aboutsummaryrefslogtreecommitdiffstats
path: root/tools/ioemu/iodev/cmos.cc
blob: fbf3144989d99191b811ba10ad41d5f1d911a596 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
/////////////////////////////////////////////////////////////////////////
// $Id: cmos.cc,v 1.44 2003/12/27 13:43:41 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2002  MandrakeSoft S.A.
//
//    MandrakeSoft S.A.
//    43, rue d'Aboukir
//    75002 Paris - France
//    http://www.linux-mandrake.com/
//    http://www.mandrakesoft.com/
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA





// Define BX_PLUGGABLE in files that can be compiled into plugins.  For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE 
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE

#include "bochs.h"

#define LOG_THIS theCmosDevice->

bx_cmos_c *theCmosDevice = NULL;

// CMOS register definitions from Ralf Brown's interrupt list v6.1, in a file
// called cmos.lst.  In cases where there are multiple uses for a given
// register in the interrupt list, I only listed the purpose that Bochs
// actually uses it for, but I wrote "alternatives" next to it.
#define  REG_SEC                     0x00
#define  REG_SEC_ALARM               0x01
#define  REG_MIN                     0x02
#define  REG_MIN_ALARM               0x03
#define  REG_HOUR                    0x04
#define  REG_HOUR_ALARM              0x05
#define  REG_WEEK_DAY                0x06
#define  REG_MONTH_DAY               0x07
#define  REG_MONTH                   0x08
#define  REG_YEAR                    0x09
#define  REG_STAT_A                  0x0a
#define  REG_STAT_B                  0x0b
#define  REG_STAT_C                  0x0c
#define  REG_STAT_D                  0x0d
#define  REG_DIAGNOSTIC_STATUS       0x0e  /* alternatives */
#define  REG_SHUTDOWN_STATUS         0x0f
#define  REG_EQUIPMENT_BYTE          0x14
#define  REG_CSUM_HIGH               0x2e
#define  REG_CSUM_LOW                0x2f
#define  REG_IBM_CENTURY_BYTE        0x32  /* alternatives */
#define  REG_IBM_PS2_CENTURY_BYTE    0x37  /* alternatives */

// Bochs CMOS map (to be completed)
//
// Idx  Len   Description
// 0x15   2   Base memory in 1k
// 0x17   2   Memory size above 1M in 1k
// 0x30   2   Memory size above 1M in 1k
// 0x34   2   Memory size above 16M in 64k
//

// check that BX_NUM_CMOS_REGS is 64 or 128
#if (BX_NUM_CMOS_REGS == 64)
#elif (BX_NUM_CMOS_REGS == 128)
#else
#error "Invalid BX_NUM_CMOS_REGS value in config.h"
#endif


  int
libcmos_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
  theCmosDevice = new bx_cmos_c ();
  bx_devices.pluginCmosDevice = theCmosDevice;
  BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theCmosDevice, BX_PLUGIN_CMOS);
  return(0); // Success
}

  void
libcmos_LTX_plugin_fini(void)
{
}

bx_cmos_c::bx_cmos_c(void)
{
  put("CMOS");
  settype(CMOSLOG);

  unsigned i;
  for (i=0; i<BX_NUM_CMOS_REGS; i++)
    s.reg[i] = 0;
  s.periodic_timer_index = BX_NULL_TIMER_HANDLE;
  s.one_second_timer_index = BX_NULL_TIMER_HANDLE;
  s.uip_timer_index = BX_NULL_TIMER_HANDLE;
}

bx_cmos_c::~bx_cmos_c(void)
{
  BX_DEBUG(("Exit."));
}


  void
bx_cmos_c::init(void)
{
  BX_DEBUG(("Init $Id: cmos.cc,v 1.44 2003/12/27 13:43:41 vruppert Exp $"));
  // CMOS RAM & RTC

