aboutsummaryrefslogtreecommitdiffstats
path: root/tools/ioemu/iodev/pc_system.cc
blob: de34d9914b203884b225ba66d9d8539c86c3ce73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/////////////////////////////////////////////////////////////////////////
// $Id: pc_system.cc,v 1.34 2003/06/07 19:16:51 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2002  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA



#include "bochs.h"
#define LOG_THIS bx_pc_system.

#ifdef WIN32
#ifndef __MINGW32__
// #include <winsock2.h> // +++
#include <winsock.h>
#endif
#endif

#if BX_SHOW_IPS
unsigned long ips_count=0;
#endif

#if defined(PROVIDE_M_IPS)
double     m_ips; // Millions of Instructions Per Second
#endif

#ifdef BX_USE_VMX
unsigned int tsc_per_bx_tick;
#endif

// Option for turning off BX_TIMER_DEBUG?
// Check out m_ips and ips

#define SpewPeriodicTimerInfo 0
#define MinAllowableTimerPeriod 1


#if SpewPeriodicTimerInfo
// If debugging, set the heartbeat to 5M cycles.  Each heartbeat
// spews the active timer info.
const Bit64u bx_pc_system_c::NullTimerInterval = 5000000;
#else
// This must be the maximum 32-bit unsigned int value, NOT (Bit64u) -1.
const Bit64u bx_pc_system_c::NullTimerInterval = 0xffffffff;
#endif

  // constructor
bx_pc_system_c::bx_pc_system_c(void)
{
  this->put("SYS");

  // Timer[0] is the null timer.  It is initialized as a special
  // case here.  It should never be turned off or modified, and its
  // duration should always remain the same.
  ticksTotal = 0; // Reset ticks since emulator started.
  timer[0].period     = NullTimerInterval;
  timer[0].timeToFire = ticksTotal + NullTimerInterval;
  timer[0].active     = 1;
  timer[0].continuous = 1;
  timer[0].funct      = nullTimer;
  timer[0].this_ptr   = this;
  currCountdown       = NullTimerInterval;
  currCountdownPeriod = NullTimerInterval;
  numTimers = 1; // So far, only the nullTimer.
  lastTimeUsec = 0;
  usecSinceLast = 0;
}

  void
bx_pc_system_c::init_ips(Bit32u ips)
{
  HRQ = 0;

  enable_a20 = 1;
  //set_INTR (0);

#if BX_CPU_LEVEL < 2
  a20_mask   =    0xfffff;
#elif BX_CPU_LEVEL == 2
  a20_mask   =   0xffffff;
#else /* 386+ */
  a20_mask   = 0xffffffff;
#endif

#ifdef BX_USE_VMX
  Bit64u phy_cpu_freq = cpu_calibrate_ticks();
 
  if (ips == 500000) {  //default ips: we use fixed scaling factor to calulate ips
    tsc_per_bx_tick = 2000;
    ips = phy_cpu_freq / tsc_per_bx_tick;
  } else  //use uesr defined ips to calulate factor
    tsc_per_bx_tick = ((phy_cpu_freq + (ips>>1)) / ips);
#endif

  // parameter 'ips' is the processor speed in Instructions-Per-Second
  m_ips = double(ips) / 1000000.0L;

  BX_DEBUG(("ips = %u", (unsigned) ips));
}

  void
bx_pc_system_c::set_HRQ(bx_bool val)
{
  HRQ = val;
  if (val)
    BX_CPU(0)->async_event = 1;
}


#if (BX_NUM_SIMULATORS < 2)
  void
bx_pc_system_c::set_INTR(bx_bool value)
{
  if (bx_dbg.interrupts)
    BX_INFO(("pc_system: Setting INTR=%d on bootstrap processor %d", (int)value, BX_BOOTSTRAP_PROCESSOR));
  //INTR = value;
  BX_CPU(BX_BOOTSTRAP_PROCESSOR)->set_INTR(value);
}
#endif

//
// Read from the IO memory address space
//

  Bit32u BX_CPP_AttrRegparmN(2)
bx_pc_system_c::inp(Bit16u addr, unsigned io_len)
{
  Bit32u ret;

  ret = bx_devices.inp(addr, io_len);

  return( ret );
}


//
// Write to the IO memory address space.
//

  void BX_CPP_AttrRegparmN(3)
bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
{
  bx_devices.outp(addr, value, io_len);
}

  void BX_CPP_AttrRegparmN(1)
bx_pc_system_c::set_enable_a20(Bit8u value)
{
#if BX_CPU_LEVEL < 2
    BX_PANIC(("set_enable_a20() called: 8086 emulation"));
#else

