ch_idx < 0);
    ch = &hpet_events[ch_idx];

    msg->data = hpet_read32(HPET_Tn_ROUTE(ch->idx));
    msg->address_lo = hpet_read32(HPET_Tn_ROUTE(ch->idx) + 4);
    msg->address_hi = 0;
}

static unsigned int hpet_msi_startup(unsigned int irq)
{
    hpet_msi_unmask(irq);
    return 0;
}

static void hpet_msi_shutdown(unsigned int irq)
{
    hpet_msi_mask(irq);
}

static void hpet_msi_ack(unsigned int irq)
{
    struct irq_desc *desc = irq_to_desc(irq);

    irq_complete_move(&desc);
    move_native_irq(irq);
    ack_APIC_irq();
}

static void hpet_msi_end(unsigned int irq, u8 vector)
{
}

static void hpet_msi_set_affinity(unsigned int irq, cpumask_t mask)
{
    struct msi_msg msg;
    unsigned int dest;
    struct irq_desc * desc = irq_to_desc(irq);
    struct irq_cfg *cfg= desc->chip_data;

    dest = set_desc_affinity(desc, mask);
    if (dest == BAD_APICID)
        return;

    hpet_msi_read(irq, &msg);
    msg.data &= ~MSI_DATA_VECTOR_MASK;
    msg.data |= MSI_DATA_VECTOR(cfg->vector);
    msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
    msg.address_lo |= MSI_ADDR_DEST_ID(dest);
    hpet_msi_write(irq, &msg);
}

/*
 * IRQ Chip for MSI HPET Devices,
 */
static hw_irq_controller hpet_msi_type = {
    .typename   = "HPET-MSI",
    .startup    = hpet_msi_startup,
    .shutdown   = hpet_msi_shutdown,
    .enable	    = hpet_msi_unmask,
    .disable    = hpet_msi_mask,
    .ack        = hpet_msi_ack,
    .end        = hpet_msi_end,
    .set_affinity   = hpet_msi_set_affinity,
};

static int hpet_setup_msi_irq(unsigned int irq)
{
    int ret;
    struct msi_msg msg;
    struct hpet_event_channel *ch = &hpet_events[irq_to_channel(irq)];

    irq_desc[irq].handler = &hpet_msi_type;
    ret = request_irq(irq, hpet_interrupt_handler,
                      0, "HPET", ch);
    if ( ret < 0 )
        return ret;

    msi_compose_msg(NULL, irq, &msg);
    hpet_msi_write(irq, &msg);

    return 0;
}

static int hpet_assign_irq(struct hpet_event_channel *ch)
{
    int irq = ch->irq;

    if ( irq < 0 )
    {
        if ( (irq = create_irq()) < 0 )
            return irq;

        irq_channel[irq] = ch - &hpet_events[0];
        ch->irq = irq;
    }

    /* hpet_setup_msi_irq should also be called for S3 resuming */
    if ( hpet_setup_msi_irq(irq) )
    {
        destroy_irq(irq);
        irq_channel[irq] = -1;
        ch->irq = -1;
        return -EINVAL;
    }

    return 0;
}

static int hpet_fsb_cap_lookup(void)
{
    unsigned int id;
    unsigned int num_chs, num_chs_used;
    int i;

    /* TODO. */
    if ( iommu_intremap )
    {
        printk(XENLOG_INFO "HPET's MSI mode hasn't been supported when "
            "Interrupt Remapping is enabled.\n");
        return 0;
    }

    id = hpet_read32(HPET_ID);

    num_chs = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
    num_chs++; /* Value read out starts from 0 */

    num_chs_used = 0;
    for ( i = 0; i < num_chs; i++ )
    {
        struct hpet_event_channel *ch = &hpet_events[num_chs_used];
        unsigned long cfg = hpet_read32(HPET_Tn_CFG(i));

        /* Only consider HPET timer with MSI support */
        if ( !(cfg & HPET_TN_FSB_CAP) )
            continue;

        ch->flags = 0;
        ch->idx = i;

        if ( hpet_assign_irq(ch) )
            continue;

