Title : How to do PCI Passthrough with VT-d Authors : Allen Kay Weidong Han Yuji Shimada Created : October-24-2007 Updated : September-09-2008 How to turn on VT-d in Xen -------------------------- 1 ) cd xen-unstable.hg 2 ) make install 3 ) make linux-2.6-xen-config CONFIGMODE=menuconfig 4 ) change XEN->"PCI-device backend driver" from "M" to "*". 5 ) make linux-2.6-xen-build 6 ) make linux-2.6-xen-install 7 ) depmod 2.6.18.8-xen 8 ) mkinitrd -v -f --with=ahci --with=aacraid --with=sd_mod --with=scsi_mod initrd-2.6.18-xen.img 2.6.18.8-xen 9 ) cp initrd-2.6.18-xen.img /boot 10) lspci - select the PCI BDF you want to assign to guest OS 11) "hide" pci device from dom0 as following sample grub entry: title Xen-Fedora Core (2.6.18-xen) root (hd0,0) kernel /boot/xen.gz com1=115200,8n1 console=com1 iommu=1 module /boot/vmlinuz-2.6.18.8-xen root=LABEL=/ ro xencons=ttyS console=tty0 console=ttyS0, pciback.hide=(01:00.0)(03:00.0) module /boot/initrd-2.6.18-xen.img 12) reboot system 13) add "pci" line in /etc/xen/hvm.conf for to assigned devices pci = [ '01:00.0', '03:00.0' ] 15) start hvm guest and use "lspci" to see the passthru device and "ifconfig" to see if IP address has been assigned to NIC devices. Enable MSI/MSI-x for assigned devices ------------------------------------- Add "msi=1" option in kernel line of host grub. Caveat on Conventional PCI Device Passthrough --------------------------------------------- VT-d spec specifies that all conventional PCI devices behind a PCIe-to-PCI bridge have to be assigned to the same domain. PCIe devices do not have this restriction. VT-d Works on OS: ----------------- 1) Host OS: PAE, 64-bit 2) Guest OS: 32-bit, PAE, 64-bit Combinations Tested: -------------------- 1) 64-bit host: 32/PAE/64 Linux/XP/Win2003/Vista guests 2) PAE host: 32/PAE Linux/XP/Win2003/Vista guests VTd device hotplug: ------------------- 2 virtual PCI slots (6~7) are reserved in HVM guest to support VTd hotplug. If you have more VTd devices, only 2 of them can support hotplug. Usage is simple: 1. List the VTd device by dom. You can see a VTd device 0:2:0.0 is inserted in the HVM domain's PCI slot 6. '''lspci''' inside the guest should see the same. [root@vt-vtd ~]# xm pci-list HVMDomainVtd VSlt domain bus slot func 0x6 0x0 0x02 0x00 0x0 2. Detach the device from the guest by the physical BDF. Then HVM guest will receive a virtual PCI hot removal event to detach the physical device [root@vt-vtd ~]# xm pci-detach HVMDomainVtd 0:2:0.0 3. Attach a PCI device to the guest by the physical BDF and desired virtual slot(optional). Following command would insert the physical device into guest's virtual slot 7 [root@vt-vtd ~]# xm pci-attach HVMDomainVtd 0:2:0.0 7 VTd hotplug usage model: ------------------------ * For live migration: As you know, VTd device would break the live migration as physical device can't be save/restored like virtual device. With hotplug, live migration is back again. Just hot remove all the VTd devices before live migration and hot add new VTd devices on target machine after live migration. * VTd hotplug for device switch: VTd hotplug can be used to dynamically switch physical device between different HVM guest without shutdown. VT-d Enabled Systems -------------------- 1) For VT-d enabling work on Xen, we have been using development systems using following Intel motherboards: - DQ35MP - DQ35JO 2) As far as we know, following OEM systems also has vt-d enabled. Feel free to add others as they become available. - Dell: Optiplex 755 http://www.dell.com/content/products/category.aspx/optix?c=us&cs=555&l=en&s=biz - HP Compaq: DC7800 http://h10010.www1.hp.com/wwpc/us/en/en/WF04a/12454-12454-64287-321860-3328898.html For more information, pls refer to http://wiki.xensource.com/xenwiki/VTdHowTo. Assigning devices to HVM domains -------------------------------- Most device types such as NIC, HBA, EHCI and UHCI can be assigned to an HVM domain. But some devices have design features which make them unsuitable for assignment to an HVM domain. Examples include: * Device has an internal resource, such as private memory, which is mapped to memory address space with BAR (Base Address Register). * Driver submits command with a pointer to a buffer within internal resource. Device decodes the pointer (address), and accesses to the buffer. In an HVM domain, the BAR is virtualized, and host-BAR value and guest-BAR value are different. The addresses of internal resource from device's view and driver's view are different. Similarly, the addresses of buffer within internal resource from device's view and driver's view are different. As a result, device can't access to the buffer specified by driver. Such devices assigned to HVM domain currently do not work.