/* -------------------------------------------------------------------------- * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. * This implementation is herby placed in the public domain. * The authors offers no warranty. Use at your own risk. * Please send bug reports to the authors. * Last modified: 17 APR 08, 1700 PDT * ----------------------------------------------------------------------- */ /* * Portions copyright (c) 2010, Intel Corporation */ //#include "vmac.h" //#include //#include /* start for tboot */ #include #include #include #include /*#define UINT64_C(x) x##ULL*/ /* end for tboot */ /* Enable code tuned for 64-bit registers; otherwise tuned for 32-bit */ #ifndef VMAC_ARCH_64 #define VMAC_ARCH_64 (__x86_64__ || __ppc64__ || _M_X64) #endif /* Enable code tuned for Intel SSE2 instruction set */ #if ((__SSE2__ || (_M_IX86_FP >= 2)) && ( ! VMAC_ARCH_64)) #define VMAC_USE_SSE2 1 #include #endif /* Native word reads. Update (or define via compiler) if incorrect */ #ifndef VMAC_ARCH_BIG_ENDIAN /* Assume big-endian unless on the list */ #define VMAC_ARCH_BIG_ENDIAN \ (!(__x86_64__ || __i386__ || _M_IX86 || \ _M_X64 || __ARMEL__ || __MIPSEL__)) #endif /* ----------------------------------------------------------------------- */ /* Constants and masks */ const uint64_t p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ const uint64_t m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ const uint64_t m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ const uint64_t m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ const uint64_t mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ /* ----------------------------------------------------------------------- * * The following routines are used in this implementation. They are * written via macros to simulate zero-overhead call-by-reference. * All have default implemantations for when they are not defined in an * architecture-specific manner. * * MUL64: 64x64->128-bit multiplication * PMUL64: assumes top bits cleared on inputs * ADD128: 128x128->128-bit addition * GET_REVERSED_64: load and byte-reverse 64-bit word * ----------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ #if (__GNUC__ && (__x86_64__ || __amd64__)) /* ----------------------------------------------------------------------- */ #define ADD128(rh,rl,ih,il) \ asm ("addq %3, %1 \n\t" \ "adcq %2, %0" \ : "+r"(rh),"+r"(rl) \ : "r"(ih),"r"(il) : "cc"); #define MUL64(rh,rl,i1,i2) \ asm ("mulq %3" : "=a"(rl), "=d"(rh) : "a"(i1), "r"(i2) : "cc") #define PMUL64 MUL64 #define GET_REVERSED_64(p) \ ({uint64_t x; \ asm ("bswapq %0" : "=r" (x) : "0"(*(uint64_t *)(p))); x;}) /* ----------------------------------------------------------------------- */ #elif (__GNUC__ && __i386__) /* ----------------------------------------------------------------------- */ #define GET_REVERSED_64(p) \ ({ uint64_t x; \ uint32_t *tp = (uint32_t *)(p); \ asm ("bswap %%edx\n\t" \ "bswap %%eax" \ : "=A"(x) \ : "a"(tp[1]), "d"(tp[0])); \ x; }) /* ----------------------------------------------------------------------- */ #elif (__GNUC__ && __ppc64__) /* ----------------------------------------------------------------------- */ #define ADD128(rh,rl,ih,il) \ asm volatile ( "addc %1, %1, %3 \n\t" \ "adde %0, %0, %2" \ : "+r"(rh),"+r"(rl) \ : "r"(ih),"r"(il)); #define MUL64(rh,rl,i1,i2) \ { uint64_t _i1 = (i1), _i2 = (i2); \ rl = _i1 * _i2; \ asm volatile ("mulhdu %0, %1, %2" : "=r" (rh) : "r" (_i1), "r" (_i2));\ } #define PMUL64 MUL64 #define GET_REVERSED_64(p) \ ({ uint32_t hi, lo, *_p = (uint32_t *)(p); \ asm volatile ("lwbrx %0, %1, %2" : "=r"(lo) : "b%"(0), "r"(_p) ); \ asm volatile ("lwbrx %0, %1, %2" : "=r"(hi) : "b%"(4), "r"(_p) ); \ ((uint64_t)hi << 32) | (uint64_t)lo; } ) /* ----------------------------------------------------------------------- */ #elif (__GNUC__ && (__ppc__ || __PPC__)) /* ----------------------------------------------------------------------- */ #define GET_REVERSED_64(p) \ ({ uint32_t hi, lo, *_p = (uint32_t *)(p); \ asm volatile ("lwbrx %0, %1, %2" : "=r"(lo) : "b%"(0), "r"(_p) ); \ asm volatile ("lwbrx %0, %1, %2" : "=r"(hi) : "b%"(4), "r"(_p) ); \ ((uint64_t)hi << 32) | (uint64_t)lo; } ) /* ----------------------------------------------------------------------- */ #elif (__GNUC__ && (__ARMEL__ || __ARM__)) /* ----------------------------------------------------------------------- */ #define bswap32(v) \ ({ uint32_t tmp,out; \ asm volatile( \ "eor %1, %2, %2, ror #16\n" \ "bic %1, %1, #0x00ff0000\n" \ "mov %0, %2, ror #8\n" \ "eor %0, %0, %1, lsr #8" \ : "=r" (out), "=&r" (tmp) \ : "r" (v)); \ out;}) /* ----------------------------------------------------------------------- */ #elif _MSC_VER /* ----------------------------------------------------------------------- */ #include #if (_M_IA64 || _M_X64) && \ (!defined(__INTEL_COMPILER) || __INTEL_COMPILER >= 1000) #define MUL64(rh,rl,i1,i2) (rl) = _umul128(i1,i2,&(rh)); #pragma intrinsic(_umul128) #define PMUL64 MUL64 #endif /* MSVC uses add, adc in this version */ #define ADD128(rh,rl,ih,il) \ { uint64_t _il = (il); \ (rl) += (_il); \ (rh) += (ih) + ((rl) < (_il)); \ } #if _MSC_VER >= 1300 #define GET_REVERSED_64(p) _byteswap_uint64(*(uint64_t *)(p)) #pragma intrinsic(_byteswap_uint64) #endif #if _MSC_VER >= 1400 && \ (!defined(__INTEL_COMPILER) || __INTEL_COMPILER >= 1000) #define MUL32(i1,i2) (__emulu((uint32_t)(i1),(uint32_t)(i2))) #pragma intrinsic(__emulu) #endif /* ----------------------------------------------------------------------- */ #endif /* ----------------------------------------------------------------------- */ #if __GNUC__ /*#define ALIGN(n) __attribute__ ((aligned(n)))*/ #define NOINLINE __attribute__ ((noinline)) #define FASTCALL #elif _MSC_VER #define ALIGN(n) __declspec(align(n)) #define NOINLINE __declspec(noinline) #define FASTCALL __fastcall #else #define ALIGN(n) #define NOINLINE #define FASTCALL #endif /* ----------------------------------------------------------------------- */ /* Default implementations, if not defined above */ /* ----------------------------------------------------------------------- */ #ifndef ADD128 #define ADD128(rh,rl,ih,il) \ { uint64_t _il = (il); \ (rl) += (_il); \ if ((rl) < (_il)) (rh)++; \ (rh) += (ih); \ } #endif #ifndef MUL32 #define MUL32(i1,i2) ((uint64_t)(uint32_t)(i1)*(uint32_t)(i2)) #endif #ifndef PMUL64 /* rh may not be same as i1 or i2 */ #define PMUL64(rh,rl,i1,i2) /* Assumes m doesn't overflow */ \ { uint64_t _i1 = (i1), _i2 = (i2); \ uint64_t m = MUL32(_i1,_i2>>32) + MUL32(_i1>>32,_i2); \ rh = MUL32(_i1>>32,_i2>>32); \ rl = MUL32(_i1,_i2); \ ADD128(rh,rl,(m >> 32),(m << 32)); \ } #endif #ifndef MUL64 #define MUL64(rh,rl,i1,i2) \ { uint64_t _i1 = (i1), _i2 = (i2); \ uint64_t m1= MUL32(_i1,_i2>>32); \ uint64_t m2= MUL32(_i1>>32,_i2); \ rh = MUL32(_i1>>32,_i2>>32); \ rl = MUL32(_i1,_i2); \ ADD128(rh,rl,(m1 >> 32),(m1 << 32)); \ ADD128(rh,rl,(m2 >> 32),(m2 << 32)); \ } #endif #ifndef GET_REVERSED_64 #ifndef bswap64 #ifndef bswap32 #define bswap32(x) \ ({ uint32_t bsx = (x); \ ((((bsx) & 0xff000000u) >> 24) | (((bsx) & 0x00ff0000u) >> 8) | \ (((bsx) & 0x0000ff00u) << 8) | (((bsx) & 0x000000ffu) << 24)); }) #endif #define bswap64(x) \ ({ union { uint64_t ll; uint32_t l[2]; } w, r; \ w.ll = (x); \ r.l[0] = bswap32 (w.l[1]); \ r.l[1] = bswap32 (w.l[0]); \ r.ll; }) #endif #define GET_REVERSED_64(p) bswap64(*(uint64_t *)(p)) #endif /* ----------------------------------------------------------------------- */ #if (VMAC_PREFER_BIG_ENDIAN) # define get64PE get64BE #else # define get64PE get64LE #endif #if (VMAC_ARCH_BIG_ENDIAN) # define get64BE(ptr) (*(uint64_t *)(ptr)) # define get64LE(ptr) GET_REVERSED_64(ptr) #else /* assume little-endian */ # define get64BE(ptr) GET_REVERSED_64(ptr) # define get64LE(ptr) (*(uint64_t *)(ptr)) #endif /* --------------------------------------------------------------------- * * For highest performance the L1 NH and L2 polynomial hashes should be * carefully implemented to take advantage