        /* set default irq affinity */
        ch->cpu = num_chs_used;
        per_cpu(cpu_bc_channel, ch->cpu) = ch;
        irq_desc[ch->irq].handler->
            set_affinity(ch->irq, cpumask_of_cpu(ch->cpu));

        num_chs_used++;

        if ( num_chs_used == num_possible_cpus() )
            break;
    }

    printk(XENLOG_INFO
           "HPET: %d timers in total, %d timers will be used for broadcast\n",
           num_chs, num_chs_used);

    return num_chs_used;
}

static int next_channel;
static spinlock_t next_lock = SPIN_LOCK_UNLOCKED;

static struct hpet_event_channel *hpet_get_channel(int cpu)
{
    int i;
    int next;
    struct hpet_event_channel *ch;

    spin_lock(&next_lock);
    next = next_channel = (next_channel + 1) % num_hpets_used;
    spin_unlock(&next_lock);

    /* try unused channel first */
    for ( i = next; i < next + num_hpets_used; i++ )
    {
        ch = &hpet_events[i % num_hpets_used];
        if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        {
            ch->cpu = cpu;
            return ch;
        }
    }

    /* share a in-use channel */
    ch = &hpet_events[next];
    if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        ch->cpu = cpu;

    return ch;
}

static void hpet_attach_channel_share(int cpu, struct hpet_event_channel *ch)
{
    per_cpu(cpu_bc_channel, cpu) = ch;

    /* try to be the channel owner again while holding the lock */
    if ( !test_and_set_bit(HPET_EVT_USED_BIT, &ch->flags) )
        ch->cpu = cpu;

    if ( ch->cpu != cpu )
        return;

    /* set irq affinity */
    irq_desc[ch->irq].handler->
        set_affinity(ch->irq, cpumask_of_cpu(ch->cpu));
}

static void hpet_detach_channel_share(int cpu)
{
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    per_cpu(cpu_bc_channel, cpu) = NULL;

    if ( cpu != ch->cpu )
        return;

    if ( cpus_empty(ch->cpumask) )
    {
        ch->cpu = -1;
        clear_bit(HPET_EVT_USED_BIT, &ch->flags);
        return;
    }

    ch->cpu = first_cpu(ch->cpumask);
    /* set irq affinity */
    irq_desc[ch->irq].handler->
        set_affinity(ch->irq, cpumask_of_cpu(ch->cpu));
}

static void (*hpet_attach_channel)(int cpu, struct hpet_event_channel *ch);
static void (*hpet_detach_channel)(int cpu);

#include <asm/mc146818rtc.h>

void (*pv_rtc_handler)(unsigned int port, uint8_t value);

static void handle_rtc_once(unsigned int port, uint8_t value)
{
    static int index;

    if ( port == 0x70 )
    {
        index = value;
        return;
    }

    if ( index != RTC_REG_B )
        return;
    
    /* RTC Reg B, contain PIE/AIE/UIE */
    if ( value & (RTC_PIE | RTC_AIE | RTC_UIE ) )
    {
        cpuidle_disable_deep_cstate();
        pv_rtc_handler = NULL;
    }
}

void hpet_broadcast_init(void)
{
    u64 hpet_rate;
    u32 hpet_id, cfg;
    int i;

    if ( irq_channel == NULL )
    {
        irq_channel = xmalloc_array(int, nr_irqs);
        BUG_ON(irq_channel == NULL);
        for ( i = 0; i < nr_irqs; i++ )
            irq_channel[i] = -1;
    }

    hpet_rate = hpet_setup();
    if ( hpet_rate == 0 )
        return;

    num_hpets_used = hpet_fsb_cap_lookup();
    if ( num_hpets_used > 0 )
    {
        /* Stop HPET legacy interrupts */
        cfg = hpet_read32(HPET_CFG);
        cfg &= ~HPET_CFG_LEGACY;
        hpet_write32(cfg, HPET_CFG);

