aboutsummaryrefslogtreecommitdiffstats
path: root/tools/ioemu/iodev/dma.cc
blob: afe0238a926f74bee8b8443b51326539f2a0be2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
/////////////////////////////////////////////////////////////////////////
// $Id: dma.cc,v 1.30 2003/07/31 15:29:34 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2002  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA



// Define BX_PLUGGABLE in files that can be compiled into plugins.  For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE 
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE

#include "bochs.h"

#define LOG_THIS theDmaDevice->

#define DMA_MODE_DEMAND  0
#define DMA_MODE_SINGLE  1
#define DMA_MODE_BLOCK   2
#define DMA_MODE_CASCADE 3

bx_dma_c *theDmaDevice = NULL;

  int
libdma_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
  theDmaDevice = new bx_dma_c ();
  bx_devices.pluginDmaDevice = theDmaDevice;
  BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theDmaDevice, BX_PLUGIN_DMA);
  return(0); // Success
}

  void
libdma_LTX_plugin_fini(void)
{
}

bx_dma_c::bx_dma_c(void)
{
  put("DMA");
  settype(DMALOG);
}

bx_dma_c::~bx_dma_c(void)
{
	BX_DEBUG(("Exit."));
}

  unsigned
bx_dma_c::registerDMA8Channel(
    unsigned channel,
    void (* dmaRead)(Bit8u *data_byte),
    void (* dmaWrite)(Bit8u *data_byte),
    const char *name
    )
{
  if (channel > 3) {
    BX_PANIC(("registerDMA8Channel: invalid channel number(%u).", channel));
    return 0; // Fail.
    }
  if (BX_DMA_THIS s[0].chan[channel].used) {
    BX_PANIC(("registerDMA8Channel: channel(%u) already in use.", channel));
    return 0; // Fail.
    }
  BX_INFO(("channel %u used by %s", channel, name));
  BX_DMA_THIS h[channel].dmaRead8  = dmaRead;
  BX_DMA_THIS h[channel].dmaWrite8 = dmaWrite;
  BX_DMA_THIS s[0].chan[channel].used = 1;
  return 1; // OK.
}

  unsigned
bx_dma_c::registerDMA16Channel(
    unsigned channel,
    void (* dmaRead)(Bit16u *data_word),
    void (* dmaWrite)(Bit16u *data_word),
    const char *name
    )
{
  if ((channel < 4) || (channel > 7)) {
    BX_PANIC(("registerDMA16Channel: invalid channel number(%u).", channel));
    return 0; // Fail.
    }
  if (BX_DMA_THIS s[1].chan[channel & 0x03].used) {
    BX_PANIC(("registerDMA16Channel: channel(%u) already in use.", channel));
    return 0; // Fail.
    }
  BX_INFO(("channel %u used by %s", channel, name));
  channel &= 0x03;
  BX_DMA_THIS h[channel].dmaRead16  = dmaRead;
  BX_DMA_THIS h[channel].dmaWrite16 = dmaWrite;
  BX_DMA_THIS s[1].chan[channel].used = 1;
  return 1; // OK.
}

  unsigned
bx_dma_c::unregisterDMAChannel(unsigned channel)
{
  bx_bool ma_sl = (channel > 3);
  BX_DMA_THIS s[ma_sl].chan[channel & 0x03].used = 0;
  BX_INFO(("channel %u no longer used", channel));
  return 1;
}

  unsigned
bx_dma_c::get_TC(void)
{
  return BX_DMA_THIS TC;
}


  void
bx_dma_c::init(void)
{
  unsigned c, i, j;
  BX_DEBUG(("Init $Id: dma.cc,v 1.30 2003/07/31 15:29:34 vruppert Exp $"));

  /* 8237 DMA controller */

  for (i=0; i < 2; i++) {
    for (j=0; j < 4; j++) {
      BX_DMA_THIS s[i].DRQ[j] = 0;
      BX_DMA_THIS s[i].DACK[j] = 0;
      }
    }
  BX_DMA_THIS HLDA = 0;
  BX_DMA_THIS TC = 0;