  DEV_register_ioread_handler(this, read_handler, 0x0070, "CMOS RAM", 1);
  DEV_register_ioread_handler(this, read_handler, 0x0071, "CMOS RAM", 1);
  DEV_register_iowrite_handler(this, write_handler, 0x0070, "CMOS RAM", 1);
  DEV_register_iowrite_handler(this, write_handler, 0x0071, "CMOS RAM", 1);
  DEV_register_irq(8, "CMOS RTC"); 
  if (BX_CMOS_THIS s.periodic_timer_index == BX_NULL_TIMER_HANDLE) {
    BX_CMOS_THIS s.periodic_timer_index =
      DEV_register_timer(this, periodic_timer_handler,
        1000000, 1,0, "cmos"); // continuous, not-active
  }
  if (BX_CMOS_THIS s.one_second_timer_index == BX_NULL_TIMER_HANDLE) {
    BX_CMOS_THIS s.one_second_timer_index =
      DEV_register_timer(this, one_second_timer_handler,
        1000000, 1,0, "cmos"); // continuous, not-active
  }
  if (BX_CMOS_THIS s.uip_timer_index == BX_NULL_TIMER_HANDLE) {
    BX_CMOS_THIS s.uip_timer_index =
      DEV_register_timer(this, uip_timer_handler,
        244, 0, 0, "cmos"); // one-shot, not-active
  }

#if BX_USE_SPECIFIED_TIME0 != 0
  // ??? this will not be correct for using an image file.
  // perhaps take values in CMOS and work backwards to find
  // s.timeval from values read in.
  BX_CMOS_THIS s.timeval = BX_USE_SPECIFIED_TIME0;

#else // BX_USE_SPECIFIED_TIME0 != 0

  // localtime
  if (bx_options.clock.Otime0->get () == BX_CLOCK_TIME0_LOCAL) {
       BX_INFO(("Using local time for initial clock"));
       BX_CMOS_THIS s.timeval = time(NULL);
  }
  // utc
  else if (bx_options.clock.Otime0->get () == BX_CLOCK_TIME0_UTC) {
       bx_bool utc_ok = 0;

       BX_INFO(("Using utc time for initial clock"));
       
       BX_CMOS_THIS s.timeval = time(NULL);

#if BX_HAVE_GMTIME
#if BX_HAVE_MKTIME
       struct tm *utc_holder = gmtime(&BX_CMOS_THIS s.timeval);
       utc_holder->tm_isdst = -1;
       utc_ok = 1;
       BX_CMOS_THIS s.timeval = mktime(utc_holder);
#elif BX_HAVE_TIMELOCAL
       struct tm *utc_holder = gmtime(&BX_CMOS_THIS s.timeval);
       utc_holder->tm_isdst = 0;	// XXX Is this correct???
       utc_ok = 1;
       BX_CMOS_THIS s.timeval = timelocal(utc_holder);
#endif //BX_HAVE_MKTIME
#endif //BX_HAVE_GMTIME

       if (!utc_ok) {
           BX_ERROR(("UTC time is not supported on your platform. Using current time(NULL)"));
       }
  }
  else {
       BX_INFO(("Using specified time for initial clock"));
       BX_CMOS_THIS s.timeval = bx_options.clock.Otime0->get ();
  }
#endif // BX_USE_SPECIFIED_TIME0 != 0

  char *tmptime;
  while( (tmptime =  strdup(ctime(&(BX_CMOS_THIS s.timeval)))) == NULL) {
    BX_PANIC(("Out of memory."));
  }
  tmptime[strlen(tmptime)-1]='\0';

  BX_INFO(("Setting initial clock to: %s (time0=%u)", tmptime, (Bit32u)BX_CMOS_THIS s.timeval));

  update_clock();
  BX_CMOS_THIS s.timeval_change = 0;

  // load CMOS from image file if requested.
  if (bx_options.cmos.OcmosImage->get ()) {
    // CMOS image file requested
    int fd, ret;
    struct stat stat_buf;

    fd = open(bx_options.cmos.Opath->getptr (), O_RDONLY
#ifdef O_BINARY
       | O_BINARY
#endif
        );
    if (fd < 0) {
      BX_PANIC(("trying to open cmos image file '%s'",
     bx_options.cmos.Opath->getptr ()));
      }
    ret = fstat(fd, &stat_buf);
    if (ret) {
      BX_PANIC(("CMOS: could not fstat() image file."));
      }
    if (stat_buf.st_size != BX_NUM_CMOS_REGS) {
      BX_PANIC(("CMOS: image file not same size as BX_NUM_CMOS_REGS."));
      }