        for ( i = 0; i < num_hpets_used; i++ )
        {
            /* set HPET Tn as oneshot */
            cfg = hpet_read32(HPET_Tn_CFG(hpet_events[i].idx));
            cfg &= ~HPET_TN_PERIODIC;
            cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
            hpet_write32(cfg, HPET_Tn_CFG(hpet_events[i].idx));
  
            hpet_events[i].mult = div_sc((unsigned long)hpet_rate,
                                         1000000000ul, 32);
            hpet_events[i].shift = 32;
            hpet_events[i].next_event = STIME_MAX;
            spin_lock_init(&hpet_events[i].lock);
            wmb();
            hpet_events[i].event_handler = handle_hpet_broadcast;
        }

        if ( num_hpets_used < num_possible_cpus() )
        {
            hpet_attach_channel = hpet_attach_channel_share;
            hpet_detach_channel = hpet_detach_channel_share;
        }

        return;
    }

    if ( legacy_hpet_event.flags & HPET_EVT_DISABLE )
        return;

    hpet_id = hpet_read32(HPET_ID);
    if ( !(hpet_id & HPET_ID_LEGSUP) )
        return;

    /* Start HPET legacy interrupts */
    cfg = hpet_read32(HPET_CFG);
    cfg |= HPET_CFG_LEGACY;
    hpet_write32(cfg, HPET_CFG);

    /* set HPET T0 as oneshot */
    cfg = hpet_read32(HPET_T0_CFG);
    cfg &= ~HPET_TN_PERIODIC;
    cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
    hpet_write32(cfg, HPET_T0_CFG);

    /*
     * The period is a femto seconds value. We need to calculate the scaled
     * math multiplication factor for nanosecond to hpet tick conversion.
     */
    legacy_hpet_event.mult = div_sc((unsigned long)hpet_rate, 1000000000ul, 32);
    legacy_hpet_event.shift = 32;
    legacy_hpet_event.next_event = STIME_MAX;
    legacy_hpet_event.idx = 0;
    legacy_hpet_event.flags = 0;
    spin_lock_init(&legacy_hpet_event.lock);
    wmb();
    legacy_hpet_event.event_handler = handle_hpet_broadcast;

    for_each_possible_cpu(i)
        per_cpu(cpu_bc_channel, i) = &legacy_hpet_event;

    if ( !force_hpet_broadcast )
        pv_rtc_handler = handle_rtc_once;
}

void hpet_disable_legacy_broadcast(void)
{
    u32 cfg;
    unsigned long flags;

    if ( !legacy_hpet_event.shift )
        return;

    spin_lock_irqsave(&legacy_hpet_event.lock, flags);

    legacy_hpet_event.flags |= HPET_EVT_DISABLE;

    /* disable HPET T0 */
    cfg = hpet_read32(HPET_T0_CFG);
    cfg &= ~HPET_TN_ENABLE;
    hpet_write32(cfg, HPET_T0_CFG);

    /* Stop HPET legacy interrupts */
    cfg = hpet_read32(HPET_CFG);
    cfg &= ~HPET_CFG_LEGACY;
    hpet_write32(cfg, HPET_CFG);

    spin_unlock_irqrestore(&legacy_hpet_event.lock, flags);

    smp_send_event_check_mask(&cpu_online_map);
}

void hpet_broadcast_enter(void)
{
    int cpu = smp_processor_id();
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    if ( this_cpu(timer_deadline_start) == 0 )
        return;

    if ( !ch )
        ch = hpet_get_channel(cpu);
    BUG_ON( !ch );

    ASSERT(!local_irq_is_enabled());
    spin_lock(&ch->lock);

    if ( hpet_attach_channel )
        hpet_attach_channel(cpu, ch);

    /* Cancel any outstanding LAPIC timer event and disable interrupts. */
    reprogram_timer(0);
    disable_APIC_timer();

    cpu_set(cpu, ch->cpumask);