  // 0000..000F
  for (i=0x0000; i<=0x000F; i++) {
    DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
    DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
    }

  // 00081..008F
  for (i=0x0081; i<=0x008F; i++) {
    DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
    DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
    }

  // 000C0..00DE
  for (i=0x00C0; i<=0x00DE; i+=2) {
    DEV_register_ioread_handler(this, read_handler, i, "DMA controller", 1);
    DEV_register_iowrite_handler(this, write_handler, i, "DMA controller", 3);
    }


  for (i=0; i<2; i++) {
    for (c=0; c<4; c++) {
      BX_DMA_THIS s[i].chan[c].mode.mode_type = 0;         // demand mode
      BX_DMA_THIS s[i].chan[c].mode.address_decrement = 0; // address increment
      BX_DMA_THIS s[i].chan[c].mode.autoinit_enable = 0;   // autoinit disable
      BX_DMA_THIS s[i].chan[c].mode.transfer_type = 0;     // verify
      BX_DMA_THIS s[i].chan[c].base_address = 0;
      BX_DMA_THIS s[i].chan[c].current_address = 0;
      BX_DMA_THIS s[i].chan[c].base_count = 0;
      BX_DMA_THIS s[i].chan[c].current_count = 0;
      BX_DMA_THIS s[i].chan[c].page_reg = 0;
      BX_DMA_THIS s[i].chan[c].used = 0;
      }
    }
  BX_DMA_THIS s[1].chan[0].used = 1; // cascade channel in use
  BX_INFO(("channel 4 used by cascade"));
  bios_init();
}

/* Remove it when guest fw ready*/
  void
bx_dma_c::bios_init(void){
  BX_DMA_THIS s[1].mask[0] = 0; // unmask cascade channel  
  BX_DMA_THIS s[1].chan[0].mode.mode_type = 3; // cascade mode for channel 4
}

  void
bx_dma_c::reset(unsigned type)
{
  reset_controller(0);
  reset_controller(1);
  bios_init();
}

  void
bx_dma_c::reset_controller(unsigned num)
{
  BX_DMA_THIS s[num].mask[0] = 1;
  BX_DMA_THIS s[num].mask[1] = 1;
  BX_DMA_THIS s[num].mask[2] = 1;
  BX_DMA_THIS s[num].mask[3] = 1;
  BX_DMA_THIS s[num].command_reg = 0;
  BX_DMA_THIS s[num].status_reg = 0;
  BX_DMA_THIS s[num].request_reg = 0;
  BX_DMA_THIS s[num].temporary_reg = 0;
  BX_DMA_THIS s[num].flip_flop = 0;
}

  // index to find channel from register number (only [0],[1],[2],[6] used)
  Bit8u channelindex[7] = {2, 3, 1, 0, 0, 0, 0};


  // static IO port read callback handler
  // redirects to non-static class handler to avoid virtual functions

  Bit32u
bx_dma_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_DMA_SMF
  bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;

  return( class_ptr->read(address, io_len) );
}

  /* 8237 DMA controller */
  Bit32u BX_CPP_AttrRegparmN(2)
bx_dma_c::read( Bit32u   address, unsigned io_len)
{
#else
  UNUSED(this_ptr);
#endif  // !BX_USE_DMA_SMF

  Bit8u retval;
  Bit8u channel;
  bx_bool ma_sl;

  BX_DEBUG(("read addr=%04x", (unsigned) address));

