/* * QEMU PC System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" /* output Bochs bios info messages */ //#define DEBUG_BIOS #define BIOS_FILENAME "bios.bin" #define VGABIOS_FILENAME "vgabios.bin" #define VGABIOS_CIRRUS_FILENAME "vgabios-cirrus.bin" #define LINUX_BOOT_FILENAME "linux_boot.bin" /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ #define ACPI_DATA_SIZE 0x10000 static fdctrl_t *floppy_controller; static RTCState *rtc_state; #ifndef CONFIG_DM static PITState *pit; #endif /* !CONFIG_DM */ #ifndef CONFIG_DM static IOAPICState *ioapic; #endif /* !CONFIG_DM */ static PCIDevice *i440fx_state; static void ioport80_write(void *opaque, uint32_t addr, uint32_t data) { } /* MSDOS compatibility mode FPU exception support */ /* XXX: add IGNNE support */ void cpu_set_ferr(CPUX86State *s) { pic_set_irq(13, 1); } static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data) { pic_set_irq(13, 0); } /* TSC handling */ uint64_t cpu_get_tsc(CPUX86State *env) { /* Note: when using kqemu, it is more logical to return the host TSC because kqemu does not trap the RDTSC instruction for performance reasons */ #if USE_KQEMU if (env->kqemu_enabled) { return cpu_get_real_ticks(); } else #endif { return cpu_get_ticks(); } } #ifndef CONFIG_DM /* SMM support */ void cpu_smm_update(CPUState *env) { if (i440fx_state && env == first_cpu) i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1); } /* IRQ handling */ int cpu_get_pic_interrupt(CPUState *env) { int intno; intno = apic_get_interrupt(env); if (intno >= 0) { /* set irq request if a PIC irq is still pending */ /* XXX: improve that */ pic_update_irq(isa_pic); return intno; } /* read the irq from the PIC */ intno = pic_read_irq(isa_pic); return intno; } #endif /* CONFIG_DM */ static void pic_irq_request(void *opaque, int level) { CPUState *env = opaque; if (level) cpu_interrupt(env, CPU_INTERRUPT_HARD); else cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } /* PC cmos mappings */ #define REG_EQUIPMENT_BYTE 0x14 static int cmos_get_fd_drive_type(int fd0) { int val; switch (fd0) { case 0: /* 1.44 Mb 3"5 drive */ val = 4; break; case 1: /* 2.88 Mb 3"5 drive */ val = 5; break; case 2: /* 1.2 Mb 5"5 drive */ val = 2; break; default: val = 0; break; } return val; } static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd) { RTCState *s = rtc_state; int cylinders, heads, sectors; bdrv_get_geometry_hint(hd, &cylinders, &heads, §ors); rtc_set_memory(s, type_ofs, 47); rtc_set_memory(s, info_ofs, cylinders); rtc_set_memory(s, info_ofs + 1, cylinders >> 8); rtc_set_memory(s, info_ofs + 2, heads); rtc_set_memory(s, info_ofs + 3, 0xff); rtc_set_memory(s, info_ofs + 4, 0xff); rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); rtc_set_memory(s, info_ofs + 6, cylinders); rtc_set_memory(s, info_ofs + 7, cylinders >> 8); rtc_set_memory(s, info_ofs + 8, sectors); } static int get_bios_disk(char *boot_device, int index) { if (index < strlen(boot_device)) { switch (boot_device[index]) { case 'a': return 0x01; /* floppy */ case 'c': return 0x02; /* hard drive */ case 'd': return 0x03; /* cdrom */ case 'n': return 0x04; /* network */ } } return 0x00; /* no device */ } /* hd_table must contain 4 block drivers */ static void cmos_init(uint64_t ram_size, char *boot_device, BlockDriverState **hd_table) { RTCState *s = rtc_state; int val; int fd0, fd1, nb; int i; /* various important CMOS locations needed by PC/Bochs bios */ /* memory size */ val = 640; /* base memory in K */ rtc_set_memory(s, 