#if BX_SUPPORT_A20
  unsigned old_enable_a20 = enable_a20;

  if (value) {
    enable_a20 = 1;
#if BX_CPU_LEVEL == 2
    a20_mask   = 0xffffff;   /* 286: enable all 24 address lines */
#else /* 386+ */
    a20_mask   = 0xffffffff; /* 386: enable all 32 address lines */
#endif
    }
  else {
    enable_a20 = 0;
    a20_mask   = 0xffefffff;   /* mask off A20 address line */
    }

  BX_DBG_A20_REPORT(value);

  BX_DEBUG(("A20: set() = %u", (unsigned) enable_a20));

  // If there has been a transition, we need to notify the CPUs so
  // they can potentially invalidate certain cache info based on
  // A20-line-applied physical addresses.
  if (old_enable_a20 != enable_a20) {
    for (unsigned i=0; i<BX_SMP_PROCESSORS; i++)
      BX_CPU(i)->pagingA20Changed();
    }
#else
  BX_DEBUG(("set_enable_a20: ignoring: SUPPORT_A20 = 0"));
#endif  // #if BX_SUPPORT_A20

#endif
}

  bx_bool
bx_pc_system_c::get_enable_a20(void)
{
#if BX_SUPPORT_A20
  if (bx_dbg.a20)
    BX_INFO(("A20: get() = %u", (unsigned) enable_a20));

  if (enable_a20) return(1);
  else return(0);
#else
  BX_INFO(("get_enable_a20: ignoring: SUPPORT_A20 = 0"));
  return(1);
#endif  // #if BX_SUPPORT_A20
}

  int
bx_pc_system_c::ResetSignal( PCS_OP operation )
{
  UNUSED( operation );
  // Reset the processor.

  BX_ERROR(( "# bx_pc_system_c::ResetSignal() called" ));
  for (int i=0; i<BX_SMP_PROCESSORS; i++)
    BX_CPU(i)->reset(BX_RESET_SOFTWARE);
  DEV_reset_devices(BX_RESET_SOFTWARE);
  return(0);
}


  Bit8u
bx_pc_system_c::IAC(void)
{
  return( DEV_pic_iac() );
}

  void
bx_pc_system_c::exit(void)
{
  if (DEV_hd_present())
    DEV_hd_close_harddrive();

  BX_INFO(("Last time is %u", (unsigned) DEV_cmos_get_timeval()));

  if (bx_gui) bx_gui->exit();
}


// ================================================
// Bochs internal timer delivery framework features
// ================================================

  int
bx_pc_system_c::register_timer( void *this_ptr, void (*funct)(void *),
  Bit32u useconds, bx_bool continuous, bx_bool active, const char *id)
{
  Bit64u ticks;

  // Convert useconds to number of ticks.
  ticks = (Bit64u) (double(useconds) * m_ips);

  return register_timer_ticks(this_ptr, funct, ticks, continuous, active, id);
}

  int
bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct,
    Bit64u ticks, bx_bool continuous, bx_bool active, const char *id)
{
  unsigned i;

#if BX_TIMER_DEBUG
  if (numTimers >= BX_MAX_TIMERS) {
    BX_PANIC(("register_timer: too many registered timers."));
    }
  if (this_ptr == NULL)
    BX_PANIC(("register_timer_ticks: this_ptr is NULL"));
  if (funct == NULL)
    BX_PANIC(("register_timer_ticks: funct is NULL"));
#endif

  // If the timer frequency is rediculously low, make it more sane.
  // This happens when 'ips' is too low.
  if (ticks < MinAllowableTimerPeriod) {
    //BX_INFO(("register_timer_ticks: adjusting ticks of %llu to min of %u",
    //          ticks, MinAllowableTimerPeriod));
    ticks = MinAllowableTimerPeriod;
    }

  for (i=0; i < numTimers; i++) {
    if (timer[i].inUse == 0)
      break;
    }

  timer[i].inUse      = 1;
  timer[i].period     = ticks;
  timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) +
                        ticks;
  timer[i].active     = active;
  timer[i].continuous = continuous;
  timer[i].funct      = funct;
  timer[i].this_ptr   = this_ptr;
  strncpy(timer[i].id, id, BxMaxTimerIDLen);
  timer[i].id[BxMaxTimerIDLen-1] = 0; // Null terminate if not already.

  if (active) {
    if (ticks < Bit64u(currCountdown)) {
      // This new timer needs to fire before the current countdown.
      // Skew the current countdown and countdown period to be smaller
      // by the delta.
      currCountdownPeriod -= (currCountdown - Bit32u(ticks));
      currCountdown = Bit32u(ticks);
      }
    }

  // If we didn't find a free slot, increment the bound, numTimers.
  if (i==numTimers)
    numTimers++; // One new timer installed.