of one's target architechture. * Here these two hash functions are defined multiple time; once for * 64-bit architectures, once for 32-bit SSE2 architectures, and once * for the rest (32-bit) architectures. * For each, nh_16 *must* be defined (works on multiples of 16 bytes). * Optionally, nh_vmac_nhbytes can be defined (for multiples of * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two * NH computations at once). * --------------------------------------------------------------------- */ /* ----------------------------------------------------------------------- */ #if VMAC_ARCH_64 /* ----------------------------------------------------------------------- */ #define nh_16(mp, kp, nw, rh, rl) \ { int i; uint64_t th, tl; \ rh = rl = 0; \ for (i = 0; i < nw; i+= 2) { \ MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\ ADD128(rh,rl,th,tl); \ } \ } #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ { int i; uint64_t th, tl; \ rh1 = rl1 = rh = rl = 0; \ for (i = 0; i < nw; i+= 2) { \ MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i )+(kp)[i+2],get64PE((mp)+i+1)+(kp)[i+3]);\ ADD128(rh1,rl1,th,tl); \ } \ } #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ { int i; uint64_t th, tl; \ rh = rl = 0; \ for (i = 0; i < nw; i+= 8) { \ MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i+2)+(kp)[i+2],get64PE((mp)+i+3)+(kp)[i+3]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i+4)+(kp)[i+4],get64PE((mp)+i+5)+(kp)[i+5]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i+6)+(kp)[i+6],get64PE((mp)+i+7)+(kp)[i+7]);\ ADD128(rh,rl,th,tl); \ } \ } #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ { int i; uint64_t th, tl; \ rh1 = rl1 = rh = rl = 0; \ for (i = 0; i < nw; i+= 8) { \ MUL64(th,tl,get64PE((mp)+i )+(kp)[i ],get64PE((mp)+i+1)+(kp)[i+1]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i )+(kp)[i+2],get64PE((mp)+i+1)+(kp)[i+3]);\ ADD128(rh1,rl1,th,tl); \ MUL64(th,tl,get64PE((mp)+i+2)+(kp)[i+2],get64PE((mp)+i+3)+(kp)[i+3]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i+2)+(kp)[i+4],get64PE((mp)+i+3)+(kp)[i+5]);\ ADD128(rh1,rl1,th,tl); \ MUL64(th,tl,get64PE((mp)+i+4)+(kp)[i+4],get64PE((mp)+i+5)+(kp)[i+5]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i+4)+(kp)[i+6],get64PE((mp)+i+5)+(kp)[i+7]);\ ADD128(rh1,rl1,th,tl); \ MUL64(th,tl,get64PE((mp)+i+6)+(kp)[i+6],get64PE((mp)+i+7)+(kp)[i+7]);\ ADD128(rh,rl,th,tl); \ MUL64(th,tl,get64PE((mp)+i+6)+(kp)[i+8],get64PE((mp)+i+7)+(kp)[i+9]);\ ADD128(rh1,rl1,th,tl); \ } \ } #endif #define poly_step(ah, al, kh, kl, mh, ml) \ { uint64_t t1h, t1l, t2h, t2l, t3h, t3l, z=0; \ /* compute ab*cd, put bd into result registers */ \ PMUL64(t3h,t3l,al,kh); \ PMUL64(t2h,t2l,ah,kl); \ PMUL64(t1h,t1l,ah,2*kh); \ PMUL64(ah,al,al,kl); \ /* add 2 * ac to result */ \ ADD128(ah,al,t1h,t1l); \ /* add together ad + bc */ \ ADD128(t2h,t2l,t3h,t3l); \ /* now (ah,al), (t2l,2*t2h) need summing */ \ /* first add the high registers, carrying into t2h */ \ ADD128(t2h,ah,z,t2l); \ /* double t2h and add top bit of ah */ \ t2h = 2 * t2h + (ah >> 63); \ ah &= m63; \ /* now add the low registers */ \ ADD128(ah,al,mh,ml); \ ADD128(ah,al,z,t2h); \ } /* ----------------------------------------------------------------------- */ #elif VMAC_USE_SSE2 /* ----------------------------------------------------------------------- */ // macros from Crypto++ for sharing inline assembly code between MSVC and GNU C #if defined(__GNUC__) // define these in two steps to allow arguments to be expanded #define GNU_AS2(x, y) #x ", " #y ";" #define GNU_AS3(x, y, z) #x ", " #y ", " #z ";" #define GNU_ASL(x) "\n" #x ":" #define GNU_ASJ(x, y, z) #x " " #y #z ";" #define AS2(x, y) GNU_AS2(x, y) #define AS3(x, y, z) GNU_AS3(x, y, z) #define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";" #define ASL(x) GNU_ASL(x) #define ASJ(x, y, z) GNU_ASJ(x, y, z) #else #define AS2(x, y) __asm {x, y} #define AS3(x, y, z) __asm {x, y, z} #define ASS(x, y, a, b, c, d) __asm {x, y, _MM_SHUFFLE(a, b, c, d)} #define