0x15, val); rtc_set_memory(s, 0x16, val >> 8); val = (ram_size / 1024) - 1024; if (val > 65535) val = 65535; rtc_set_memory(s, 0x17, val); rtc_set_memory(s, 0x18, val >> 8); rtc_set_memory(s, 0x30, val); rtc_set_memory(s, 0x31, val >> 8); if (ram_size > (16 * 1024 * 1024)) val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536); else val = 0; if (val > 65535) val = 65535; rtc_set_memory(s, 0x34, val); rtc_set_memory(s, 0x35, val >> 8); if (boot_device == NULL) { /* default to hd, then cd, then floppy. */ boot_device = "cda"; } rtc_set_memory(s, 0x3d, get_bios_disk(boot_device, 0) | (get_bios_disk(boot_device, 1) << 4)); rtc_set_memory(s, 0x38, (get_bios_disk(boot_device, 2) << 4) | (!fd_bootchk ? 0x01 : 0x00)); /* floppy type */ fd0 = fdctrl_get_drive_type(floppy_controller, 0); fd1 = fdctrl_get_drive_type(floppy_controller, 1); val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1); rtc_set_memory(s, 0x10, val); val = 0; nb = 0; if (fd0 < 3) nb++; if (fd1 < 3) nb++; switch (nb) { case 0: break; case 1: val |= 0x01; /* 1 drive, ready for boot */ break; case 2: val |= 0x41; /* 2 drives, ready for boot */ break; } val |= 0x02; /* FPU is there */ val |= 0x04; /* PS/2 mouse installed */ rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); /* hard drives */ rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0)); if (hd_table[0]) cmos_init_hd(0x19, 0x1b, hd_table[0]); if (hd_table[1]) cmos_init_hd(0x1a, 0x24, hd_table[1]); val = 0; for (i = 0; i < 4; i++) { if (hd_table[i]) { int cylinders, heads, sectors, translation; /* NOTE: bdrv_get_geometry_hint() returns the physical geometry. It is always such that: 1 <= sects <= 63, 1 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS geometry can be different if a translation is done. */ translation = bdrv_get_translation_hint(hd_table[i]); if (translation == BIOS_ATA_TRANSLATION_AUTO) { bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, §ors); if (cylinders <= 1024 && heads <= 16 && sectors <= 63) { /* No translation. */ translation = 0; } else { /* LBA translation. */ translation = 1; } } else { translation--; } val |= translation << (i * 2); } } rtc_set_memory(s, 0x39, val); } void ioport_set_a20(int enable) { /* XXX: send to all CPUs ? */ cpu_x86_set_a20(first_cpu, enable); } int ioport_get_a20(void) { return ((first_cpu->a20_mask >> 20) & 1); } static void ioport92_write(void *opaque, uint32_t addr, uint32_t val) { ioport_set_a20((val >> 1) & 1); /* XXX: bit 0 is fast reset */ } static uint32_t ioport92_read(void *opaque, uint32_t addr) { return ioport_get_a20() << 1; } /***********************************************************/ /* Bochs BIOS debug ports */ void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val) { static const char shutdown_str[8] = "Shutdown"; static int shutdown_index = 0; switch(addr) { /* Bochs BIOS messages */ case 0x400: case 0x401: fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val); exit(1); case 0x402: case 0x403: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; case 0x8900: /* same as Bochs power off */ if (val == shutdown_str[shutdown_index]) { shutdown_index++; if (shutdown_index == 8) { shutdown_index = 0; qemu_system_shutdown_request(); } } else { shutdown_index = 0; } break; /* LGPL'ed VGA BIOS messages */ case 0x501: case 0x502: fprintf(stderr, "VGA BIOS panic, line %d\n", val); exit(1); case 0x500: case 0x503: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; } } void bochs_bios_init(void) { register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL); } /* Generate