#if BX_DMA_FLOPPY_IO < 1
  /* if we're not supporting DMA/floppy IO just return a bogus value */
  return(0xff);
#endif

  switch (address) {
    case 0x00: /* DMA-1 current address, channel 0 */
    case 0x02: /* DMA-1 current address, channel 1 */
    case 0x04: /* DMA-1 current address, channel 2 */
    case 0x06: /* DMA-1 current address, channel 3 */
    case 0xc0: /* DMA-2 current address, channel 0 */
    case 0xc4: /* DMA-2 current address, channel 1 */
    case 0xc8: /* DMA-2 current address, channel 2 */
    case 0xcc: /* DMA-2 current address, channel 3 */
      ma_sl = (address >= 0xc0);
      channel = (address >> (1 + ma_sl)) & 0x03;
      if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
        BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
        return(BX_DMA_THIS s[ma_sl].chan[channel].current_address & 0xff);
        }
      else {
        BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
        return(BX_DMA_THIS s[ma_sl].chan[channel].current_address >> 8);
        }

    case 0x01: /* DMA-1 current count, channel 0 */
    case 0x03: /* DMA-1 current count, channel 1 */
    case 0x05: /* DMA-1 current count, channel 2 */
    case 0x07: /* DMA-1 current count, channel 3 */
    case 0xc2: /* DMA-2 current count, channel 0 */
    case 0xc6: /* DMA-2 current count, channel 1 */
    case 0xca: /* DMA-2 current count, channel 2 */
    case 0xce: /* DMA-2 current count, channel 3 */
      ma_sl = (address >= 0xc2);
      channel = (address >> (1 + ma_sl)) & 0x03;
      if (BX_DMA_THIS s[ma_sl].flip_flop==0) {
        BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
        return(BX_DMA_THIS s[ma_sl].chan[channel].current_count & 0xff);
        }
      else {
        BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
        return(BX_DMA_THIS s[ma_sl].chan[channel].current_count >> 8);
        }

    case 0x08: // DMA-1 Status Register
    case 0xd0: // DMA-2 Status Register
      // bit 7: 1 = channel 3 request
      // bit 6: 1 = channel 2 request
      // bit 5: 1 = channel 1 request
      // bit 4: 1 = channel 0 request
      // bit 3: 1 = channel 3 has reached terminal count
      // bit 2: 1 = channel 2 has reached terminal count
      // bit 1: 1 = channel 1 has reached terminal count
      // bit 0: 1 = channel 0 has reached terminal count
      // reading this register clears lower 4 bits (hold flags)
      ma_sl = (address == 0xd0);
      retval = BX_DMA_THIS s[ma_sl].status_reg;
      BX_DMA_THIS s[ma_sl].status_reg &= 0xf0;
      return(retval);
      break;
    case 0x0d: // DMA-1: temporary register
    case 0xda: // DMA-2: temporary register
      ma_sl = (address == 0xda);
      BX_ERROR(("DMA-%d: read of temporary register", ma_sl+1));
      // Note: write to 0x0D clears temporary register
      return(0);
      break;

    case 0x0081: // DMA-1 page register, channel 2
    case 0x0082: // DMA-1 page register, channel 3
    case 0x0083: // DMA-1 page register, channel 1
    case 0x0087: // DMA-1 page register, channel 0
      channel = channelindex[address - 0x81];
      return( BX_DMA_THIS s[0].chan[channel].page_reg );

    case 0x0089: // DMA-2 page register, channel 2
    case 0x008a: // DMA-2 page register, channel 3
    case 0x008b: // DMA-2 page register, channel 1
    case 0x008f: // DMA-2 page register, channel 0
      channel = channelindex[address - 0x89];
      return( BX_DMA_THIS s[1].chan[channel].page_reg );

    case 0x0084:
    case 0x0085:
    case 0x0086:
    case 0x0088:
    case 0x008c:
    case 0x008d:
    case 0x008e:
      BX_DEBUG(("read: extra page register 0x%04x unsupported", (unsigned) address));
      return(0);

    default:
      BX_ERROR(("read: unsupported address=%04x", (unsigned) address));
      return(0);
    }
}