ASL(x) __asm {label##x:} #define ASJ(x, y, z) __asm {x label##y} #endif static void NOINLINE nh_16_func(const uint64_t *mp, const uint64_t *kp, size_t nw, uint64_t *rh, uint64_t *rl) { // This assembly version, using MMX registers, is just as fast as the // intrinsics version (which uses XMM registers) on the Intel Core 2, // but is much faster on the Pentium 4. In order to schedule multiplies // as early as possible, the loop interleaves operations for the current // block and the next block. To mask out high 32-bits, we use "movd" // to move the lower 32-bits to the stack and then back. Surprisingly, // this is faster than any other method. #ifdef __GNUC__ __asm__ __volatile__ ( ".intel_syntax noprefix;" #else AS2( mov esi, mp) AS2( mov edi, kp) AS2( mov ecx, nw) AS2( mov eax, rl) AS2( mov edx, rh) #endif AS2( sub esp, 12) AS2( movq mm6, [esi]) AS2( paddq mm6, [edi]) AS2( movq mm5, [esi+8]) AS2( paddq mm5, [edi+8]) AS2( add esi, 16) AS2( add edi, 16) AS2( movq mm4, mm6) ASS( pshufw mm2, mm6, 1, 0, 3, 2) AS2( pmuludq mm6, mm5) ASS( pshufw mm3, mm5, 1, 0, 3, 2) AS2( pmuludq mm5, mm2) AS2( pmuludq mm2, mm3) AS2( pmuludq mm3, mm4) AS2( pxor mm7, mm7) AS2( movd [esp], mm6) AS2( psrlq mm6, 32) AS2( movd [esp+4], mm5) AS2( psrlq mm5, 32) AS2( sub ecx, 2) ASJ( jz, 1, f) ASL(0) AS2( movq mm0, [esi]) AS2( paddq mm0, [edi]) AS2( movq mm1, [esi+8]) AS2( paddq mm1, [edi+8]) AS2( add esi, 16) AS2( add edi, 16) AS2( movq mm4, mm0) AS2( paddq mm5, mm2) ASS( pshufw mm2, mm0, 1, 0, 3, 2) AS2( pmuludq mm0, mm1) AS2( movd [esp+8], mm3) AS2( psrlq mm3, 32) AS2( paddq mm5, mm3) ASS( pshufw mm3, mm1, 1, 0, 3, 2) AS2( pmuludq mm1, mm2) AS2( pmuludq mm2, mm3) AS2( pmuludq mm3, mm4) AS2( movd mm4, [esp]) AS2( paddq mm7, mm4) AS2( movd mm4, [esp+4]) AS2( paddq mm6, mm4) AS2( movd mm4, [esp+8]) AS2( paddq mm6, mm4) AS2( movd [esp], mm0) AS2( psrlq mm0, 32) AS2( paddq mm6, mm0) AS2( movd [esp+4], mm1) AS2( psrlq mm1, 32) AS2( paddq mm5, mm1) AS2( sub ecx, 2) ASJ( jnz, 0, b) ASL(1) AS2( paddq mm5, mm2) AS2( movd [esp+8], mm3) AS2( psrlq mm3, 32) AS2( paddq mm5, mm3) AS2( movd mm4, [esp]) AS2( paddq mm7, mm4) AS2( movd mm4, [esp+4]) AS2( paddq mm6, mm4) AS2( movd mm4, [esp+8]) AS2( paddq mm6, mm4) ASS( pshufw mm0, mm7, 3, 2, 1, 0) AS2( psrlq mm7, 32) AS2( paddq mm6, mm7) AS2( punpckldq mm0, mm6) AS2( psrlq mm6, 32) AS2( paddq mm5, mm6) AS2( movq [eax], mm0) AS2( movq [edx], mm5) AS2( add esp, 12) #ifdef __GNUC__ ".att_syntax prefix;" : : "S" (mp), "D" (kp), "c" (nw), "a" (rl), "d" (rh) : "memory", "cc" ); #endif } #define nh_16(mp, kp, nw, rh, rl) nh_16_func(mp, kp, nw, &(rh), &(rl)); static void poly_step_func(uint64_t *ahi, uint64_t *alo, const uint64_t *kh, const uint64_t *kl, const uint64_t *mh, const uint64_t *ml) { // This code tries to schedule the multiplies as early as possible to overcome // the long latencies on the Pentium 4. It also minimizes "movq" instructions // which are very expensive on the P4. #define a0 [eax+0] #define a1 [eax+4] #define a2 [ebx+0] #define a3 [ebx+4] #define k0 [ecx+0] #define k1 [ecx+4] #define k2 [edx+0] #define k3 [edx+4] #ifdef __GNUC__ uint32_t temp; __asm__ __volatile__ ( "mov %%ebx, %0;" "mov %1, %%ebx;" ".intel_syntax noprefix;" #else AS2( mov ebx, ahi) AS2( mov edx, kh) AS2( mov eax, alo) AS2( mov ecx, kl) AS2( mov esi, mh) AS2( mov edi, ml) #endif AS2( movd mm0, a3) AS2( movq mm4, mm0) AS2( pmuludq mm0, k3) // a3*k3 AS2( movd mm1, a0) AS2( pmuludq mm1, k2) // a0*k2 AS2( movd mm2, a1) AS2( movd mm6, k1) AS2( pmuludq mm2, mm6) // a1*k1 AS2( movd mm3, a2) AS2( movq mm5, mm3) AS2( movd mm7, k0) AS2( pmuludq mm3, mm7) // a2*k0 AS2( pmuludq mm4, mm7) // a3*k0 AS2( pmuludq mm5, mm6) // a2*k1 AS2( psllq mm0, 1) AS2( paddq mm0, [esi]) AS2( paddq mm0, mm1) AS2( movd mm1, a1) AS2( paddq mm4, mm5) AS2( movq mm5, mm1) AS2( pmuludq mm1, k2) // a1*k2 AS2( paddq mm0, mm2) AS2( movd mm2, a0) AS2( paddq mm0, mm3) AS2( movq mm3, mm2) AS2( pmuludq mm2, k3) // a0*k3 AS2( pmuludq mm3, mm7) // a0*k0 AS2( movd esi, mm0) AS2( psrlq mm0, 