    ret = ::read(fd, (bx_ptr_t) BX_CMOS_THIS s.reg, BX_NUM_CMOS_REGS);
    if (ret != BX_NUM_CMOS_REGS) {
      BX_PANIC(("CMOS: error reading cmos file."));
      }
    close(fd);
    BX_INFO(("successfuly read from image file '%s'.",
      bx_options.cmos.Opath->getptr ()));
    }
  else {
    // CMOS values generated
    BX_CMOS_THIS s.reg[REG_STAT_A] = 0x26;
    BX_CMOS_THIS s.reg[REG_STAT_B] = 0x02;
    BX_CMOS_THIS s.reg[REG_STAT_C] = 0x00;
    BX_CMOS_THIS s.reg[REG_STAT_D] = 0x80;
#if BX_SUPPORT_FPU == 1
    BX_CMOS_THIS s.reg[REG_EQUIPMENT_BYTE] |= 0x02;
#endif
    }
}

  void
bx_cmos_c::reset(unsigned type)
{
  BX_CMOS_THIS s.cmos_mem_address = 0;

  // RESET affects the following registers:
  //  CRA: no effects
  //  CRB: bits 4,5,6 forced to 0
  //  CRC: bits 4,5,6,7 forced to 0
  //  CRD: no effects
  BX_CMOS_THIS s.reg[REG_STAT_B] &= 0x8f;
  BX_CMOS_THIS s.reg[REG_STAT_C] = 0;

  // One second timer for updating clock & alarm functions
  bx_pc_system.activate_timer(BX_CMOS_THIS s.one_second_timer_index,
                         1000000, 1);

  // handle periodic interrupt rate select
  BX_CMOS_THIS CRA_change();
}

  void
bx_cmos_c::CRA_change(void)
{
  unsigned nibble;

  // Periodic Interrupt timer
  nibble = BX_CMOS_THIS s.reg[REG_STAT_A] & 0x0f;
  if (nibble == 0) {
    // No Periodic Interrupt Rate when 0, deactivate timer
    bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
    BX_CMOS_THIS s.periodic_interval_usec = (Bit32u) -1; // max value
    }
  else {
    // values 0001b and 0010b are the same as 1000b and 1001b
    if (nibble <= 2)
      nibble += 7;
    BX_CMOS_THIS s.periodic_interval_usec = (unsigned) (1000000.0L /
     (32768.0L / (1 << (nibble - 1))));

    // if Periodic Interrupt Enable bit set, activate timer
    if ( BX_CMOS_THIS s.reg[REG_STAT_B] & 0x40 )
      bx_pc_system.activate_timer(BX_CMOS_THIS s.periodic_timer_index,
     BX_CMOS_THIS s.periodic_interval_usec, 1);
    else
      bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
    }
}


  // static IO port read callback handler
  // redirects to non-static class handler to avoid virtual functions

  Bit32u
bx_cmos_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_CMOS_SMF
  bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;

  return( class_ptr->read(address, io_len) );
}

  Bit32u
bx_cmos_c::read(Bit32u address, unsigned io_len)
{
#else
  UNUSED(this_ptr);
#endif
  Bit8u ret8;

  if (bx_dbg.cmos)
    BX_INFO(("CMOS read of CMOS register 0x%02x",
      (unsigned) BX_CMOS_THIS s.cmos_mem_address));


  switch (address) {
    case 0x0070:
      BX_INFO(("read of index port 0x70. returning 0xff"));
      // Volker says his boxes return 0xff
      //ret8 = BX_CMOS_THIS s.cmos_mem_address;
      return(0xff);
      break;
    case 0x0071:
      if (BX_CMOS_THIS s.cmos_mem_address >= BX_NUM_CMOS_REGS) {
     BX_PANIC(("unsupported cmos io read, register(0x%02x)!",
       (unsigned) BX_CMOS_THIS s.cmos_mem_address));
     }

      ret8 = BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address];
      // all bits of Register C are cleared after a read occurs.
      if (BX_CMOS_THIS s.cmos_mem_address == REG_STAT_C) {
        BX_CMOS_THIS s.reg[REG_STAT_C] = 0x00;
        DEV_pic_lower_irq(8);
        }
      return(ret8);
      break;

    default:
      BX_PANIC(("unsupported cmos read, address=0x%04x!",
     (unsigned) address));
      return(0);
      break;
    }
}