  // static IO port write callback handler
  // redirects to non-static class handler to avoid virtual functions

  void
bx_dma_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_DMA_SMF
  bx_dma_c *class_ptr = (bx_dma_c *) this_ptr;

  class_ptr->write(address, value, io_len);
}


  /* 8237 DMA controller */
  void BX_CPP_AttrRegparmN(3)
bx_dma_c::write(Bit32u   address, Bit32u   value, unsigned io_len)
{
#else
  UNUSED(this_ptr);
#endif  // !BX_USE_DMA_SMF
  Bit8u set_mask_bit;
  Bit8u channel;
  bx_bool ma_sl;

  if (io_len > 1) {
    if ( (io_len == 2) && (address == 0x0b) ) {
#if BX_USE_DMA_SMF
      BX_DMA_THIS write_handler(NULL, address,   value & 0xff, 1);
      BX_DMA_THIS write_handler(NULL, address+1, value >> 8,   1);
#else
      BX_DMA_THIS write(address,   value & 0xff, 1);
      BX_DMA_THIS write(address+1, value >> 8,   1);
#endif
      return;
      }

    BX_ERROR(("io write to address %08x, len=%u",
             (unsigned) address, (unsigned) io_len));
    return;
    }

  BX_DEBUG(("write: address=%04x value=%02x",
      (unsigned) address, (unsigned) value));

#if BX_DMA_FLOPPY_IO < 1
  /* if we're not supporting DMA/floppy IO just return */
  return;
#endif

  switch (address) {
    case 0x00:
    case 0x02:
    case 0x04:
    case 0x06:
    case 0xc0:
    case 0xc4:
    case 0xc8:
    case 0xcc:
      ma_sl = (address >= 0xc0);
      channel = (address >> (1 + ma_sl)) & 0x03;
      BX_DEBUG(("  DMA-%d base and current address, channel %d", ma_sl+1, channel));
      if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
        BX_DMA_THIS s[ma_sl].chan[channel].base_address = value;
        BX_DMA_THIS s[ma_sl].chan[channel].current_address = value;
        }
      else { /* 2nd byte */
        BX_DMA_THIS s[ma_sl].chan[channel].base_address |= (value << 8);
        BX_DMA_THIS s[ma_sl].chan[channel].current_address |= (value << 8);
        BX_DEBUG(("    base = %04x",
            (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_address));
        BX_DEBUG(("    curr = %04x",
            (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].current_address));
        }
      BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
      return;
      break;

    case 0x01:
    case 0x03:
    case 0x05:
    case 0x07:
    case 0xc2:
    case 0xc6:
    case 0xca:
    case 0xce:
      ma_sl = (address >= 0xc2);
      channel = (address >> (1 + ma_sl)) & 0x03;
      BX_DEBUG(("  DMA-%d base and current count, channel %d", ma_sl+1, channel));
      if (BX_DMA_THIS s[ma_sl].flip_flop==0) { /* 1st byte */
        BX_DMA_THIS s[ma_sl].chan[channel].base_count = value;
        BX_DMA_THIS s[ma_sl].chan[channel].current_count = value;
        }
      else { /* 2nd byte */
        BX_DMA_THIS s[ma_sl].chan[channel].base_count |= (value << 8);
        BX_DMA_THIS s[ma_sl].chan[channel].current_count |= (value << 8);
        BX_DEBUG(("    base = %04x",
            (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_count));
        BX_DEBUG(("    curr = %04x",
            (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].current_count));
        }
      BX_DMA_THIS s[ma_sl].flip_flop = !BX_DMA_THIS s[ma_sl].flip_flop;
      return;
      break;

    case 0x08: /* DMA-1: command register */
    case 0xd0: /* DMA-2: command register */
      ma_sl = (address == 0xd0);
      if (value != 0x00)
        BX_ERROR(("write to command register: value(%02xh) not 0x00",
          (unsigned) value));
      BX_DMA_THIS s[ma_sl].command_reg = value;
      return;
      break;