32) AS2( pmuludq mm7, mm5) // a1*k0 AS2( pmuludq mm5, k3) // a1*k3 AS2( paddq mm0, mm1) AS2( movd mm1, a2) AS2( pmuludq mm1, k2) // a2*k2 AS2( paddq mm0, mm2) AS2( paddq mm0, mm4) AS2( movq mm4, mm0) AS2( movd mm2, a3) AS2( pmuludq mm2, mm6) // a3*k1 AS2( pmuludq mm6, a0) // a0*k1 AS2( psrlq mm0, 31) AS2( paddq mm0, mm3) AS2( movd mm3, [edi]) AS2( paddq mm0, mm3) AS2( movd mm3, a2) AS2( pmuludq mm3, k3) // a2*k3 AS2( paddq mm5, mm1) AS2( movd mm1, a3) AS2( pmuludq mm1, k2) // a3*k2 AS2( paddq mm5, mm2) AS2( movd mm2, [edi+4]) AS2( psllq mm5, 1) AS2( paddq mm0, mm5) AS2( movq mm5, mm0) AS2( psllq mm4, 33) AS2( psrlq mm0, 32) AS2( paddq mm6, mm7) AS2( movd mm7, esi) AS2( paddq mm0, mm6) AS2( paddq mm0, mm2) AS2( paddq mm3, mm1) AS2( psllq mm3, 1) AS2( paddq mm0, mm3) AS2( psrlq mm4, 1) AS2( punpckldq mm5, mm0) AS2( psrlq mm0, 32) AS2( por mm4, mm7) AS2( paddq mm0, mm4) AS2( movq a0, mm5) AS2( movq a2, mm0) #ifdef __GNUC__ ".att_syntax prefix;" "mov %0, %%ebx;" : "=m" (temp) : "m" (ahi), "D" (ml), "d" (kh), "a" (alo), "S" (mh), "c" (kl) : "memory", "cc" ); #endif #undef a0 #undef a1 #undef a2 #undef a3 #undef k0 #undef k1 #undef k2 #undef k3 } #define poly_step(ah, al, kh, kl, mh, ml) \ poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) /* ----------------------------------------------------------------------- */ #else /* not VMAC_ARCH_64 and not SSE2 */ /* ----------------------------------------------------------------------- */ #ifndef nh_16 #define nh_16(mp, kp, nw, rh, rl) \ { uint64_t t1,t2,m1,m2,t; \ int i; \ rh = rl = t = 0; \ for (i = 0; i < nw; i+=2) { \ t1 = get64PE(mp+i) + kp[i]; \ t2 = get64PE(mp+i+1) + kp[i+1]; \ m2 = MUL32(t1 >> 32, t2); \ m1 = MUL32(t1, t2 >> 32); \ ADD128(rh,rl,MUL32(t1 >> 32,t2 >> 32),MUL32(t1,t2)); \ rh += (uint64_t)(uint32_t)(m1 >> 32) + (uint32_t)(m2 >> 32); \ t += (uint64_t)(uint32_t)m1 + (uint32_t)m2; \ } \ ADD128(rh,rl,(t >> 32),(t << 32)); \ } #endif static void poly_step_func(uint64_t *ahi, uint64_t *alo, const uint64_t *kh, const uint64_t *kl, const uint64_t *mh, const uint64_t *ml) { #if VMAC_ARCH_BIG_ENDIAN #define INDEX_HIGH 0 #define INDEX_LOW 1 #else #define INDEX_HIGH 1 #define INDEX_LOW 0 #endif #define a0 *(((uint32_t*)alo)+INDEX_LOW) #define a1 *(((uint32_t*)alo)+INDEX_HIGH) #define a2 *(((uint32_t*)ahi)+INDEX_LOW) #define a3 *(((uint32_t*)ahi)+INDEX_HIGH) #define k0 *(((uint32_t*)kl)+INDEX_LOW) #define k1 *(((uint32_t*)kl)+INDEX_HIGH) #define k2 *(((uint32_t*)kh)+INDEX_LOW) #define k3 *(((uint32_t*)kh)+INDEX_HIGH) uint64_t p, q, t; uint32_t t2; p = MUL32(a3, k3); p += p; p += *(uint64_t *)mh; p += MUL32(a0, k2); p += MUL32(a1, k1); p += MUL32(a2, k0); t = (uint32_t)(p); p >>= 32; p += MUL32(a0, k3); p += MUL32(a1, k2); p += MUL32(a2, k1); p += MUL32(a3, k0); t |= ((uint64_t)((uint32_t)p & 0x7fffffff)) << 32; p >>= 31; p += (uint64_t)(((uint32_t*)ml)[INDEX_LOW]); p += MUL32(a0, k0); q = MUL32(a1, k3); q += MUL32(a2, k2); q += MUL32(a3, k1); q += q; p += q; t2 = (uint32_t)(p); p >>= 32; p += (uint64_t)(((uint32_t*)ml)[INDEX_HIGH]); p += MUL32(a0, k1); p += MUL32(a1, k0); q = MUL32(a2, k3); q += MUL32(a3, k2); q += q; p += q; *(uint64_t *)(alo) = (p << 32) | t2; p >>= 32; *(uint64_t *)(ahi) = p + t; #undef a0 #undef a1 #undef a2 #undef a3 #undef k0 #undef k1 #undef k2 #undef k3 } #define poly_step(ah, al, kh, kl, mh, ml) \ poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) /* ----------------------------------------------------------------------- */ #endif /* end of specialized NH and poly definitions */ /* ----------------------------------------------------------------------- */ /* At least nh_16 is defined. Defined others as needed here */ #ifndef nh_16_2 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ nh_16(mp, kp, nw, rh, rl); \ nh_16(mp, ((kp)+2), nw, rh2, rl2); #endif #ifndef nh_vmac_nhbytes #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ nh_16(mp, kp, nw, rh, rl) #endif #ifndef nh_vmac_nhbytes_2 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); #endif /* ----------------------------------------------------------------------- */ void vhash_abort(vmac_ctx_t *ctx) { ctx->polytmp[0] = ctx->polykey[0] ; ctx->polytmp[1] = ctx->polykey[1] ; #if (VMAC_TAG_LEN == 128) ctx->polytmp[2] = ctx->polykey[2] ; ctx->polytmp[3] = ctx->polykey[3] ; #endif ctx->first_block_processed = 0; } /* ----------------------------------------------------------------------- */ static uint64_t l3hash(uint64_t p1, uint64_t p2, uint64_t k1, uint64_t k2, uint64_t len) { uint64_t rh, rl, t, z=0; /* fully reduce (p1,p2)+(len,0) mod p127 */ t = p1 >> 63; p1 &= m63; ADD128(p1, p2, len, t); /* At this point, (p1,p2) is at most 2^127+(len<<64) */ t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); ADD128(p1, p2, z, t); p1 &= m63; /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ t = p1 + (p2 >> 32); t += (t >> 32); t += (uint32_t)t > 0xfffffffeu; p1 += (t >> 32); p2 += (p1 << 32); /* compute (p1+k1)%p64 and (p2+k2)%p64 */ p1 += k1; p1 += (0 - (p1 < k1)) & 257; p2 += k2; p2 += (0 - (p2 < k2)) & 257; /* compute (p1+k1)*(p2+k2)%p64 */ MUL64(rh, rl, p1, p2); t = rh >> 56; ADD128(t, rl, z, rh); rh <<= 8; ADD128(t, rl, z, rh); t += t << 8; rl += t; rl += (0 - (rl < t)) & 257; rl += (0 - (rl > p64-1)) & 257; return rl; } /* ----------------------------------------------------------------------- */ void vhash_update(unsigned char *m, unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ vmac_ctx_t *ctx) { uint64_t rh, rl, *mptr; const uint64_t *kptr = (uint64_t *)ctx->nhkey; int i; uint64_t ch, cl; uint64_t pkh = ctx->polykey[0]; uint64_t pkl = ctx->polykey[1]; #if (VMAC_TAG_LEN == 128) uint64_t ch2, cl2, rh2, rl2; uint64_t pkh2 = ctx->polykey[2]; uint64_t pkl2 = ctx->polykey[3]; #endif mptr = (uint64_t *)m; i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ ch = ctx->polytmp[0]; cl = ctx->polytmp[1]; #if (VMAC_TAG_LEN == 128) ch2 = ctx->polytmp[2]; cl2 = ctx->polytmp[3]; #endif if ( ! ctx->first_block_processed) { ctx->first_block_processed = 1; #if (VMAC_TAG_LEN == 64) nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl); #else nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,rh,rl,rh2,rl2); rh2 &= m62; ADD128(ch2,cl2,rh2,rl2); #endif rh &= m62; ADD128(ch,cl,rh,rl); mptr += (VMAC_NHBYTES/sizeof(uint64_t)); i--; } while (i--) { #if (VMAC_TAG_LEN == 64) nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl); #else nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,rh,rl,rh2,rl2); rh2 &= m62; poly_step(ch2,cl2,pkh2,pkl2,rh2,rl2); #endif rh &= m62; poly_step(ch,cl,pkh,pkl,rh,rl); mptr += (VMAC_NHBYTES/sizeof(uint64_t)); } ctx->polytmp[0] = ch; ctx->polytmp[1] = cl; #if (VMAC_TAG_LEN == 128) ctx->polytmp[2] = ch2; ctx->polytmp[3] = cl2; #endif #if VMAC_USE_SSE2 _mm_empty(); /* SSE2 version of poly_step uses mmx instructions */ #endif } /* ----------------------------------------------------------------------- */ uint64_t xvhash(unsigned char m[], unsigned int mbytes, uint64_t *tagl, vmac_ctx_t *ctx) { uint64_t ch, cl, rh, rl, *mptr; #if (VMAC_TAG_LEN == 128) uint64_t ch2, cl2, rh2, rl2; #endif const uint64_t *kptr = (uint64_t *)ctx->nhkey; int i, remaining; (void)tagl; remaining = mbytes % VMAC_NHBYTES; i = mbytes-remaining; mptr = (uint64_t *)(m+i); if (i) vhash_update(m,i,ctx); ch = ctx->polytmp[0]; cl = ctx->polytmp[1]; #if (VMAC_TAG_LEN == 128) ch2 = ctx->polytmp[2]; cl2 = ctx->polytmp[3]; #endif if (remaining) { #if (VMAC_TAG_LEN == 128) nh_16_2(mptr,kptr,2*((remaining+15)/16),rh,rl,rh2,rl2); rh2 &= m62; #else nh_16(mptr,kptr,2*((remaining+15)/16),rh,rl); #endif rh &= m62; if (i) { poly_step(ch,cl,ctx->polykey[0],ctx->polykey[1],rh,rl); #if (VMAC_TAG_LEN == 128) poly_step(ch2,cl2,ctx->polykey[2],ctx->polykey[3],rh2,rl2); #endif } else { ADD128(ch,cl,rh,rl); #if (VMAC_TAG_LEN == 128) ADD128(ch2,cl2,rh2,rl2); #endif } } #if VMAC_USE_SSE2 _mm_empty(); /* SSE2 version of poly_step uses mmx instructions */ #endif vhash_abort(ctx); remaining *= 8; #if (VMAC_TAG_LEN == 128) *tagl = l3hash(ch2, cl2, ctx->l3key[2], ctx->l3key[3],remaining); #endif return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1],remaining); } uint64_t vhash(unsigned char m[], unsigned int mbytes, uint64_t *tagl, vmac_ctx_t *ctx) { uint64_t rh, rl, *mptr; const uint64_t *kptr = (uint64_t *)ctx->nhkey; int i, remaining; uint64_t ch, cl; uint64_t pkh = ctx->polykey[0]; uint64_t pkl = ctx->polykey[1]; #if (VMAC_TAG_LEN == 128) uint64_t ch2, cl2, rh2, rl2; uint64_t pkh2 = ctx->polykey[2]; uint64_t pkl2 = ctx->polykey[3]; #endif (void)tagl; mptr = (uint64_t *)m; i = mbytes / VMAC_NHBYTES; remaining = mbytes % VMAC_NHBYTES; if (ctx->first_block_processed) { ch = ctx->polytmp[0]; cl = ctx->polytmp[1]; #if (VMAC_TAG_LEN == 128) ch2 = ctx->polytmp[2]; cl2 = ctx->polytmp[3]; #endif } else if (i) { #if (VMAC_TAG_LEN == 64) nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,ch,cl); #else nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,ch,cl,ch2,cl2); ch2 &= m62; ADD128(ch2,cl2,pkh2,pkl2); #endif ch &= m62; ADD128(ch,cl,pkh,pkl); mptr += (VMAC_NHBYTES/sizeof(uint64_t)); i--; } else if (remaining) { #if (VMAC_TAG_LEN == 64) nh_16(mptr,kptr,2*((remaining+15)/16),ch,cl); #else nh_16_2(mptr,kptr,2*((remaining+15)/16),ch,cl,ch2,cl2); ch2 &= m62; ADD128(ch2,cl2,pkh2,pkl2); #endif ch &= m62; ADD128(ch,cl,pkh,pkl); mptr += (VMAC_NHBYTES/sizeof(uint64_t)); goto do_l3; } else /* Empty String */ { ch = pkh; cl = pkl; #if (VMAC_TAG_LEN == 128) ch2 = pkh2; cl2 = pkl2; #endif goto do_l3; } while (i--) { #if (VMAC_TAG_LEN == 64) nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl); #else nh_vmac_nhbytes_2(mptr,kptr,VMAC_NHBYTES/8,rh,rl,rh2,rl2); rh2 &= m62; poly_step(ch2,cl2,pkh2,pkl2,rh2,rl2); #endif rh &= m62; poly_step(ch,cl,pkh,pkl,rh,rl); mptr += (VMAC_NHBYTES/sizeof(uint64_t)); } if (remaining) { #if (VMAC_TAG_LEN == 64) nh_16(mptr,kptr,2*((remaining+15)/16),rh,rl); #else nh_16_2(mptr,kptr,2*((remaining+15)/16),rh,rl,rh2,rl2); rh2 &= m62; poly_step(ch2,cl2,pkh2,pkl2,rh2,rl2); #endif rh &= m62; poly_step(ch,cl,pkh,pkl,rh,rl); } do_l3: #if VMAC_USE_SSE2 _mm_empty(); /* SSE2 version of poly_step uses mmx instructions */ #endif vhash_abort(ctx); remaining *= 8; #if (VMAC_TAG_LEN == 128) *tagl = l3hash(ch2, cl2, ctx->l3key[2], ctx->l3key[3],remaining); #endif return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1],remaining); } /* ----------------------------------------------------------------------- */ uint64_t vmac(unsigned char m[], unsigned int mbytes, unsigned char n[16], uint64_t *tagl, vmac_ctx_t *ctx) { #if (VMAC_TAG_LEN == 64) uint64_t *in_n, *out_p; uint64_t p, h; int i; (void)tagl; #if VMAC_CACHE_NONCES in_n = ctx->cached_nonce; out_p = ctx->cached_aes; #else uint64_t tmp[2]; in_n = out_p = tmp; #endif i = n[15] & 1; #if VMAC_CACHE_NONCES if ((*(uint64_t *)(n+8) != in_n[1]) || (*(uint64_t *)(n ) != in_n[0])) { #endif in_n[0] = *(uint64_t *)(n ); in_n[1] = *(uint64_t *)(n+8); ((unsigned char *)in_n)[15] &= 0xFE; aes_encryption(in_n, out_p, &ctx->cipher_key); #if VMAC_CACHE_NONCES ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); } #endif p = get64BE(out_p + i); h = vhash(m, mbytes, (uint64_t *)0, ctx); return p + h; #else uint64_t tmp[2]; uint64_t th,tl; aes_encryption(n, (unsigned char *)tmp, &ctx->cipher_key); th = vhash(m, mbytes, &tl, ctx); th += get64BE(tmp); *tagl = tl + get64BE(tmp+1); return th; #endif } /* ----------------------------------------------------------------------- */ void vmac_set_key(unsigned char user_key[], vmac_ctx_t *ctx) { uint64_t in[2] = {0}, out[2]; unsigned i; aes_key_setup(user_key, &ctx->cipher_key); /* Fill nh key */ ((unsigned char *)in)[0] = 0x80; for (i = 0; i < sizeof(ctx->nhkey)/8; i+=2) { aes_encryption((unsigned char *)in, (unsigned char *)out, &ctx->cipher_key); ctx->nhkey[i ] = get64BE(out); ctx->nhkey[i+1] = get64BE(out+1); ((unsigned char *)in)[15] += 1; } /* Fill poly key */ ((unsigned char *)in)[0] = 0xC0; in[1] = 0; for (i = 0; i < sizeof(ctx->polykey)/8; i+=2) { aes_encryption((unsigned