  // static IO port write callback handler
  // redirects to non-static class handler to avoid virtual functions

  void
bx_cmos_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_CMOS_SMF
  bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;

  class_ptr->write(address, value, io_len);
}

  void
bx_cmos_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
  UNUSED(this_ptr);
#endif  // !BX_USE_CMOS_SMF

  if (bx_dbg.cmos)
    BX_INFO(("CMOS write to address: 0x%04x = 0x%02x",
      (unsigned) address, (unsigned) value));


  switch (address) {
    case 0x0070:
#if (BX_NUM_CMOS_REGS == 64)
      BX_CMOS_THIS s.cmos_mem_address = value & 0x3F;
#else
      BX_CMOS_THIS s.cmos_mem_address = value & 0x7F;
#endif
      break;

    case 0x0071:
      if (BX_CMOS_THIS s.cmos_mem_address >= BX_NUM_CMOS_REGS) {
     BX_PANIC(("unsupported cmos io write, register(0x%02x) = 0x%02x !",
       (unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value));
     return;
     }
      switch (BX_CMOS_THIS s.cmos_mem_address) {
     case REG_SEC_ALARM:             // seconds alarm
     case REG_MIN_ALARM:             // minutes alarm
     case REG_HOUR_ALARM:            // hours alarm
       BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
       BX_DEBUG(("alarm time changed to %02x:%02x:%02x", BX_CMOS_THIS s.reg[REG_HOUR_ALARM],
                 BX_CMOS_THIS s.reg[REG_MIN_ALARM], BX_CMOS_THIS s.reg[REG_SEC_ALARM]));
       return;
       break;

     case REG_SEC:                   // seconds
     case REG_MIN:                   // minutes
     case REG_HOUR:                  // hours
     case REG_WEEK_DAY:              // day of the week
     case REG_MONTH_DAY:             // day of the month
     case REG_MONTH:                 // month
     case REG_YEAR:                  // year
     case REG_IBM_CENTURY_BYTE:      // century
     case REG_IBM_PS2_CENTURY_BYTE:  // century (PS/2)
       //BX_INFO(("write reg 0x%02x: value = 0x%02x",
       //    (unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value);
       BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
       if (BX_CMOS_THIS s.cmos_mem_address == REG_IBM_PS2_CENTURY_BYTE) {
         BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] = value;
       }
       if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x80) {
         BX_CMOS_THIS s.timeval_change = 1;
       } else {
         update_timeval();
       }
       return;
       break;

     case REG_STAT_A: // Control Register A
       // bit 7: Update in Progress (read-only)
       //   1 = signifies time registers will be updated within 244us
       //   0 = time registers will not occur before 244us
       //   note: this bit reads 0 when CRB bit 7 is 1
       // bit 6..4: Divider Chain Control
       //   000 oscillator disabled
       //   001 oscillator disabled
       //   010 Normal operation
       //   011 TEST
       //   100 TEST
       //   101 TEST
       //   110 Divider Chain RESET
       //   111 Divider Chain RESET
       // bit 3..0: Periodic Interrupt Rate Select
       //   0000 None
       //   0001 3.90625  ms
       //   0010 7.8125   ms
       //   0011 122.070  us
       //   0100 244.141  us
       //   0101 488.281  us
       //   0110 976.562  us
       //   0111 1.953125 ms
       //   1000 3.90625  ms
       //   1001 7.8125   ms
       //   1010 15.625   ms
       //   1011 31.25    ms
       //   1100 62.5     ms
       //   1101 125      ms
       //   1110 250      ms
       //   1111 500      ms

       unsigned dcc;
       dcc = (value >> 4) & 0x07;
       if ((dcc & 0x06) == 0x06) {
         BX_INFO(("CRA: divider chain RESET"));
       } else if (dcc != 0x02) {
         BX_PANIC(("CRA: divider chain control 0x%02x", dcc));
       }
       BX_CMOS_THIS s.reg[REG_STAT_A] &= 0x80;
       BX_CMOS_THIS s.reg[REG_STAT_A] |= (value & 0x7f);
       BX_CMOS_THIS CRA_change();
       return;
       break;

     case REG_STAT_B: // Control Register B
       // bit 0: Daylight Savings Enable
       //   1 = enable daylight savings
       //   0 = disable daylight savings
       // bit 1: 24/12 houre mode
       //   1 = 24 hour format
       //   0 = 12 hour format
       // bit 2: Data Mode
       //   1 = binary format
       //   0 = BCD format
       // bit 3: "square wave enable"
       //   Not supported and always read as 0
       // bit 4: Update Ended Interrupt Enable
       //   1 = enable generation of update ended interrupt
       //   0 = disable
       // bit 5: Alarm Interrupt Enable
       //   1 = enable generation of alarm interrupt
       //   0 = disable
       // bit 6: Periodic Interrupt Enable
       //   1 = enable generation of periodic interrupt
       //   0 = disable
       // bit 7: Set mode
       //   1 = user copy of time is "frozen" allowing time registers
       //       to be accessed without regard for an occurance of an update
       //   0 = time updates occur normally