an initial boot sector which sets state and jump to a specified vector */ static void generate_bootsect(uint32_t gpr[8], uint16_t segs[6], uint16_t ip) { uint8_t bootsect[512], *p; int i; if (bs_table[0] == NULL) { fprintf(stderr, "A disk image must be given for 'hda' when booting " "a Linux kernel\n"); exit(1); } memset(bootsect, 0, sizeof(bootsect)); /* Copy the MSDOS partition table if possible */ bdrv_read(bs_table[0], 0, bootsect, 1); /* Make sure we have a partition signature */ bootsect[510] = 0x55; bootsect[511] = 0xaa; /* Actual code */ p = bootsect; *p++ = 0xfa; /* CLI */ *p++ = 0xfc; /* CLD */ for (i = 0; i < 6; i++) { if (i == 1) /* Skip CS */ continue; *p++ = 0xb8; /* MOV AX,imm16 */ *p++ = segs[i]; *p++ = segs[i] >> 8; *p++ = 0x8e; /* MOV ,AX */ *p++ = 0xc0 + (i << 3); } for (i = 0; i < 8; i++) { *p++ = 0x66; /* 32-bit operand size */ *p++ = 0xb8 + i; /* MOV ,imm32 */ *p++ = gpr[i]; *p++ = gpr[i] >> 8; *p++ = gpr[i] >> 16; *p++ = gpr[i] >> 24; } *p++ = 0xea; /* JMP FAR */ *p++ = ip; /* IP */ *p++ = ip >> 8; *p++ = segs[1]; /* CS */ *p++ = segs[1] >> 8; bdrv_set_boot_sector(bs_table[0], bootsect, sizeof(bootsect)); } /* * Evil helper for non-relocatable kernels * * So it works out like this: * * 0x100000 - Xen HVM firmware lives here. Kernel wants to boot here * * You can't both live there and HVM firmware is needed first, thus * our plan is * * 0x200000 - kernel is loaded here by QEMU * 0x200000+kernel_size - helper code is put here by QEMU * * code32_switch in kernel header is set to point at out helper * code at 0x200000+kernel_size * * Our helper basically does memmove(0x100000,0x200000,kernel_size) * and then jmps to 0x1000000. * * So we've overwritten the HVM firmware (which was no longer * needed) and the non-relocatable kernel can happily boot * at its usual address. * * Simple, eh ? * * Well the assembler needed to do this is fairly short: * * # Load segments * cld * cli * movl $0x18,%eax * mov %ax,%ds * mov %ax,%es * mov %ax,%fs * mov %ax,%gs * mov %ax,%ss * * # Move the kernel into position * xor %edx,%edx *_doloop: * movzbl 0x600000(%edx),%eax * mov %al,0x100000(%edx) * add $0x1,%edx * cmp $0x500000,%edx * jne _doloop * * # start kernel * xorl %ebx,%ebx * mov $0x100000,%ecx * jmp *%ecx * */ static void setup_relocator(target_phys_addr_t addr, target_phys_addr_t src, target_phys_addr_t dst, size_t len) { /* Now this assembler corresponds to follow machine code, with our args from QEMU spliced in :-) */ unsigned char buf[] = { /* Load segments */ 0xfc, /* cld */ 0xfa, /* cli */ 0xb8, 0x18, 0x00, 0x00, 0x00, /* mov $0x18,%eax */ 0x8e, 0xd8, /* mov %eax,%ds */ 0x8e, 0xc0, /* mov %eax,%es */ 0x8e, 0xe0, /* mov %eax,%fs */ 0x8e, 0xe8, /* mov %eax,%gs */ 0x8e, 0xd0, /* mov %eax,%ss */ 0x31, 0xd2, /* xor %edx,%edx */ /* Move the kernel into position */ 0x0f, 0xb6, 0x82, (src&0xff), ((src>>8)&0xff), ((src>>16)&0xff), ((src>>24)&0xff), /* movzbl $src(%edx),%eax */ 0x88, 0x82, (dst&0xff), ((dst>>8)&0xff), ((dst>>16)&0xff), ((dst>>24)&0xff), /* mov %al,$dst(%edx) */ 0x83, 0xc2, 0x01, /* add $0x1,%edx */ 0x81, 0xfa, (len&0xff), ((len>>8)&0xff), ((len>>16)&0xff), ((len>>24)&0xff), /* cmp $len,%edx */ 0x75, 0xe8, /* jne 13 <_doloop> */ /* Start kernel */ 0x31, 0xdb, /* xor %ebx,%ebx */ 0xb9, (dst&0xff), ((dst>>8)&0xff), ((dst>>16)&0xff), ((dst>>24)&0xff), /* mov $dst,%ecx */ 0xff, 0xe1, /* jmp *%ecx */ }; cpu_physical_memory_rw(addr, buf, sizeof(buf), 1); fprintf(stderr, "qemu: helper at 