/* * ACPI 3.0 based NUMA setup * Copyright 2004 Andi Kleen, SuSE Labs. * * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs. * * Called from acpi_numa_init while reading the SRAT and SLIT tables. * Assumes all memory regions belonging to a single proximity domain * are in one chunk. Holes between them will be included in the node. * * Adapted for Xen: Ryan Harper */ #include #include #include #include #include #include #include #include #include static struct acpi_table_slit *__read_mostly acpi_slit; static nodemask_t memory_nodes_parsed __initdata; static nodemask_t processor_nodes_parsed __initdata; static nodemask_t nodes_found __initdata; static struct node nodes[MAX_NUMNODES] __initdata; static u8 __read_mostly pxm2node[256] = { [0 ... 255] = NUMA_NO_NODE }; static int num_node_memblks; static struct node node_memblk_range[NR_NODE_MEMBLKS]; static int memblk_nodeid[NR_NODE_MEMBLKS]; static int node_to_pxm(int n); int pxm_to_node(int pxm) { if ((unsigned)pxm >= 256) return -1; /* Extend 0xff to (int)-1 */ return (signed char)pxm2node[pxm]; } __devinit int setup_node(int pxm) { unsigned node = pxm2node[pxm]; if (node == 0xff) { if (nodes_weight(nodes_found) >= MAX_NUMNODES) return -1; node = first_unset_node(nodes_found); node_set(node, nodes_found); pxm2node[pxm] = node; } return pxm2node[pxm]; } int valid_numa_range(u64 start, u64 end, int node) { int i; for (i = 0; i < num_node_memblks; i++) { struct node *nd = &node_memblk_range[i]; if (nd->start <= start && nd->end > end && memblk_nodeid[i] == node ) return 1; } return 0; } static __init int conflicting_memblks(u64 start, u64 end) { int i; for (i = 0; i < num_node_memblks; i++) { struct node *nd = &node_memblk_range[i]; if (nd->start == nd->end) continue; if (nd->end > start && nd->start < end) return memblk_nodeid[i]; if (nd->end == end && nd->start == start) return memblk_nodeid[i]; } return -1; } static __init void cutoff_node(int i, u64 start, u64 end) { struct node *nd = &nodes[i]; if (nd->start < start) { nd->start = start; if (nd->end < nd->start) nd->start = nd->end; } if (nd->end > end) { nd->end = end; if (nd->start > nd->end) nd->start = nd->end; } } static __init void bad_srat(void) { int i; printk(KERN_ERR "SRAT: SRAT not used.\n"); acpi_numa = -1; for (i = 0; i < MAX_LOCAL_APIC; i++) apicid_to_node[i] = NUMA_NO_NODE; for (i = 0; i < ARRAY_SIZE(pxm2node); i++) pxm2node[i] = NUMA_NO_NODE; mem_hotplug = 0; } /* * A lot of BIOS fill in 10 (= no distance) everywhere. This messes * up the NUMA heuristics which wants the local node to have a smaller * distance than the others. * Do some quick checks here and only use the SLIT if it passes. */ static __init int slit_valid(struct acpi_table_slit *slit) { int i, j; int d = slit->locality_count; for (i = 0; i < d; i++) { for (j = 0; j < d; j++) { u8 val = slit->entry[d*i + j]; if (i == j) { if (val != 10) return 0; } else if (val <= 10) return 0; } } return 1; } /* Callback for SLIT parsing */ void __init acpi_numa_slit_init(struct acpi_table_slit *slit) { unsigned long mfn; if (!slit_valid(slit)) { printk(KERN_INFO "ACPI: SLIT table looks invalid. " "Not used.\n"); return; } mfn = alloc_boot_pages(PFN_UP(slit->header.length), 1); if (!mfn) { printk(KERN_ERR "ACPI: Unable to allocate memory for " "saving ACPI SLIT numa information.