       // can not handle binary or 12-hour mode yet.
       if (value & 0x04)
       BX_PANIC(("write status reg B, binary format enabled."));
       if ( !(value & 0x02) )
       BX_PANIC(("write status reg B, 12 hour mode enabled."));

       value &= 0xf7; // bit3 always 0
       // Note: setting bit 7 clears bit 4
       if (value & 0x80)
       value &= 0xef;

       unsigned prev_CRB;
       prev_CRB = BX_CMOS_THIS s.reg[REG_STAT_B];
       BX_CMOS_THIS s.reg[REG_STAT_B] = value;
       if ( (prev_CRB & 0x40) != (value & 0x40) ) {
       // Periodic Interrupt Enabled changed
       if (prev_CRB & 0x40) {
         // transition from 1 to 0, deactivate timer
         bx_pc_system.deactivate_timer(
           BX_CMOS_THIS s.periodic_timer_index);
         }
       else {
         // transition from 0 to 1
         // if rate select is not 0, activate timer
         if ( (BX_CMOS_THIS s.reg[REG_STAT_A] & 0x0f) != 0 ) {
           bx_pc_system.activate_timer(
             BX_CMOS_THIS s.periodic_timer_index,
             BX_CMOS_THIS s.periodic_interval_usec, 1);
           }
         }
       }
       if ( (prev_CRB >= 0x80) && (value < 0x80) && BX_CMOS_THIS s.timeval_change) {
         update_timeval();
         BX_CMOS_THIS s.timeval_change = 0;
       }
       return;
       break;

     case REG_STAT_C: // Control Register C
     case REG_STAT_D: // Control Register D
       BX_ERROR(("write to control register 0x%02x (read-only)",
              BX_CMOS_THIS s.cmos_mem_address));
       break;

     case REG_DIAGNOSTIC_STATUS:
       BX_DEBUG(("write register 0x0e: 0x%02x", (unsigned) value));
       break;

     case REG_SHUTDOWN_STATUS:
       switch (value) {
       case 0x00: /* proceed with normal POST (soft reset) */
         BX_DEBUG(("Reg 0Fh(00): shutdown action = normal POST"));
         break;
       case 0x01: /* shutdown after memory size check */
         BX_DEBUG(("Reg 0Fh(01): request to change shutdown action"
                        " to shutdown after memory size check"));
       case 0x02: /* shutdown after successful memory test */
         BX_DEBUG(("Reg 0Fh(02): request to change shutdown action"
                        " to shutdown after successful memory test"));
         break;
       case 0x03: /* shutdown after failed memory test */
         BX_DEBUG(("Reg 0Fh(03): request to change shutdown action"
                        " to shutdown after successful memory test"));
         break;
       case 0x04: /* jump to disk bootstrap routine */
         BX_DEBUG(("Reg 0Fh(04): request to change shutdown action "
                        "to jump to disk bootstrap routine."));
         break;
       case 0x05: /* flush keyboard (issue EOI) and jump via 40h:0067h */
         BX_DEBUG(("Reg 0Fh(05): request to change shutdown action "
                        "to flush keyboard (issue EOI) and jump via 40h:0067h."));
         break;
       case 0x06:
         BX_DEBUG(("Reg 0Fh(06): Shutdown after memory test !"));
         break;
       case 0x07: /* reset (after failed test in virtual mode) */
         BX_DEBUG(("Reg 0Fh(07): request to change shutdown action "
                        "to reset (after failed test in virtual mode)."));
         break;
       case 0x08: /* used by POST during protected-mode RAM test (return to POST) */
         BX_DEBUG(("Reg 0Fh(08): request to change shutdown action "
                        "to return to POST (used by POST during protected-mode RAM test)."));
         break;
       case 0x09: /* return to BIOS extended memory block move
                  (interrupt 15h, func 87h was in progress) */
         BX_DEBUG(("Reg 0Fh(09): request to change shutdown action "
                        "to return to BIOS extended memory block move."));
         break;
       case 0x0a: /* jump to DWORD pointer at 40:67 */
         BX_DEBUG(("Reg 0Fh(0a): request to change shutdown action"
                        " to jump to DWORD at 40:67"));
         break;
       case 0x0b: /* iret to DWORD pointer at 40:67 */
         BX_DEBUG(("Reg 0Fh(0b): request to change shutdown action"
                        " to iret to DWORD at 40:67"));
         break;
       case 0x0c: /* retf to DWORD pointer at 40:67 */
         BX_DEBUG(("Reg 0Fh(0c): request to change shutdown action"
                        " to retf to DWORD at 40:67"));
         break;
       default:
         BX_PANIC(("unsupported cmos io write to reg F, case 0x%02x!",
           (unsigned) value));
         break;
       }
       break;