  // Return timer id.
  return(i);
}


  void
bx_pc_system_c::countdownEvent(void)
{
  unsigned i;
  Bit64u   minTimeToFire;
  bx_bool  triggered[BX_MAX_TIMERS];

  // The countdown decremented to 0.  We need to service all the active
  // timers, and invoke callbacks from those timers which have fired.
#if BX_TIMER_DEBUG
  if (currCountdown != 0)
    BX_PANIC(("countdownEvent: ticks!=0"));
#endif

  // Increment global ticks counter by number of ticks which have
  // elapsed since the last update.
  ticksTotal += Bit64u(currCountdownPeriod);
  minTimeToFire = (Bit64u) -1;

  for (i=0; i < numTimers; i++) {
    triggered[i] = 0; // Reset triggered flag.
    if (timer[i].active) {
#if BX_TIMER_DEBUG
      if (ticksTotal > timer[i].timeToFire)
        BX_PANIC(("countdownEvent: ticksTotal > timeToFire[%u], D " FMT_LL "u", i,
                  timer[i].timeToFire-ticksTotal));
#endif
      if (ticksTotal == timer[i].timeToFire) {
        // This timer is ready to fire.
        triggered[i] = 1;

        if (timer[i].continuous==0) {
          // If triggered timer is one-shot, deactive.
          timer[i].active = 0;
          }
        else {
          // Continuous timer, increment time-to-fire by period.
          timer[i].timeToFire += timer[i].period;
          if (timer[i].timeToFire < minTimeToFire)
            minTimeToFire = timer[i].timeToFire;
          }
        }
      else {
        // This timer is not ready to fire yet.
        if (timer[i].timeToFire < minTimeToFire)
          minTimeToFire = timer[i].timeToFire;
        }
      }
    }

  // Calculate next countdown period.  We need to do this before calling
  // any of the callbacks, as they may call timer features, which need
  // to be advanced to the next countdown cycle.
  currCountdown = currCountdownPeriod =
      Bit32u(minTimeToFire - ticksTotal);

  for (i=0; i < numTimers; i++) {
    // Call requested timer function.  It may request a different
    // timer period or deactivate etc.
    if (triggered[i]) {
      timer[i].funct(timer[i].this_ptr);
      }
    }
}

  void
bx_pc_system_c::nullTimer(void* this_ptr)
{
  // This function is always inserted in timer[0].  It is sort of
  // a heartbeat timer.  It ensures that at least one timer is
  // always active to make the timer logic more simple, and has
  // a duration of less than the maximum 32-bit integer, so that
  // a 32-bit size can be used for the hot countdown timer.  The
  // rest of the timer info can be 64-bits.  This is also a good
  // place for some logic to report actual emulated
  // instructions-per-second (IPS) data when measured relative to
  // the host computer's wall clock.

  UNUSED(this_ptr);

#if SpewPeriodicTimerInfo
  BX_INFO(("==================================="));
  for (unsigned i=0; i < bx_pc_system.numTimers; i++) {
    if (bx_pc_system.timer[i].active) {
      BX_INFO(("BxTimer(%s): period=" FMT_LL "u, continuous=%u",
               bx_pc_system.timer[i].id, bx_pc_system.timer[i].period,
               bx_pc_system.timer[i].continuous));
      }
    }
#endif
}

#if BX_DEBUGGER
  void
bx_pc_system_c::timebp_handler(void* this_ptr)
{
      BX_CPU(0)->break_point = BREAK_POINT_TIME;
      BX_DEBUG(( "Time breakpoint triggered" ));

      if (timebp_queue_size > 1) {
	    Bit64s new_diff = timebp_queue[1] - bx_pc_system.time_ticks();
	    bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 1);
      }
      timebp_queue_size--;
      for (int i = 0; i < timebp_queue_size; i++)
	    timebp_queue[i] = timebp_queue[i+1];
}
#endif // BX_DEBUGGER