    case 0x09: // DMA-1: request register
    case 0xd2: // DMA-2: request register
      ma_sl = (address == 0xd2);
      channel = value & 0x03;
      BX_ERROR(("DMA-%d: write to request register (%02x)", ma_sl+1, (unsigned) value));
      // note: write to 0x0d clears this register
      if (value & 0x04) {
        // set request bit
        BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));
        BX_DEBUG(("DMA-%d: set request bit for channel %u", ma_sl+1, (unsigned) channel));
        }
      else {
        // clear request bit
        BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));
        BX_DEBUG(("DMA-%d: cleared request bit for channel %u", ma_sl+1, (unsigned) channel));
        }
      control_HRQ(ma_sl);
      return;
      break;

    case 0x0a:
    case 0xd4:
      ma_sl = (address == 0xd4);
      set_mask_bit = value & 0x04;
      channel = value & 0x03;
      BX_DMA_THIS s[ma_sl].mask[channel] = (set_mask_bit > 0);
      BX_DEBUG(("DMA-%d: set_mask_bit=%u, channel=%u, mask now=%02xh", ma_sl+1,
          (unsigned) set_mask_bit, (unsigned) channel, (unsigned) BX_DMA_THIS s[ma_sl].mask[channel]));
      control_HRQ(ma_sl);
      return;
      break;

    case 0x0b: /* DMA-1 mode register */
    case 0xd6: /* DMA-2 mode register */
      ma_sl = (address == 0xd6);
      channel = value & 0x03;
      BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type = (value >> 6) & 0x03;
      BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement = (value >> 5) & 0x01;
      BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable = (value >> 4) & 0x01;
      BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type = (value >> 2) & 0x03;
      BX_DEBUG(("DMA-%d: mode register[%u] = %02x", ma_sl+1,
          (unsigned) channel, (unsigned) value));
      return;
      break;

    case 0x0c: /* DMA-1 clear byte flip/flop */
    case 0xd8: /* DMA-2 clear byte flip/flop */
      ma_sl = (address == 0xd8);
      BX_DEBUG(("DMA-%d: clear flip/flop", ma_sl+1));
      BX_DMA_THIS s[ma_sl].flip_flop = 0;
      return;
      break;

    case 0x0d: // DMA-1: master clear
    case 0xda: // DMA-2: master clear
      ma_sl = (address == 0xda);
      BX_DEBUG(("DMA-%d: master clear", ma_sl+1));
      // writing any value to this port resets DMA controller 1 / 2
      // same action as a hardware reset
      // mask register is set (chan 0..3 disabled)
      // command, status, request, temporary, and byte flip-flop are all cleared
      reset_controller(ma_sl);
      return;
      break;

    case 0x0e: // DMA-1: clear mask register
    case 0xdc: // DMA-2: clear mask register
      ma_sl = (address == 0xdc);
      BX_DEBUG(("DMA-%d: clear mask register", ma_sl+1));
      BX_DMA_THIS s[ma_sl].mask[0] = 0;
      BX_DMA_THIS s[ma_sl].mask[1] = 0;
      BX_DMA_THIS s[ma_sl].mask[2] = 0;
      BX_DMA_THIS s[ma_sl].mask[3] = 0;
      control_HRQ(ma_sl);
      return;
      break;

    case 0x0f: // DMA-1: write all mask bits
    case 0xde: // DMA-2: write all mask bits
      ma_sl = (address == 0xde);
      BX_DEBUG(("DMA-%d: write all mask bits", ma_sl+1));
      BX_DMA_THIS s[ma_sl].mask[0] = value & 0x01; value >>= 1;
      BX_DMA_THIS s[ma_sl].mask[1] = value & 0x01; value >>= 1;
      BX_DMA_THIS s[ma_sl].mask[2] = value & 0x01; value >>= 1;
      BX_DMA_THIS s[ma_sl].mask[3] = value & 0x01;
      control_HRQ(ma_sl);
      return;
      break;