     default:
       BX_DEBUG(("write reg 0x%02x: value = 0x%02x",
       (unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value));
       break;
     }

      BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
      break;
    }
}


  void
bx_cmos_c::checksum_cmos(void)
{
  unsigned i;
  Bit16u sum;

  sum = 0;
  for (i=0x10; i<=0x2d; i++) {
    sum += BX_CMOS_THIS s.reg[i];
    }
  BX_CMOS_THIS s.reg[REG_CSUM_HIGH] = (sum >> 8) & 0xff; /* checksum high */
  BX_CMOS_THIS s.reg[REG_CSUM_LOW] = (sum & 0xff);      /* checksum low */
}

  void
bx_cmos_c::periodic_timer_handler(void *this_ptr)
{
  bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;

  class_ptr->periodic_timer();
}

  void
bx_cmos_c::periodic_timer()
{
  // if periodic interrupts are enabled, trip IRQ 8, and
  // update status register C
  if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x40) {
    BX_CMOS_THIS s.reg[REG_STAT_C] |= 0xc0; // Interrupt Request, Periodic Int
    DEV_pic_raise_irq(8);
    }
}

  void
bx_cmos_c::one_second_timer_handler(void *this_ptr)
{
  bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;

  class_ptr->one_second_timer();
}

  void
bx_cmos_c::one_second_timer()
{
  // divider chain reset - RTC stopped
  if ((BX_CMOS_THIS s.reg[REG_STAT_A] & 0x60) == 0x60)
    return;

  // update internal time/date buffer
  BX_CMOS_THIS s.timeval++;

  // Dont update CMOS user copy of time/date if CRB bit7 is 1
  // Nothing else do to
  if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x80)
    return;

  BX_CMOS_THIS s.reg[REG_STAT_A] |= 0x80; // set UIP bit

  // UIP timer for updating clock & alarm functions
  bx_pc_system.activate_timer(BX_CMOS_THIS s.uip_timer_index,
                         244, 0);
}

  void
bx_cmos_c::uip_timer_handler(void *this_ptr)
{
  bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;

  class_ptr->uip_timer();
}

  void
bx_cmos_c::uip_timer()
{
  update_clock();

  // if update interrupts are enabled, trip IRQ 8, and
  // update status register C
  if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x10) {
    BX_CMOS_THIS s.reg[REG_STAT_C] |= 0x90; // Interrupt Request, Update Ended
    DEV_pic_raise_irq(8);
    }

  // compare CMOS user copy of time/date to alarm time/date here
  if (BX_CMOS_THIS s.reg[REG_STAT_B] & 0x20) {
    // Alarm interrupts enabled
    bx_bool alarm_match = 1;
    if ( (BX_CMOS_THIS s.reg[REG_SEC_ALARM] & 0xc0) != 0xc0 ) {
      // seconds alarm not in dont care mode
      if (BX_CMOS_THIS s.reg[REG_SEC] != BX_CMOS_THIS s.reg[REG_SEC_ALARM])
     alarm_match = 0;
      }
    if ( (BX_CMOS_THIS s.reg[REG_MIN_ALARM] & 0xc0) != 0xc0 ) {
      // minutes alarm not in dont care mode
      if (BX_CMOS_THIS s.reg[REG_MIN] != BX_CMOS_THIS s.reg[REG_MIN_ALARM])
     alarm_match = 0;
      }
    if ( (BX_CMOS_THIS s.reg[REG_HOUR_ALARM] & 0xc0) != 0xc0 ) {
      // hours alarm not in dont care mode
      if (BX_CMOS_THIS s.reg[REG_HOUR] != BX_CMOS_THIS s.reg[REG_HOUR_ALARM])
     alarm_match = 0;
      }
    if (alarm_match) {
      BX_CMOS_THIS s.reg[REG_STAT_C] |= 0xa0; // Interrupt Request, Alarm Int
      DEV_pic_raise_irq(8);
      }
    }
  BX_CMOS_THIS s.reg[REG_STAT_A] &= 0x7f; // clear UIP bit
}


  void
bx_cmos_c::update_clock()
{
  struct tm *time_calendar;
  unsigned year, month, day, century;
  Bit8u val_bcd;

  time_calendar = localtime(& BX_CMOS_THIS s.timeval);