  Bit64u
bx_pc_system_c::time_usec_sequential() {
    Bit64u this_time_usec = time_usec();
    if(this_time_usec != lastTimeUsec) {
      Bit64u diff_usec = this_time_usec-lastTimeUsec;
      lastTimeUsec = this_time_usec;
      if(diff_usec >= usecSinceLast) {
	usecSinceLast = 0;
      } else {
	usecSinceLast -= diff_usec;
      }
    }
    usecSinceLast++;
    return (this_time_usec+usecSinceLast);
}
  Bit64u
bx_pc_system_c::time_usec() {
  return (Bit64u) (((double)(Bit64s)time_ticks()) / m_ips );
}

  void
bx_pc_system_c::start_timers(void)
{
}

  void
bx_pc_system_c::activate_timer_ticks(unsigned i, Bit64u ticks, bx_bool continuous)
{
#if BX_TIMER_DEBUG
  if (i >= numTimers)
    BX_PANIC(("activate_timer_ticks: timer %u OOB", i));
  if (timer[i].period < MinAllowableTimerPeriod)
    BX_PANIC(("activate_timer_ticks: timer[%u].period of " FMT_LL "u < min of %u",
              i, timer[i].period, MinAllowableTimerPeriod));
#endif

  // If the timer frequency is rediculously low, make it more sane.
  // This happens when 'ips' is too low.
  if (ticks < MinAllowableTimerPeriod) {
    //BX_INFO(("activate_timer_ticks: adjusting ticks of %llu to min of %u",
    //          ticks, MinAllowableTimerPeriod));
    ticks = MinAllowableTimerPeriod;
    }

  timer[i].period = ticks;
  timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) +
                        ticks;
  timer[i].active     = 1;
  timer[i].continuous = continuous;

  if (ticks < Bit64u(currCountdown)) {
    // This new timer needs to fire before the current countdown.
    // Skew the current countdown and countdown period to be smaller
    // by the delta.
    currCountdownPeriod -= (currCountdown - Bit32u(ticks));
    currCountdown = Bit32u(ticks);
    }
}

  void
bx_pc_system_c::activate_timer(unsigned i, Bit32u useconds, bx_bool continuous)
{
  Bit64u ticks;

#if BX_TIMER_DEBUG
  if (i >= numTimers)
    BX_PANIC(("activate_timer: timer %u OOB", i));
#endif

  // if useconds = 0, use default stored in period field
  // else set new period from useconds
  if (useconds==0) {
    ticks = timer[i].period;
    }
  else {
    // convert useconds to number of ticks
    ticks = (Bit64u) (double(useconds) * m_ips);

    // If the timer frequency is rediculously low, make it more sane.
    // This happens when 'ips' is too low.
    if (ticks < MinAllowableTimerPeriod) {
      //BX_INFO(("activate_timer: adjusting ticks of %llu to min of %u",
      //          ticks, MinAllowableTimerPeriod));
      ticks = MinAllowableTimerPeriod;
      }

    timer[i].period = ticks;
    }

  activate_timer_ticks(i, ticks, continuous);
}

  void
bx_pc_system_c::deactivate_timer( unsigned i )
{
#if BX_TIMER_DEBUG
  if (i >= numTimers)
    BX_PANIC(("deactivate_timer: timer %u OOB", i));
#endif

  timer[i].active = 0;
}

  unsigned
bx_pc_system_c::unregisterTimer(int timerIndex)
{
  unsigned i = (unsigned) timerIndex;

#if BX_TIMER_DEBUG
  if (i >= numTimers)
    BX_PANIC(("unregisterTimer: timer %u OOB", i));
  if (i == 0)
    BX_PANIC(("unregisterTimer: timer 0 is the nullTimer!"));
  if (timer[i].inUse == 0)
    BX_PANIC(("unregisterTimer: timer %u is not in-use!", i));
#endif

  if (timer[i].active) {
    BX_PANIC(("unregisterTimer: timer '%s' is still active!", timer[i].id));
    return(0); // Fail.
    }

  // Reset timer fields for good measure.
  timer[i].inUse      = 0; // No longer registered.
  timer[i].period     = BX_MAX_BIT64S; // Max value (invalid)
  timer[i].timeToFire = BX_MAX_BIT64S; // Max value (invalid)
  timer[i].continuous = 0;
  timer[i].funct      = NULL;
  timer[i].this_ptr   = NULL;
  memset(timer[i].id, 0, BxMaxTimerIDLen);

  return(1); // OK
}