    case 0x81: /* DMA-1 page register, channel 2 */
    case 0x82: /* DMA-1 page register, channel 3 */
    case 0x83: /* DMA-1 page register, channel 1 */
    case 0x87: /* DMA-1 page register, channel 0 */
      /* address bits A16-A23 for DMA channel */
      channel = channelindex[address - 0x81];
      BX_DMA_THIS s[0].chan[channel].page_reg = value;
      BX_DEBUG(("DMA-1: page register %d = %02x", channel, (unsigned) value));
      return;
      break;

    case 0x89: /* DMA-2 page register, channel 2 */
    case 0x8a: /* DMA-2 page register, channel 3 */
    case 0x8b: /* DMA-2 page register, channel 1 */
    case 0x8f: /* DMA-2 page register, channel 0 */
      /* address bits A16-A23 for DMA channel */
      channel = channelindex[address - 0x89];
      BX_DMA_THIS s[1].chan[channel].page_reg = value;
      BX_DEBUG(("DMA-2: page register %d = %02x", channel + 4, (unsigned) value));
      return;
      break;

    case 0x0084:
    case 0x0085:
    case 0x0086:
    case 0x0088:
    case 0x008c:
    case 0x008d:
    case 0x008e:
      BX_DEBUG(("write: extra page register 0x%04x unsupported", (unsigned) address));
      return;
      break;

    default:
      BX_ERROR(("write ignored: %04xh = %02xh",
        (unsigned) address, (unsigned) value));
    }
}

  void
bx_dma_c::set_DRQ(unsigned channel, bx_bool val)
{
  Bit32u dma_base, dma_roof;
  bx_bool ma_sl;

  if (channel > 7) {
    BX_PANIC(("set_DRQ() channel > 7"));
    return;
  }
  ma_sl = (channel > 3);
  BX_DMA_THIS s[ma_sl].DRQ[channel & 0x03] = val;
  if (!BX_DMA_THIS s[ma_sl].chan[channel & 0x03].used) {
    BX_PANIC(("set_DRQ(): channel %d not connected to device", channel));
    return;
  }
  channel &= 0x03;
  if (!val) {
    //BX_DEBUG(("bx_dma_c::DRQ(): val == 0"));
    // clear bit in status reg
    BX_DMA_THIS s[ma_sl].status_reg &= ~(1 << (channel+4));

    control_HRQ(ma_sl);
    return;
  }

#if 0
  BX_INFO(("mask[%d]: %02x", channel, (unsigned) BX_DMA_THIS s[0].mask[channel]));
  BX_INFO(("flip_flop: %u", (unsigned) BX_DMA_THIS s[0].flip_flop));
  BX_INFO(("status_reg: %02x", (unsigned) BX_DMA_THIS s[0].status_reg));
  BX_INFO(("mode_type: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.mode_type));
  BX_INFO(("address_decrement: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.address_decrement));
  BX_INFO(("autoinit_enable: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.autoinit_enable));
  BX_INFO(("transfer_type: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].mode.transfer_type));
  BX_INFO(("base_address: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].base_address));
  BX_INFO(("current_address: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].current_address));
  BX_INFO(("base_count: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].base_count));
  BX_INFO(("current_count: %04x", (unsigned) BX_DMA_THIS s[0].chan[channel].current_count));
  BX_INFO(("page_reg: %02x", (unsigned) BX_DMA_THIS s[0].chan[channel].page_reg));
#endif