    /* reprogram if current cpu expire time is nearer */
    if ( this_cpu(timer_deadline_end) < ch->next_event )
        reprogram_hpet_evt_channel(ch, this_cpu(timer_deadline_end), NOW(), 1);

    spin_unlock(&ch->lock);
}

void hpet_broadcast_exit(void)
{
    int cpu = smp_processor_id();
    struct hpet_event_channel *ch = per_cpu(cpu_bc_channel, cpu);

    if ( this_cpu(timer_deadline_start) == 0 )
        return;

    BUG_ON( !ch );

    spin_lock_irq(&ch->lock);

    if ( cpu_test_and_clear(cpu, ch->cpumask) )
    {
        /* Reprogram the deadline; trigger timer work now if it has passed. */
        enable_APIC_timer();
        if ( !reprogram_timer(this_cpu(timer_deadline_start)) )
            raise_softirq(TIMER_SOFTIRQ);

        if ( cpus_empty(ch->cpumask) && ch->next_event != STIME_MAX )
            reprogram_hpet_evt_channel(ch, STIME_MAX, 0, 0);
    }

    if ( hpet_detach_channel )
        hpet_detach_channel(cpu);

    spin_unlock_irq(&ch->lock);
}

int hpet_broadcast_is_available(void)
{
    return (legacy_hpet_event.event_handler == handle_hpet_broadcast
            || num_hpets_used > 0);
}

int hpet_legacy_irq_tick(void)
{
    this_cpu(irq_count)--;

    if ( !legacy_hpet_event.event_handler )
        return 0;
    legacy_hpet_event.event_handler(&legacy_hpet_event);
    return 1;
}

static u32 *hpet_boot_cfg;

u64 hpet_setup(void)
{
    static u64 hpet_rate;
    static u32 system_reset_latch;
    u32 hpet_id, hpet_period, cfg;
    unsigned int i, last;

    if ( system_reset_latch == system_reset_counter )
        return hpet_rate;
    system_reset_latch = system_reset_counter;

    if ( hpet_address == 0 )
        return 0;

    set_fixmap_nocache(FIX_HPET_BASE, hpet_address);

    hpet_id = hpet_read32(HPET_ID);
    if ( (hpet_id & HPET_ID_REV) == 0 )
    {
        printk("BAD HPET revision id.\n");
        return 0;
    }

    /* Check for sane period (100ps <= period <= 100ns). */
    hpet_period = hpet_read32(HPET_PERIOD);
    if ( (hpet_period > 100000000) || (hpet_period < 100000) )
    {
        printk("BAD HPET period %u.\n", hpet_period);
        return 0;
    }

    last = (hpet_id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
    hpet_boot_cfg = xmalloc_array(u32, 2 + last);

    cfg = hpet_read32(HPET_CFG);
    if ( hpet_boot_cfg )
        *hpet_boot_cfg = cfg;
    cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
    hpet_write32(cfg, HPET_CFG);

    for ( i = 0; i <= last; ++i )
    {
        cfg = hpet_read32(HPET_Tn_CFG(i));
        if ( hpet_boot_cfg )
            hpet_boot_cfg[i + 1] = cfg;
        cfg &= ~HPET_TN_ENABLE;
        hpet_write32(cfg, HPET_Tn_CFG(i));
    }

    cfg = hpet_read32(HPET_CFG);
    cfg |= HPET_CFG_ENABLE;
    hpet_write32(cfg, HPET_CFG);

    hpet_rate = 1000000000000000ULL; /* 10^15 */
    (void)do_div(hpet_rate, hpet_period);

    return hpet_rate;
}

void hpet_disable(void)
{
    unsigned int i;
    u32 id;

    if ( !hpet_boot_cfg )
        return;

    hpet_write32(*hpet_boot_cfg & ~HPET_CFG_ENABLE, HPET_CFG);

    id = hpet_read32(HPET_ID);
    for ( i = 0; i <= ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); ++i )
        hpet_write32(hpet_boot_cfg[i + 1], HPET_Tn_CFG(i));

    if ( *hpet_boot_cfg & HPET_CFG_ENABLE )
        hpet_write32(*hpet_boot_cfg, HPET_CFG);
}