0x%x of size %d bytes, to move kernel of %d bytes from 0x%x to 0x%x\n", (int)addr, (int)sizeof(buf), (int)len, (int)src, (int)dst); } static long get_file_size(FILE *f) { long where, size; /* XXX: on Unix systems, using fstat() probably makes more sense */ where = ftell(f); fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, where, SEEK_SET); return size; } static int fread2guest(target_phys_addr_t dst_addr, size_t nbytes, FILE *f) { size_t offset = 0; while (nbytes) { uint8_t buf[4096]; size_t count = nbytes > sizeof(buf) ? sizeof(buf) : nbytes; if (fread(buf, 1, count, f) != count) return -1; cpu_physical_memory_rw(dst_addr+offset, buf, count, 1); offset += count; nbytes -= count; } return 0; } static void load_linux(const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline) { uint16_t protocol; uint32_t gpr[8]; uint16_t seg[6]; uint16_t real_seg; int setup_size, kernel_size, initrd_size, cmdline_size; uint32_t initrd_max; uint8_t header[1024]; target_phys_addr_t real_addr, reloc_prot_addr, prot_addr, cmdline_addr, initrd_addr; size_t ncmdline; FILE *f, *fi; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline)+16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f || !(kernel_size = get_file_size(f)) || fread(header, 1, 1024, f) != 1024) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* kernel protocol version */ fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); if (ldl_p(header+0x202) == 0x53726448) protocol = lduw_p(header+0x206); else protocol = 0; fprintf(stderr, "header protocol: %x\n", protocol); if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x10000; reloc_prot_addr = prot_addr; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x100000; reloc_prot_addr = 0x200000; } else { /* High and recent kernel */ real_addr = 0x10000; cmdline_addr = 0x20000; prot_addr = 0x100000; reloc_prot_addr = 0x200000; } fprintf(stderr, "qemu: real_addr = %#zx\n" "qemu: cmdline_addr = %#zx\n" "qemu: prot_addr = %#zx\n", real_addr, cmdline_addr, prot_addr); /* highest address for loading the initrd */ if (protocol >= 0x203) initrd_max = ldl_p(header+0x22c); else initrd_max = 0x37ffffff; if (initrd_max >= ram_size-ACPI_DATA_SIZE) initrd_max = ram_size-ACPI_DATA_SIZE-1; /* kernel command line */ ncmdline = strlen(kernel_cmdline); if (ncmdline > 4095) { ncmdline = 4095; ((uint8_t*)kernel_cmdline)[4095] = '\0'; } fprintf(stderr, "qemu: kernel_cmdline: %#zx ('%s')\n", ncmdline, kernel_cmdline); cpu_physical_memory_rw(cmdline_addr, (uint8_t*)kernel_cmdline, ncmdline+1, 1); if (protocol >= 0x202) { stl_p(header+0x228, cmdline_addr); } else { stw_p(header+0x20, 0xA33F); stw_p(header+0x22, cmdline_addr-real_addr); } /* loader type */ /* High nybble = B reserved for Qemu; low nybble is revision number. If this code is substantially changed, you may want to consider incrementing the revision. */ if (protocol >= 0x200) header[0x210] = 0xB0; /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header+0x224, cmdline_addr-real_addr-0x200); } /* load initrd */ if (initrd_filename) { if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); exit(1); } fi = fopen(initrd_filename, "rb"); if (!fi) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } initrd_size = get_file_size(fi); initrd_addr = ((initrd_max-initrd_size) & ~4095); fprintf(stderr, "qemu: loading initrd (%#x bytes) at %#zx\n", initrd_size, initrd_addr); if (fread2guest(initrd_addr, initrd_size, fi) < 0) { fprintf(stderr, "qemu: read error on initial ram disk '%s'\n", initrd_filename); exit(1); } fclose(fi); stl_p(header+0x218, initrd_addr); stl_p(header+0x21c, initrd_size); } setup_size = header[0x1f1]; if (setup_size == 0) setup_size = 4; setup_size = (setup_size+1)*512; kernel_size -= setup_size; /* Size of protected-mode code */ /* Urgh, Xen's HVM firmware lives at 0x100000, but that's also the * address Linux wants to start life at prior to relocatable support */ if (prot_addr != reloc_prot_addr) { if (protocol >= 0x205 && (header[0x234] & 1)) { /* Relocatable automatically */ stl_p(header+0x214, reloc_prot_addr); fprintf(stderr, "qemu: kernel is relocatable\n"); } else { /* Setup a helper which moves kernel back to * its expected addr after firmware has got out * of the way. We put a helper at reloc_prot_addr+kernel_size. * It moves kernel from reloc_prot_addr to prot_addr and * then jumps to prot_addr. Yes this is sick. */ fprintf(stderr, "qemu: kernel is NOT relocatable\n"); stl_p(header+0x214, reloc_prot_addr + kernel_size); setup_relocator(reloc_prot_addr + kernel_size, reloc_prot_addr, prot_addr, kernel_size); } } fprintf(stderr, "qemu: loading kernel real mode (%#x bytes) at %#zx\n", setup_size-1024, real_addr); fprintf(stderr, "qemu: loading kernel protected mode (%#x bytes) at %#zx\n", kernel_size, reloc_prot_addr); /* store the finalized header and load the rest of the kernel */ cpu_physical_memory_rw(real_addr, header, 1024, 1); if (fread2guest(real_addr+1024, setup_size-1024, f) < 0 || fread2guest(reloc_prot_addr, kernel_size, f) < 0) { fprintf(stderr, "qemu: loading kernel protected mode (%#x bytes) at %#zx\n", kernel_size, reloc_prot_addr); exit(1); } fclose(f); /* generate bootsector to set up the initial register state */ real_seg = (real_addr) >> 4; seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg; seg[1] = real_seg+0x20; /* CS */ memset(gpr, 0, sizeof gpr); gpr[4] = cmdline_addr-real_addr-16; /* SP (-16 is paranoia) */ generate_bootsect(gpr, seg, 0); } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); } static const int ide_iobase[2] = { 0x1f0, 0x170 }; static const int ide_iobase2[2] = { 0x3f6, 0x376 }; static const int ide_irq[2] = { 14, 15 }; #define NE2000_NB_MAX 6 static int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 }; static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 }; static int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; static int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; #ifdef HAS_AUDIO static void audio_init (PCIBus *pci_bus) { struct soundhw *c; int audio_enabled = 0; for (c = soundhw; !audio_enabled && c->name; ++c) { audio_enabled = c->enabled; } if (audio_enabled) { AudioState *s; s = AUD_init (); if (s) { for (c = soundhw; c->name; ++c) { if (c->enabled) { if (c->isa) { c->init.init_isa (s); } else { if (pci_bus) { c->init.init_pci (pci_bus, s); } } } } } } } #endif static void pc_init_ne2k_isa(NICInfo *nd) { static int nb_ne2k = 0; if (nb_ne2k == NE2000_NB_MAX) return; isa_ne2000_init(ne2000_io[nb_ne2k], ne2000_irq[nb_ne2k], nd); nb_ne2k++; } #define NOBIOS 1 /* PC hardware initialisation */ static void pc_init1(uint64_t ram_size, int vga_ram_size, char *boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, int pci_enabled, const char *direct_pci) { #ifndef NOBIOS char buf[1024]; int ret, initrd_size; #endif /* !NOBIOS */ int linux_boot, i; #ifndef NOBIOS unsigned long bios_offset, vga_bios_offset, option_rom_offset; int bios_size, isa_bios_size; #endif /* !NOBIOS */ PCIBus *pci_bus; int piix3_devfn = -1; CPUState *env; NICInfo *nd; int rc; linux_boot = (kernel_filename != NULL); /* init CPUs */ for(i = 0; i < smp_cpus; i++) { env = cpu_init(); #ifndef CONFIG_DM if (i != 0) env->hflags |= HF_HALTED_MASK; if (smp_cpus > 1) { /* XXX: enable it in all cases */ env->cpuid_features |= CPUID_APIC; } #endif /* !CONFIG_DM */ register_savevm("cpu", i, 4, cpu_save, cpu_load, env); qemu_register_reset(main_cpu_reset, env); #ifndef CONFIG_DM if (pci_enabled) { apic_init(env); } #endif /* !CONFIG_DM */ } /* allocate RAM */ #ifndef CONFIG_DM /* HVM domain owns memory */ cpu_register_physical_memory(0, ram_size, 0); #endif #ifndef NOBIOS /* BIOS load */ bios_offset = ram_size + vga_ram_size; vga_bios_offset = bios_offset + 256 * 1024; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME); bios_size = get_image_size(buf); if (bios_size <= 0 || (bios_size % 65536) != 0 || bios_size > (256 * 1024)) { goto bios_error; } ret = load_image(buf, phys_ram_base + bios_offset); if (ret != bios_size) { bios_error: fprintf(stderr, "qemu: could not load PC bios '%s'\n", buf); exit(1); } /* VGA BIOS load */ if (cirrus_vga_enabled) { snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_CIRRUS_FILENAME); } else { snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME); } ret = load_image(buf, phys_ram_base + vga_bios_offset); #endif /* !NOBIOS */ /* setup basic memory access */ #ifndef CONFIG_DM /* HVM domain owns memory */ cpu_register_physical_memory(0xc0000, 0x10000, vga_bios_offset | IO_MEM_ROM); #endif #ifndef NOBIOS /* map the last 128KB of the BIOS in ISA space */ isa_bios_size = bios_size; if (isa_bios_size > (128 * 1024)) isa_bios_size = 128 * 1024; cpu_register_physical_memory(0xd0000, (192 * 1024) - isa_bios_size, IO_MEM_UNASSIGNED); cpu_register_physical_memory(0x100000 - isa_bios_size, isa_bios_size, (bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM); option_rom_offset = 0; for (i = 0; i < nb_option_roms; i++) { int offset = bios_offset + bios_size + option_rom_offset; int size; size = load_image(option_rom[i], phys_ram_base + offset); if ((size + option_rom_offset) > 0x10000) { fprintf(stderr, "Too many option ROMS\n"); exit(1); } cpu_register_physical_memory(0xd0000 + option_rom_offset, size, offset | IO_MEM_ROM); option_rom_offset += size + 2047; option_rom_offset -= (option_rom_offset % 2048); } /* map all the bios at the top of memory */ cpu_register_physical_memory((uint32_t)(-bios_size), bios_size, bios_offset | IO_MEM_ROM); #endif bochs_bios_init(); if (linux_boot) load_linux(kernel_filename, initrd_filename, kernel_cmdline); if (pci_enabled) { pci_bus = i440fx_init(&i440fx_state); piix3_devfn = piix3_init(pci_bus, -1); } else { pci_bus = NULL; } /* init basic PC hardware */ register_ioport_write(0x80, 1, 1, ioport80_write, NULL); register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL); if (cirrus_vga_enabled) { if (pci_enabled) { pci_cirrus_vga_init(pci_bus, ds, NULL, ram_size, vga_ram_size); } else { isa_cirrus_vga_init(ds, NULL, ram_size, vga_ram_size); } } else { if (pci_enabled) { pci_vga_init(pci_bus, ds, NULL, ram_size, vga_ram_size, 0, 0); } else { isa_vga_init(ds, NULL, ram_size, vga_ram_size); } } #ifdef CONFIG_PASSTHROUGH /* Pass-through Initialization */ if ( pci_enabled && direct_pci ) { rc = pt_init(pci_bus, direct_pci); if ( rc < 0 ) { fprintf(logfile, "Error: Initialization failed for pass-through devices\n"); exit(1); } } #endif rtc_state = rtc_init(0x70, 8); register_ioport_read(0x92, 1, 1, ioport92_read, NULL); register_ioport_write(0x92, 