  BX_DMA_THIS s[ma_sl].status_reg |= (1 << (channel+4));

  if ( (BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_SINGLE) &&
       (BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_DEMAND) &&
       (BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type != DMA_MODE_CASCADE) )
    BX_PANIC(("set_DRQ: mode_type(%02x) not handled",
      (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].mode.mode_type));

  dma_base = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
             (BX_DMA_THIS s[ma_sl].chan[channel].base_address << ma_sl);
  if (BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement==0) {
    dma_roof = dma_base + (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
  } else {
    dma_roof = dma_base - (BX_DMA_THIS s[ma_sl].chan[channel].base_count << ma_sl);
  }
  if ( (dma_base & (0x7fff0000 << ma_sl)) != (dma_roof & (0x7fff0000 << ma_sl)) ) {
    BX_INFO(("dma_base = %08x", (unsigned) dma_base));
    BX_INFO(("dma_base_count = %08x", (unsigned) BX_DMA_THIS s[ma_sl].chan[channel].base_count));
    BX_INFO(("dma_roof = %08x", (unsigned) dma_roof));
    BX_PANIC(("request outside %dk boundary", 64 << ma_sl));
  }

  control_HRQ(ma_sl);
}

  void
bx_dma_c::control_HRQ(bx_bool ma_sl)
{
  unsigned channel;

  // deassert HRQ if no DRQ is pending
  if ((BX_DMA_THIS s[ma_sl].status_reg & 0xf0) == 0) {
    if (ma_sl) {
      bx_pc_system.set_HRQ(0);
    } else {
      BX_DMA_THIS set_DRQ(4, 0);
    }
    return;
  }
  // find highest priority channel
  for (channel=0; channel<4; channel++) {
    if ( (BX_DMA_THIS s[ma_sl].status_reg & (1 << (channel+4))) &&
         (BX_DMA_THIS s[ma_sl].mask[channel]==0) ) {
      if (ma_sl) {
        // assert Hold ReQuest line to CPU
        bx_pc_system.set_HRQ(1);
      } else {
        // send DRQ to cascade channel of the master
        BX_DMA_THIS set_DRQ(4, 1);
      }
      break;
    }
  }
}

  void
bx_dma_c::raise_HLDA(void)
{
  unsigned channel;
  Bit32u phy_addr;
  bx_bool count_expired = 0;
  bx_bool ma_sl = 0;

  BX_DMA_THIS HLDA = 1;
  // find highest priority channel
  for (channel=0; channel<4; channel++) {
    if ( (BX_DMA_THIS s[1].status_reg & (1 << (channel+4))) &&
         (BX_DMA_THIS s[1].mask[channel]==0) ) {
      ma_sl = 1;
      break;
      }
    }
  if (channel == 0) { // master cascade channel
    BX_DMA_THIS s[1].DACK[0] = 1;
    for (channel=0; channel<4; channel++) {
      if ( (BX_DMA_THIS s[0].status_reg & (1 << (channel+4))) &&
           (BX_DMA_THIS s[0].mask[channel]==0) ) {
        ma_sl = 0;
        break;
        }
      }
    }
  if (channel >= 4) {
    // wait till they're unmasked
    return;
    }

  //BX_DEBUG(("hlda: OK in response to DRQ(%u)", (unsigned) channel));
  phy_addr = (BX_DMA_THIS s[ma_sl].chan[channel].page_reg << 16) |
             (BX_DMA_THIS s[ma_sl].chan[channel].current_address << ma_sl);