  // update seconds
  val_bcd =
     ((time_calendar->tm_sec  / 10) << 4) |
     (time_calendar->tm_sec % 10);
  BX_CMOS_THIS s.reg[REG_SEC] = val_bcd;

  // update minutes
  val_bcd =
     ((time_calendar->tm_min  / 10) << 4) |
     (time_calendar->tm_min % 10);
  BX_CMOS_THIS s.reg[REG_MIN] = val_bcd;

  // update hours
  val_bcd =
     ((time_calendar->tm_hour  / 10) << 4) |
     (time_calendar->tm_hour % 10);
  BX_CMOS_THIS s.reg[REG_HOUR] = val_bcd;

  // update day of the week
  day = time_calendar->tm_wday + 1; // 0..6 to 1..7
  BX_CMOS_THIS s.reg[REG_WEEK_DAY] = ((day / 10) << 4) | (day % 10);

  // update day of the month
  day = time_calendar->tm_mday;
  BX_CMOS_THIS s.reg[REG_MONTH_DAY] = ((day / 10) << 4) | (day % 10);

  // update month
  month   = time_calendar->tm_mon + 1;
  BX_CMOS_THIS s.reg[REG_MONTH] = ((month / 10) << 4) | (month % 10);

  // update year
  year = time_calendar->tm_year % 100;
  BX_CMOS_THIS s.reg[REG_YEAR] = ((year  / 10) << 4) | (year % 10);

  // update century
  century = (time_calendar->tm_year / 100) + 19;
  BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] = 
    ((century  / 10) << 4) | (century % 10);

  // Raul Hudea pointed out that some bioses also use reg 0x37 for the 
  // century byte.  Tony Heller says this is critical in getting WinXP to run.
  BX_CMOS_THIS s.reg[REG_IBM_PS2_CENTURY_BYTE] = 
    BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE];
}

  void
bx_cmos_c::update_timeval()
{
  struct tm time_calendar;
  Bit8u val_bin;

  // update seconds
  val_bin =
     ((BX_CMOS_THIS s.reg[REG_SEC] >> 4) * 10) +
     (BX_CMOS_THIS s.reg[REG_SEC] & 0x0f);
  time_calendar.tm_sec = val_bin;

  // update minutes
  val_bin =
     ((BX_CMOS_THIS s.reg[REG_MIN] >> 4) * 10) +
     (BX_CMOS_THIS s.reg[REG_MIN] & 0x0f);
  time_calendar.tm_min = val_bin;

  // update hours
  val_bin =
     ((BX_CMOS_THIS s.reg[REG_HOUR] >> 4) * 10) +
     (BX_CMOS_THIS s.reg[REG_HOUR] & 0x0f);
  time_calendar.tm_hour = val_bin;

  // update day of the month
  val_bin =
     ((BX_CMOS_THIS s.reg[REG_MONTH_DAY] >> 4) * 10) +
     (BX_CMOS_THIS s.reg[REG_MONTH_DAY] & 0x0f);
  time_calendar.tm_mday = val_bin;

  // update month
  val_bin =
     ((BX_CMOS_THIS s.reg[REG_MONTH] >> 4) * 10) +
     (BX_CMOS_THIS s.reg[REG_MONTH] & 0x0f);
  time_calendar.tm_mon = val_bin - 1;

  // update year
  val_bin =
     ((BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] >> 4) * 10) +
     (BX_CMOS_THIS s.reg[REG_IBM_CENTURY_BYTE] & 0x0f);
  val_bin = (val_bin - 19) * 100;
  val_bin +=
     (((BX_CMOS_THIS s.reg[REG_YEAR] >> 4) * 10) +
     (BX_CMOS_THIS s.reg[REG_YEAR] & 0x0f));
  time_calendar.tm_year = val_bin;

  BX_CMOS_THIS s.timeval = mktime(& time_calendar);
}