1, 1, ioport92_write, NULL); #ifndef CONFIG_DM if (pci_enabled) { ioapic = ioapic_init(); } #endif /* !CONFIG_DM */ isa_pic = pic_init(pic_irq_request, first_cpu); #ifndef CONFIG_DM pit = pit_init(0x40, 0); pcspk_init(pit); #endif /* !CONFIG_DM */ #ifndef CONFIG_DM if (pci_enabled) { pic_set_alt_irq_func(isa_pic, ioapic_set_irq, ioapic); } #endif /* !CONFIG_DM */ if (pci_enabled) pci_xen_platform_init(pci_bus); for(i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { serial_init(&pic_set_irq_new, isa_pic, serial_io[i], serial_irq[i], serial_hds[i]); } } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { if (parallel_hds[i]) { parallel_init(parallel_io[i], parallel_irq[i], parallel_hds[i]); } } for(i = 0; i < nb_nics; i++) { nd = &nd_table[i]; if (!nd->model) { if (pci_enabled) { nd->model = "ne2k_pci"; } else { nd->model = "ne2k_isa"; } } if (strcmp(nd->model, "ne2k_isa") == 0) { pc_init_ne2k_isa(nd); } else if (pci_enabled) { pci_nic_init(pci_bus, nd, -1); } else { fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model); exit(1); } } if (pci_enabled) { pci_piix3_ide_init(pci_bus, bs_table, piix3_devfn + 1); } else { for(i = 0; i < 2; i++) { isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i], bs_table[2 * i], bs_table[2 * i + 1]); } } if (has_tpm_device()) tpm_tis_init(&pic_set_irq_new, isa_pic, 11); kbd_init(); DMA_init(0); #ifdef HAS_AUDIO audio_init(pci_enabled ? pci_bus : NULL); #endif floppy_controller = fdctrl_init(6, 2, 0, 0x3f0, fd_table); cmos_init(ram_size, boot_device, bs_table); /* using PIIX4 acpi model */ if (pci_enabled && acpi_enabled) pci_piix4_acpi_init(pci_bus, piix3_devfn + 2); if (pci_enabled && usb_enabled) { usb_uhci_init(pci_bus, piix3_devfn + (acpi_enabled ? 3 : 2)); } #ifndef CONFIG_DM if (pci_enabled && acpi_enabled) { uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */ piix4_pm_init(pci_bus, piix3_devfn + 3); for (i = 0; i < 8; i++) { SMBusDevice *eeprom = smbus_eeprom_device_init(0x50 + i, eeprom_buf + (i * 256)); piix4_smbus_register_device(eeprom, 0x50 + i); } } if (i440fx_state) { i440fx_init_memory_mappings(i440fx_state); } #if 0 /* ??? Need to figure out some way for the user to specify SCSI devices. */ if (pci_enabled) { void *scsi; BlockDriverState *bdrv; scsi = lsi_scsi_init(pci_bus, -1); bdrv = bdrv_new("scsidisk"); bdrv_open(bdrv, "scsi_disk.img", 0); lsi_scsi_attach(scsi, bdrv, -1); bdrv = bdrv_new("scsicd"); bdrv_open(bdrv, "scsi_cd.iso", 0); bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM); lsi_scsi_attach(scsi, bdrv, -1); } #endif #else if (pci_enabled) { void *scsi = NULL; for (i = 0; i < MAX_SCSI_DISKS ; i++) { if (!bs_table[i + MAX_DISKS]) continue; if (!scsi) scsi = lsi_scsi_init(pci_bus, -1); lsi_scsi_attach(scsi, bs_table[i + MAX_DISKS], -1); } } #endif /* !CONFIG_DM */ } static void pc_init_pci(uint64_t ram_size, int vga_ram_size, char *boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *direct_pci) { pc_init1(ram_size, vga_ram_size, boot_device, ds, fd_filename, snapshot, kernel_filename, kernel_cmdline, initrd_filename, 1, direct_pci); } static void pc_init_isa(uint64_t ram_size, int vga_ram_size, char *boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *unused) { pc_init1(ram_size, vga_ram_size, boot_device, ds, fd_filename, snapshot, kernel_filename, kernel_cmdline, initrd_filename, 0, NULL); } QEMUMachine pc_machine = { "pc", "Standard PC", pc_init_pci, }; QEMUMachine isapc_machine = { "isapc", "ISA-only PC", pc_init_isa, };