  BX_DMA_THIS s[ma_sl].DACK[channel] = 1;
  // check for expiration of count, so we can signal TC and DACK(n)
  // at the same time.
  if (BX_DMA_THIS s[ma_sl].chan[channel].mode.address_decrement==0)
    BX_DMA_THIS s[ma_sl].chan[channel].current_address++;
  else
    BX_DMA_THIS s[ma_sl].chan[channel].current_address--;
  BX_DMA_THIS s[ma_sl].chan[channel].current_count--;
  if (BX_DMA_THIS s[ma_sl].chan[channel].current_count == 0xffff) {
    // count expired, done with transfer
    // assert TC, deassert HRQ & DACK(n) lines
    BX_DMA_THIS s[ma_sl].status_reg |= (1 << channel); // hold TC in status reg
    BX_DMA_THIS TC = 1;
    count_expired = 1;
    if (BX_DMA_THIS s[ma_sl].chan[channel].mode.autoinit_enable == 0) {
      // set mask bit if not in autoinit mode
      BX_DMA_THIS s[ma_sl].mask[channel] = 1;
      }
    else {
      // count expired, but in autoinit mode
      // reload count and base address
      BX_DMA_THIS s[ma_sl].chan[channel].current_address =
        BX_DMA_THIS s[ma_sl].chan[channel].base_address;
      BX_DMA_THIS s[ma_sl].chan[channel].current_count =
        BX_DMA_THIS s[ma_sl].chan[channel].base_count;
      }
    }

  Bit8u data_byte;
  Bit16u data_word;

  if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 1) { // write
    // DMA controlled xfer of byte from I/O to Memory

    if (!ma_sl) {
      if (BX_DMA_THIS h[channel].dmaWrite8)
        BX_DMA_THIS h[channel].dmaWrite8(&data_byte);
      else
        BX_PANIC(("no dmaWrite handler for channel %u.", channel));

      BX_MEM_WRITE_PHYSICAL(phy_addr, 1, &data_byte);

      BX_DBG_DMA_REPORT(phy_addr, 1, BX_WRITE, data_byte);
      }
    else {
      if (BX_DMA_THIS h[channel].dmaWrite16)
        BX_DMA_THIS h[channel].dmaWrite16(&data_word);
      else
        BX_PANIC(("no dmaWrite handler for channel %u.", channel));

      BX_MEM_WRITE_PHYSICAL(phy_addr, 2, &data_word);

      BX_DBG_DMA_REPORT(phy_addr, 2, BX_WRITE, data_word);
      }
    }
  else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 2) { // read
    // DMA controlled xfer of byte from Memory to I/O

    if (!ma_sl) {
      BX_MEM_READ_PHYSICAL(phy_addr, 1, &data_byte);

      if (BX_DMA_THIS h[channel].dmaRead8)
        BX_DMA_THIS h[channel].dmaRead8(&data_byte);

      BX_DBG_DMA_REPORT(phy_addr, 1, BX_READ, data_byte);
      }
    else {
      BX_MEM_READ_PHYSICAL(phy_addr, 2, &data_word);

      if (BX_DMA_THIS h[channel].dmaRead16)
        BX_DMA_THIS h[channel].dmaRead16(&data_word);

      BX_DBG_DMA_REPORT(phy_addr, 2, BX_READ, data_word);
      }
    }
  else if (BX_DMA_THIS s[ma_sl].chan[channel].mode.transfer_type == 0) {
    // verify

    if (!ma_sl) {
      if (BX_DMA_THIS h[channel].dmaWrite8)
        BX_DMA_THIS h[channel].dmaWrite8(&data_byte);
      else
        BX_PANIC(("no dmaWrite handler for channel %u.", channel));
      }
    else {
      if (BX_DMA_THIS h[channel].dmaWrite16)
        BX_DMA_THIS h[channel].dmaWrite16(&data_word);
      else
        BX_PANIC(("no dmaWrite handler for channel %u.", channel));
      }
    }
  else {
    BX_PANIC(("hlda: transfer_type 3 is undefined"));
    }

  if (count_expired) {
    BX_DMA_THIS TC = 0;            // clear TC, adapter card already notified
    BX_DMA_THIS HLDA = 0;
    bx_pc_system.set_HRQ(0);           // clear HRQ to CPU
    BX_DMA_THIS s[ma_sl].DACK[channel] = 0; // clear DACK to adapter card
    if (!ma_sl) {
      BX_DMA_THIS set_DRQ(4, 0); // clear DRQ to cascade
      BX_DMA_THIS s[1].DACK[0] = 0; // clear DACK to cascade
      }
    }
}