\n"); return; } acpi_slit = mfn_to_virt(mfn); memcpy(acpi_slit, slit, slit->header.length); } /* Callback for Proximity Domain -> x2APIC mapping */ void __init acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) { int pxm, node; int apic_id; if (srat_disabled()) return; if (pa->header.length < sizeof(struct acpi_srat_x2apic_cpu_affinity)) { bad_srat(); return; } if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0) return; pxm = pa->proximity_domain; node = setup_node(pxm); if (node < 0) { printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); bad_srat(); return; } apic_id = pa->apic_id; apicid_to_node[apic_id] = node; acpi_numa = 1; printk(KERN_INFO "SRAT: PXM %u -> APIC %u -> Node %u\n", pxm, apic_id, node); } /* Callback for Proximity Domain -> LAPIC mapping */ void __init acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) { int pxm, node; if (srat_disabled()) return; if (pa->header.length != sizeof(struct acpi_srat_cpu_affinity)) { bad_srat(); return; } if (!(pa->flags & ACPI_SRAT_CPU_ENABLED)) return; pxm = pa->proximity_domain_lo; if (srat_rev >= 2) { pxm |= pa->proximity_domain_hi[0] << 8; pxm |= pa->proximity_domain_hi[1] << 16; pxm |= pa->proximity_domain_hi[2] << 24; } node = setup_node(pxm); if (node < 0) { printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); bad_srat(); return; } apicid_to_node[pa->apic_id] = node; node_set(node, processor_nodes_parsed); acpi_numa = 1; printk(KERN_INFO "SRAT: PXM %u -> APIC %u -> Node %u\n", pxm, pa->apic_id, node); } /* Callback for parsing of the Proximity Domain <-> Memory Area mappings */ void __init acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma) { struct node *nd; u64 start, end; int node, pxm; int i; if (srat_disabled()) return; if (ma->header.length != sizeof(struct acpi_srat_mem_affinity)) { bad_srat(); return; } if (!(ma->flags & ACPI_SRAT_MEM_ENABLED)) return; if (num_node_memblks >= NR_NODE_MEMBLKS) { dprintk(XENLOG_WARNING, "Too many numa entry, try bigger NR_NODE_MEMBLKS \n"); bad_srat(); return; } start = ma->base_address; end = start + ma->length; pxm = ma->proximity_domain; if (srat_rev < 2) pxm &= 0xff; node = setup_node(pxm); if (node < 0) { printk(KERN_ERR "SRAT: Too many proximity domains.\n"); bad_srat(); return; } /* It is fine to add this area to the nodes data it will be used later*/ i = conflicting_memblks(start, end); if (i == node) { printk(KERN_WARNING "SRAT: Warning: PXM %d (%"PRIx64"-%"PRIx64") overlaps with itself (%" PRIx64"-%"PRIx64")\n", pxm, start, end, nodes[i].start, nodes[i].end); } else if (i >= 0) { printk(KERN_ERR "SRAT: PXM %d (%"PRIx64"-%"PRIx64") overlaps with PXM %d (%" PRIx64"-%"PRIx64")\n", pxm, start, end, node_to_pxm(i), nodes[i].start, nodes[i].end); bad_srat(); return; } nd = &nodes[node]; if (!node_test_and_set(node, memory_nodes_parsed)) { nd->start = start; nd->end = end; } else { if (start < nd->start) nd->start = start; if (nd->end < end) nd->end = end; } if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && end > mem_hotplug) mem_hotplug = end; printk(KERN_INFO "SRAT: Node %u PXM %u %"PRIx64"-%"PRIx64"%s\n", node, pxm, start, end, ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE ? " (hotplug)" : ""); node_memblk_range[num_node_memblks].start = start; node_memblk_range[num_node_memblks].end = end; memblk_nodeid[num_node_memblks] = node; num_node_memblks++; } /* Sanity check to catch more bad SRATs (they are amazingly common). Make sure the PXMs cover all memory. */ static int