/* * Generic VM initialization for x86-64 NUMA setups. * Copyright 2002,2003 Andi Kleen, SuSE Labs. * Adapted for Xen: Ryan Harper */ #include #include #include #include #include #include #include #include #include #include #include #include static int numa_setup(char *s); custom_param("numa", numa_setup); #ifndef Dprintk #define Dprintk(x...) #endif /* from proto.h */ #define round_up(x,y) ((((x)+(y))-1) & (~((y)-1))) struct node_data node_data[MAX_NUMNODES]; /* Mapping from pdx to node id */ int memnode_shift; static typeof(*memnodemap) _memnodemap[64]; unsigned long memnodemapsize; u8 *memnodemap; unsigned char cpu_to_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = NUMA_NO_NODE }; /* * Keep BIOS's CPU2node information, should not be used for memory allocaion */ unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = { [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE }; cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly; nodemask_t __read_mostly node_online_map = { { [0] = 1UL } }; int numa_off __devinitdata = 0; int acpi_numa __devinitdata; int srat_disabled(void) { return numa_off || acpi_numa < 0; } /* * Given a shift value, try to populate memnodemap[] * Returns : * 1 if OK * 0 if memnodmap[] too small (of shift too small) * -1 if node overlap or lost ram (shift too big) */ static int __init populate_memnodemap(const struct node *nodes, int numnodes, int shift, int *nodeids) { unsigned long spdx, epdx; int i, res = -1; memset(memnodemap, NUMA_NO_NODE, memnodemapsize * sizeof(*memnodemap)); for (i = 0; i < numnodes; i++) { spdx = paddr_to_pdx(nodes[i].start); epdx = paddr_to_pdx(nodes[i].end - 1) + 1; if (spdx >= epdx) continue; if ((epdx >> shift) >= memnodemapsize) return 0; do { if (memnodemap[spdx >> shift] != NUMA_NO_NODE) return -1; if (!nodeids) memnodemap[spdx >> shift] = i; else memnodemap[spdx >> shift] = nodeids[i]; spdx += (1UL << shift); } while (spdx < epdx); res = 1; } return res; } static int __init allocate_cachealigned_memnodemap(void) { unsigned long size = PFN_UP(memnodemapsize * sizeof(*memnodemap)); unsigned long mfn = alloc_boot_pages(size, 1); if (!mfn) { printk(KERN_ERR "NUMA: Unable to allocate Memory to Node hash map\n"); memnodemapsize = 0; return -1; } memnodemap = mfn_to_virt(mfn); mfn <<= PAGE_SHIFT; size <<= PAGE_SHIFT; printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", mfn, mfn + size); memnodemapsize = size / sizeof(*memnodemap); return 0; } /* * The LSB of all start and end addresses in the node map is the value of the * maximum possible shift. */ static int __init extract_lsb_from_nodes(const struct node *nodes, int numnodes) { int i, nodes_used = 0; unsigned long spdx, epdx; unsigned long bitfield = 0, memtop = 0; for (i = 0; i < numnodes; i++) { spdx = paddr_to_pdx(nodes[i].start); epdx = paddr_to_pdx(nodes[i].end - 1) + 1; if (spdx >= epdx) continue; bitfield |= spdx; nodes_used++; if (epdx > memtop) memtop = epdx; } if (nodes_used <= 1) i = BITS_PER_LONG - 1; else i = find_first_bit(&bitfield, sizeof(unsigned long)*8); memnodemapsize = (memtop >> i) + 1; return i; } int __init compute_hash_shift(struct node *nodes, int numnodes, int *nodeids) { int shift; shift = extract_lsb_from_nodes(nodes, numnodes); if (memnodemapsize <= ARRAY_SIZE(_memnodemap)) memnodemap = _memnodemap; else if (allocate_cachealigned_memnodemap()) return -1; printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", shift); if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) { printk(KERN_INFO "Your memory is not aligned you need to " "rebuild your kernel with a bigger NODEMAPSIZE " "shift=%d\n", shift); return -1; } return shift; } /* initialize NODE_DATA given nodeid and start/end */ void __init setup_node_bootmem(int nodeid, u64 start, u64 end) { unsigned long start_pfn, end_pfn; start_pfn = start >> PAGE_SHIFT; end_pfn = end >> PAGE_SHIFT; NODE_DATA(nodeid)->node_id = nodeid; NODE_DATA(nodeid)->node_start_pfn = start_pfn; NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn; node_set_online(nodeid); } void __init numa_init_array(void) { int rr, i; /* There are unfortunately some poorly designed mainboards around that only connect memory to a single CPU. This breaks the 1:1 cpu->node mapping. To avoid this fill in the mapping for all possible CPUs, as the number of CPUs is not known yet. We round robin the existing nodes. */ rr = first_node(node_online_map); for (i = 0; i < nr_cpu_ids; i++) { if (cpu_to_node[i] != NUMA_NO_NODE) continue; numa_set_node(i, rr); rr = next_node(rr, node_online_map); if (rr == MAX_NUMNODES) rr = first_node(node_online_map); } } #ifdef CONFIG_NUMA_EMU static int numa_fake __initdata = 0; /* Numa emulation */ static int __init numa_emulation(u64 start_pfn, u64 end_pfn) { int i; struct node nodes[MAX_NUMNODES]; u64 sz = ((end_pfn - start_pfn)< 1) { u64 x = 1; while ((x << 1) < sz) x <<= 1; if (x < sz/2) printk(KERN_ERR "Numa emulation unbalanced. Complain to maintainer\n"); sz = x; } memset(&nodes,0,sizeof(nodes)); for (i = 0; i < numa_fake; i++) { nodes[i].start = (start_pfn<> 20); node_set_online(i); } memnode_shift = compute_hash_shift(nodes, numa_fake, NULL); if (memnode_shift < 0) { memnode_shift = 0; printk(KERN_ERR "No NUMA hash function found. Emulation disabled.