char *)in, (unsigned char *)out, &ctx->cipher_key); ctx->polytmp[i ] = ctx->polykey[i ] = get64BE(out) & mpoly; ctx->polytmp[i+1] = ctx->polykey[i+1] = get64BE(out+1) & mpoly; ((unsigned char *)in)[15] += 1; } /* Fill ip key */ ((unsigned char *)in)[0] = 0xE0; in[1] = 0; for (i = 0; i < sizeof(ctx->l3key)/8; i+=2) { do { aes_encryption((unsigned char *)in, (unsigned char *)out, &ctx->cipher_key); ctx->l3key[i ] = get64BE(out); ctx->l3key[i+1] = get64BE(out+1); ((unsigned char *)in)[15] += 1; } while (ctx->l3key[i] >= p64 || ctx->l3key[i+1] >= p64); } /* Invalidate nonce/aes cache and reset other elements */ #if (VMAC_TAG_LEN == 64) && (VMAC_CACHE_NONCES) ctx->cached_nonce[0] = (uint64_t)-1; /* Ensure illegal nonce */ ctx->cached_nonce[1] = (uint64_t)0; /* Ensure illegal nonce */ #endif ctx->first_block_processed = 0; } /* ----------------------------------------------------------------------- */ #if VMAC_RUN_TESTS #include #include #include #include unsigned prime(void) /* Wake variable speed cpu, get rough speed estimate */ { volatile uint64_t i; volatile uint64_t j=1; unsigned cnt=0; volatile clock_t ticks = clock(); do { for (i = 0; i < 500000; i++) { uint64_t x = get64PE(&j); j = x * x + (uint64_t)ticks; } cnt++; } while (clock() - ticks < (CLOCKS_PER_SEC/2)); return cnt; /* cnt is millions of iterations per second */ } int main(void) { ALIGN(16) vmac_ctx_t ctx, ctx_aio, ctx_inc1, ctx_inc2; uint64_t res, tagl; void *p; unsigned char *m; ALIGN(4) unsigned char key[] = "abcdefghijklmnop"; ALIGN(4) unsigned char nonce[] = "\0\0\0\0\0\0\0\0bcdefghi"; unsigned int vector_lengths[] = {0,3,48,300,3000000}; #if (VMAC_TAG_LEN == 64) ALIGN(4) char *should_be[] = {"2576BE1C56D8B81B","2D376CF5B1813CE5", "E8421F61D573D298","4492DF6C5CAC1BBE", "09BA597DD7601113"}; #else ALIGN(4) char *should_be[] = {"472766C70F74ED23481D6D7DE4E80DAC", "4EE815A06A1D71EDD36FC75D51188A42", "09F2C80C8E1007A0C12FAE19FE4504AE", "66438817154850C61D8A412164803BCB", "2B6B02288FFC461B75485DE893C629DC"}; #endif unsigned speed_lengths[] = {16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; unsigned i, j, *speed_iters; clock_t ticks; double cpb; const unsigned int buf_len = 3 * (1 << 20); j = prime(); i = sizeof(speed_lengths)/sizeof(speed_lengths[0]); speed_iters = (unsigned *)malloc(i*sizeof(speed_iters[0])); speed_iters[i-1] = j * (1 << 12); while (--i) speed_iters[i-1] = (unsigned)(1.3 * speed_iters[i]); /* Initialize context and message buffer, all 16-byte aligned */ p = malloc(buf_len + 32); m = (unsigned char *)(((size_t)p + 16) & ~((size_t)15)); memset(m, 0, buf_len + 16); vmac_set_key(key, &ctx); /* Test incremental and all-in-one interfaces for correctness */ vmac_set_key(key, &ctx_aio); vmac_set_key(key, &ctx_inc1); vmac_set_key(key, &ctx_inc2); /* for (i = 0; i <= 512; i++) { vhash_update(m,(i/VMAC_NHBYTES)*VMAC_NHBYTES,&ctx_inc1); tagh = vmac(m+(i/VMAC_NHBYTES)*VMAC_NHBYTES, i%VMAC_NHBYTES, nonce, &tagl, &ctx); vhash_update(m,(i/VMAC_NHBYTES)*VMAC_NHBYTES,&ctx_inc1); for (j = 0; j < vector_lengths[i]; j++) m[j] = (unsigned char)('a'+j%3); } */ /* Generate vectors */ for (i = 0; i < sizeof(vector_lengths)/sizeof(unsigned int); i++) { for (j = 0; j < vector_lengths[i]; j++) m[j] = (unsigned char)('a'+j%3); res = vmac(m, vector_lengths[i], nonce, &tagl, &ctx); #if (VMAC_TAG_LEN == 64) printf("\'abc\' * %7u: %016llX Should be: %s\n", vector_lengths[i]/3,res,should_be[i]); #else printf("\'abc\' * %7u: %016llX%016llX\nShould be : %s\n", vector_lengths[i]/3,res,tagl,should_be[i]); #endif } /* Speed test */ for (i = 0; i < sizeof(speed_lengths)/sizeof(unsigned int); i++) { ticks = clock(); for (j = 0; j < speed_iters[i]; j++) { #if HASH_ONLY res = vhash(m, speed_lengths[i], &tagl, &ctx); #else res = vmac(m, speed_lengths[i], nonce, &tagl, &ctx); nonce[7]++; #endif } ticks = clock() - ticks; cpb = ((ticks*VMAC_HZ)/ ((double)CLOCKS_PER_SEC*speed_lengths[i]*speed_iters[i])); printf("%4u bytes, %2.2f cpb\n", speed_lengths[i], cpb); } return 1; } #endif