nodes_cover_memory(void) { int i; for (i = 0; i < e820.nr_map; i++) { int j, found; unsigned long long start, end; if (e820.map[i].type != E820_RAM) { continue; } start = e820.map[i].addr; end = e820.map[i].addr + e820.map[i].size - 1; do { found = 0; for_each_node_mask(j, memory_nodes_parsed) if (start < nodes[j].end && end > nodes[j].start) { if (start >= nodes[j].start) { start = nodes[j].end; found = 1; } if (end <= nodes[j].end) { end = nodes[j].start; found = 1; } } } while (found && start < end); if (start < end) { printk(KERN_ERR "SRAT: No PXM for e820 range: " "%016Lx - %016Lx\n", start, end); return 0; } } return 1; } void __init acpi_numa_arch_fixup(void) {} static u64 __initdata srat_region_mask; static u64 __init fill_mask(u64 mask) { while (mask & (mask + 1)) mask |= mask + 1; return mask; } static int __init srat_parse_region(struct acpi_subtable_header *header, const unsigned long end) { struct acpi_srat_mem_affinity *ma; if (!header) return -EINVAL; ma = container_of(header, struct acpi_srat_mem_affinity, header); if (!ma->length || !(ma->flags & ACPI_SRAT_MEM_ENABLED) || (ma->flags & ACPI_SRAT_MEM_NON_VOLATILE)) return 0; if (numa_off) printk(KERN_INFO "SRAT: %013"PRIx64"-%013"PRIx64"\n", ma->base_address, ma->base_address + ma->length - 1); srat_region_mask |= ma->base_address | fill_mask(ma->base_address ^ (ma->base_address + ma->length - 1)); return 0; } void __init srat_parse_regions(u64 addr) { u64 mask; unsigned int i; if (acpi_disabled || acpi_numa < 0 || acpi_table_parse(ACPI_SIG_SRAT, acpi_parse_srat)) return; srat_region_mask = fill_mask(addr - 1); acpi_table_parse_srat(ACPI_SRAT_TYPE_MEMORY_AFFINITY, srat_parse_region, 0); for (mask = srat_region_mask, i = 0; mask && i < e820.nr_map; i++) { if (e820.map[i].type != E820_RAM) continue; if (~mask & fill_mask(e820.map[i].addr ^ (e820.map[i].addr + e820.map[i].size - 1))) mask = 0; } pfn_pdx_hole_setup(mask >> PAGE_SHIFT); } /* Use the information discovered above to actually set up the nodes. */ int __init acpi_scan_nodes(u64 start, u64 end) { int i; nodemask_t all_nodes_parsed; /* First clean up the node list */ for (i = 0; i < MAX_NUMNODES; i++) cutoff_node(i, start, end); if (acpi_numa <= 0) return -1; if (!nodes_cover_memory()) { bad_srat(); return -1; } memnode_shift = compute_hash_shift(node_memblk_range, num_node_memblks, memblk_nodeid); if (memnode_shift < 0) { printk(KERN_ERR "SRAT: No NUMA node hash function found. Contact maintainer\n"); bad_srat(); return -1; } nodes_or(all_nodes_parsed, memory_nodes_parsed, processor_nodes_parsed); /* Finally register nodes */ for_each_node_mask(i, all_nodes_parsed) { u64 size = nodes[i].end - nodes[i].start; if ( size == 0 ) printk(KERN_WARNING "SRAT: Node %u has no memory. " "BIOS Bug or mis-configured hardware?\n", i); setup_node_bootmem(i, nodes[i].start, nodes[i].end); } for (i = 0; i < nr_cpu_ids; i++) { if (cpu_to_node[i] == NUMA_NO_NODE) continue; if (!node_isset(cpu_to_node[i], processor_nodes_parsed)) numa_set_node(i, NUMA_NO_NODE); } numa_init_array(); return 0; } static int node_to_pxm(int n) { int i; if (pxm2node[n] == n) return n; for (i = 0; i < 256; i++) if (pxm2node[i] == n) return i; return 0; } int __node_distance(int a, int b) { int index; if (!acpi_slit) return a == b ? 10 : 20; index = acpi_slit->locality_count * node_to_pxm(a); return acpi_slit->entry[index + node_to_pxm(b)]; } EXPORT_SYMBOL(__node_distance);