\n"); return -1; } for_each_online_node(i) setup_node_bootmem(i, nodes[i].start, nodes[i].end); numa_init_array(); return 0; } #endif void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn) { int i; #ifdef CONFIG_NUMA_EMU if (numa_fake && !numa_emulation(start_pfn, end_pfn)) return; #endif #ifdef CONFIG_ACPI_NUMA if (!numa_off && !acpi_scan_nodes((u64)start_pfn << PAGE_SHIFT, (u64)end_pfn << PAGE_SHIFT)) return; #endif printk(KERN_INFO "%s\n", numa_off ? "NUMA turned off" : "No NUMA configuration found"); printk(KERN_INFO "Faking a node at %016"PRIx64"-%016"PRIx64"\n", (u64)start_pfn << PAGE_SHIFT, (u64)end_pfn << PAGE_SHIFT); /* setup dummy node covering all memory */ memnode_shift = BITS_PER_LONG - 1; memnodemap = _memnodemap; nodes_clear(node_online_map); node_set_online(0); for (i = 0; i < nr_cpu_ids; i++) numa_set_node(i, 0); cpumask_copy(&node_to_cpumask[0], cpumask_of(0)); setup_node_bootmem(0, (u64)start_pfn << PAGE_SHIFT, (u64)end_pfn << PAGE_SHIFT); } __cpuinit void numa_add_cpu(int cpu) { cpumask_set_cpu(cpu, &node_to_cpumask[cpu_to_node(cpu)]); } void __cpuinit numa_set_node(int cpu, int node) { cpu_to_node[cpu] = node; } /* [numa=off] */ static __init int numa_setup(char *opt) { if (!strncmp(opt,"off",3)) numa_off = 1; if (!strncmp(opt,"on",2)) numa_off = 0; #ifdef CONFIG_NUMA_EMU if(!strncmp(opt, "fake=", 5)) { numa_off = 0; numa_fake = simple_strtoul(opt+5,NULL,0); ; if (numa_fake >= MAX_NUMNODES) numa_fake = MAX_NUMNODES; } #endif #ifdef CONFIG_ACPI_NUMA if (!strncmp(opt,"noacpi",6)) { numa_off = 0; acpi_numa = -1; } #endif return 1; } /* * Setup early cpu_to_node. * * Populate cpu_to_node[] only if x86_cpu_to_apicid[], * and apicid_to_node[] tables have valid entries for a CPU. * This means we skip cpu_to_node[] initialisation for NUMA * emulation and faking node case (when running a kernel compiled * for NUMA on a non NUMA box), which is OK as cpu_to_node[] * is already initialized in a round robin manner at numa_init_array, * prior to this call, and this initialization is good enough * for the fake NUMA cases. */ void __init init_cpu_to_node(void) { int i, node; for (i = 0; i < nr_cpu_ids; i++) { u32 apicid = x86_cpu_to_apicid[i]; if (apicid == BAD_APICID) continue; node = apicid_to_node[apicid]; if ( node == NUMA_NO_NODE || !node_online(node) ) node = 0; numa_set_node(i, node); } } EXPORT_SYMBOL(cpu_to_node); EXPORT_SYMBOL(node_to_cpumask); EXPORT_SYMBOL(memnode_shift); EXPORT_SYMBOL(memnodemap); EXPORT_SYMBOL(node_data); static void dump_numa(unsigned char key) { s_time_t now = NOW(); int i; struct domain *d; struct page_info *page; unsigned int page_num_node[MAX_NUMNODES]; printk("'%c' pressed -> dumping numa info (now-0x%X:%08X)\n", key, (u32)(now>>32), (u32)now); for_each_online_node(i) { paddr_t pa = (paddr_t)(NODE_DATA(i)->node_start_pfn + 1)<< PAGE_SHIFT; printk("idx%d -> NODE%d start->%lu size->%lu free->%lu\n", i, NODE_DATA(i)->node_id, NODE_DATA(i)->node_start_pfn, NODE_DATA(i)->node_spanned_pages, avail_node_heap_pages(i)); /* sanity check phys_to_nid() */ printk("phys_to_nid(%"PRIpaddr") -> %d should be %d\n", pa, phys_to_nid(pa), NODE_DATA(i)->node_id); } for_each_online_cpu(i) printk("CPU%d -> NODE%d\n", i, cpu_to_node[i]); rcu_read_lock(&domlist_read_lock); printk("Memory location of each domain:\n"); for_each_domain(d) { printk("Domain %u (total: %u):\n", d->domain_id, d->tot_pages); for_each_online_node(i) page_num_node[i] = 0; spin_lock(&d->page_alloc_lock); page_list_for_each(page, &d->page_list) { i = phys_to_nid((paddr_t)page_to_mfn(page) << PAGE_SHIFT); page_num_node[i]++; } spin_unlock(&d->page_alloc_lock); for_each_online_node(i) printk(" Node %u: %u\n", i, page_num_node[i]); } rcu_read_unlock(&domlist_read_lock); } static struct keyhandler dump_numa_keyhandler = { .diagnostic = 1, .u.fn = dump_numa, .desc = "dump numa info" }; static __init int register_numa_trigger(void) { register_keyhandler('u', &dump_numa_keyhandler); return 0; } __initcall(register_numa_trigger);