From 3f2546b2ef55b661fd8dd69682b38992225e86f6 Mon Sep 17 00:00:00 2001 From: fishsoupisgood Date: Mon, 29 Apr 2019 01:17:54 +0100 Subject: Initial import of qemu-2.4.1 --- softmmu_template.h | 598 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 598 insertions(+) create mode 100644 softmmu_template.h (limited to 'softmmu_template.h') diff --git a/softmmu_template.h b/softmmu_template.h new file mode 100644 index 00000000..d42d89d5 --- /dev/null +++ b/softmmu_template.h @@ -0,0 +1,598 @@ +/* + * Software MMU support + * + * Generate helpers used by TCG for qemu_ld/st ops and code load + * functions. + * + * Included from target op helpers and exec.c. + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ +#include "qemu/timer.h" +#include "exec/address-spaces.h" +#include "exec/memory.h" + +#define DATA_SIZE (1 << SHIFT) + +#if DATA_SIZE == 8 +#define SUFFIX q +#define LSUFFIX q +#define SDATA_TYPE int64_t +#define DATA_TYPE uint64_t +#elif DATA_SIZE == 4 +#define SUFFIX l +#define LSUFFIX l +#define SDATA_TYPE int32_t +#define DATA_TYPE uint32_t +#elif DATA_SIZE == 2 +#define SUFFIX w +#define LSUFFIX uw +#define SDATA_TYPE int16_t +#define DATA_TYPE uint16_t +#elif DATA_SIZE == 1 +#define SUFFIX b +#define LSUFFIX ub +#define SDATA_TYPE int8_t +#define DATA_TYPE uint8_t +#else +#error unsupported data size +#endif + + +/* For the benefit of TCG generated code, we want to avoid the complication + of ABI-specific return type promotion and always return a value extended + to the register size of the host. This is tcg_target_long, except in the + case of a 32-bit host and 64-bit data, and for that we always have + uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ +#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 +# define WORD_TYPE DATA_TYPE +# define USUFFIX SUFFIX +#else +# define WORD_TYPE tcg_target_ulong +# define USUFFIX glue(u, SUFFIX) +# define SSUFFIX glue(s, SUFFIX) +#endif + +#ifdef SOFTMMU_CODE_ACCESS +#define READ_ACCESS_TYPE MMU_INST_FETCH +#define ADDR_READ addr_code +#else +#define READ_ACCESS_TYPE MMU_DATA_LOAD +#define ADDR_READ addr_read +#endif + +#if DATA_SIZE == 8 +# define BSWAP(X) bswap64(X) +#elif DATA_SIZE == 4 +# define BSWAP(X) bswap32(X) +#elif DATA_SIZE == 2 +# define BSWAP(X) bswap16(X) +#else +# define BSWAP(X) (X) +#endif + +#ifdef TARGET_WORDS_BIGENDIAN +# define TGT_BE(X) (X) +# define TGT_LE(X) BSWAP(X) +#else +# define TGT_BE(X) BSWAP(X) +# define TGT_LE(X) (X) +#endif + +#if DATA_SIZE == 1 +# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) +# define helper_be_ld_name helper_le_ld_name +# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) +# define helper_be_lds_name helper_le_lds_name +# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) +# define helper_be_st_name helper_le_st_name +#else +# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) +# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) +# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) +# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) +# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) +# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) +#endif + +#ifdef TARGET_WORDS_BIGENDIAN +# define helper_te_ld_name helper_be_ld_name +# define helper_te_st_name helper_be_st_name +#else +# define helper_te_ld_name helper_le_ld_name +# define helper_te_st_name helper_le_st_name +#endif + +/* macro to check the victim tlb */ +#define VICTIM_TLB_HIT(ty) \ +({ \ + /* we are about to do a page table walk. our last hope is the \ + * victim tlb. try to refill from the victim tlb before walking the \ + * page table. */ \ + int vidx; \ + CPUIOTLBEntry tmpiotlb; \ + CPUTLBEntry tmptlb; \ + for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \ + if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\ + /* found entry in victim tlb, swap tlb and iotlb */ \ + tmptlb = env->tlb_table[mmu_idx][index]; \ + env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \ + env->tlb_v_table[mmu_idx][vidx] = tmptlb; \ + tmpiotlb = env->iotlb[mmu_idx][index]; \ + env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \ + env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \ + break; \ + } \ + } \ + /* return true when there is a vtlb hit, i.e. vidx >=0 */ \ + vidx >= 0; \ +}) + +#ifndef SOFTMMU_CODE_ACCESS +static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, + CPUIOTLBEntry *iotlbentry, + target_ulong addr, + uintptr_t retaddr) +{ + uint64_t val; + CPUState *cpu = ENV_GET_CPU(env); + hwaddr physaddr = iotlbentry->addr; + MemoryRegion *mr = iotlb_to_region(cpu, physaddr); + + physaddr = (physaddr & TARGET_PAGE_MASK) + addr; + cpu->mem_io_pc = retaddr; + if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { + cpu_io_recompile(cpu, retaddr); + } + + cpu->mem_io_vaddr = addr; + memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT, + iotlbentry->attrs); + return val; +} +#endif + +#ifdef SOFTMMU_CODE_ACCESS +static __attribute__((unused)) +#endif +WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + unsigned mmu_idx = get_mmuidx(oi); + int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; + uintptr_t haddr; + DATA_TYPE res; + + /* Adjust the given return address. */ + retaddr -= GETPC_ADJ; + + /* If the TLB entry is for a different page, reload and try again. */ + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + if (!VICTIM_TLB_HIT(ADDR_READ)) { + tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; + } + + /* Handle an IO access. */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + CPUIOTLBEntry *iotlbentry; + if ((addr & (DATA_SIZE - 1)) != 0) { + goto do_unaligned_access; + } + iotlbentry = &env->iotlb[mmu_idx][index]; + + /* ??? Note that the io helpers always read data in the target + byte ordering. We should push the LE/BE request down into io. */ + res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); + res = TGT_LE(res); + return res; + } + + /* Handle slow unaligned access (it spans two pages or IO). */ + if (DATA_SIZE > 1 + && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 + >= TARGET_PAGE_SIZE)) { + target_ulong addr1, addr2; + DATA_TYPE res1, res2; + unsigned shift; + do_unaligned_access: + if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + addr1 = addr & ~(DATA_SIZE - 1); + addr2 = addr1 + DATA_SIZE; + /* Note the adjustment at the beginning of the function. + Undo that for the recursion. */ + res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); + res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); + shift = (addr & (DATA_SIZE - 1)) * 8; + + /* Little-endian combine. */ + res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); + return res; + } + + /* Handle aligned access or unaligned access in the same page. */ + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + + haddr = addr + env->tlb_table[mmu_idx][index].addend; +#if DATA_SIZE == 1 + res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); +#else + res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); +#endif + return res; +} + +#if DATA_SIZE > 1 +#ifdef SOFTMMU_CODE_ACCESS +static __attribute__((unused)) +#endif +WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + unsigned mmu_idx = get_mmuidx(oi); + int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; + uintptr_t haddr; + DATA_TYPE res; + + /* Adjust the given return address. */ + retaddr -= GETPC_ADJ; + + /* If the TLB entry is for a different page, reload and try again. */ + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + if (!VICTIM_TLB_HIT(ADDR_READ)) { + tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; + } + + /* Handle an IO access. */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + CPUIOTLBEntry *iotlbentry; + if ((addr & (DATA_SIZE - 1)) != 0) { + goto do_unaligned_access; + } + iotlbentry = &env->iotlb[mmu_idx][index]; + + /* ??? Note that the io helpers always read data in the target + byte ordering. We should push the LE/BE request down into io. */ + res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); + res = TGT_BE(res); + return res; + } + + /* Handle slow unaligned access (it spans two pages or IO). */ + if (DATA_SIZE > 1 + && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 + >= TARGET_PAGE_SIZE)) { + target_ulong addr1, addr2; + DATA_TYPE res1, res2; + unsigned shift; + do_unaligned_access: + if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + addr1 = addr & ~(DATA_SIZE - 1); + addr2 = addr1 + DATA_SIZE; + /* Note the adjustment at the beginning of the function. + Undo that for the recursion. */ + res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); + res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); + shift = (addr & (DATA_SIZE - 1)) * 8; + + /* Big-endian combine. */ + res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); + return res; + } + + /* Handle aligned access or unaligned access in the same page. */ + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, + mmu_idx, retaddr); + } + + haddr = addr + env->tlb_table[mmu_idx][index].addend; + res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); + return res; +} +#endif /* DATA_SIZE > 1 */ + +DATA_TYPE +glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, + int mmu_idx) +{ + TCGMemOpIdx oi = make_memop_idx(SHIFT, mmu_idx); + return helper_te_ld_name (env, addr, oi, GETRA()); +} + +#ifndef SOFTMMU_CODE_ACCESS + +/* Provide signed versions of the load routines as well. We can of course + avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ +#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS +WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); +} + +# if DATA_SIZE > 1 +WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); +} +# endif +#endif + +static inline void glue(io_write, SUFFIX)(CPUArchState *env, + CPUIOTLBEntry *iotlbentry, + DATA_TYPE val, + target_ulong addr, + uintptr_t retaddr) +{ + CPUState *cpu = ENV_GET_CPU(env); + hwaddr physaddr = iotlbentry->addr; + MemoryRegion *mr = iotlb_to_region(cpu, physaddr); + + physaddr = (physaddr & TARGET_PAGE_MASK) + addr; + if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { + cpu_io_recompile(cpu, retaddr); + } + + cpu->mem_io_vaddr = addr; + cpu->mem_io_pc = retaddr; + memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT, + iotlbentry->attrs); +} + +void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + unsigned mmu_idx = get_mmuidx(oi); + int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; + uintptr_t haddr; + + /* Adjust the given return address. */ + retaddr -= GETPC_ADJ; + + /* If the TLB entry is for a different page, reload and try again. */ + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + if (!VICTIM_TLB_HIT(addr_write)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); + } + tlb_addr = env->tlb_table[mmu_idx][index].addr_write; + } + + /* Handle an IO access. */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + CPUIOTLBEntry *iotlbentry; + if ((addr & (DATA_SIZE - 1)) != 0) { + goto do_unaligned_access; + } + iotlbentry = &env->iotlb[mmu_idx][index]; + + /* ??? Note that the io helpers always read data in the target + byte ordering. We should push the LE/BE request down into io. */ + val = TGT_LE(val); + glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); + return; + } + + /* Handle slow unaligned access (it spans two pages or IO). */ + if (DATA_SIZE > 1 + && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 + >= TARGET_PAGE_SIZE)) { + int i; + do_unaligned_access: + if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + /* XXX: not efficient, but simple */ + /* Note: relies on the fact that tlb_fill() does not remove the + * previous page from the TLB cache. */ + for (i = DATA_SIZE - 1; i >= 0; i--) { + /* Little-endian extract. */ + uint8_t val8 = val >> (i * 8); + /* Note the adjustment at the beginning of the function. + Undo that for the recursion. */ + glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, + oi, retaddr + GETPC_ADJ); + } + return; + } + + /* Handle aligned access or unaligned access in the same page. */ + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + + haddr = addr + env->tlb_table[mmu_idx][index].addend; +#if DATA_SIZE == 1 + glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); +#else + glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); +#endif +} + +#if DATA_SIZE > 1 +void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + unsigned mmu_idx = get_mmuidx(oi); + int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; + uintptr_t haddr; + + /* Adjust the given return address. */ + retaddr -= GETPC_ADJ; + + /* If the TLB entry is for a different page, reload and try again. */ + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + if (!VICTIM_TLB_HIT(addr_write)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); + } + tlb_addr = env->tlb_table[mmu_idx][index].addr_write; + } + + /* Handle an IO access. */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + CPUIOTLBEntry *iotlbentry; + if ((addr & (DATA_SIZE - 1)) != 0) { + goto do_unaligned_access; + } + iotlbentry = &env->iotlb[mmu_idx][index]; + + /* ??? Note that the io helpers always read data in the target + byte ordering. We should push the LE/BE request down into io. */ + val = TGT_BE(val); + glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); + return; + } + + /* Handle slow unaligned access (it spans two pages or IO). */ + if (DATA_SIZE > 1 + && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 + >= TARGET_PAGE_SIZE)) { + int i; + do_unaligned_access: + if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + /* XXX: not efficient, but simple */ + /* Note: relies on the fact that tlb_fill() does not remove the + * previous page from the TLB cache. */ + for (i = DATA_SIZE - 1; i >= 0; i--) { + /* Big-endian extract. */ + uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); + /* Note the adjustment at the beginning of the function. + Undo that for the recursion. */ + glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, + oi, retaddr + GETPC_ADJ); + } + return; + } + + /* Handle aligned access or unaligned access in the same page. */ + if ((addr & (DATA_SIZE - 1)) != 0 + && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + + haddr = addr + env->tlb_table[mmu_idx][index].addend; + glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); +} +#endif /* DATA_SIZE > 1 */ + +void +glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, + DATA_TYPE val, int mmu_idx) +{ + TCGMemOpIdx oi = make_memop_idx(SHIFT, mmu_idx); + helper_te_st_name(env, addr, val, oi, GETRA()); +} + +#if DATA_SIZE == 1 +/* Probe for whether the specified guest write access is permitted. + * If it is not permitted then an exception will be taken in the same + * way as if this were a real write access (and we will not return). + * Otherwise the function will return, and there will be a valid + * entry in the TLB for this access. + */ +void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, + uintptr_t retaddr) +{ + int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; + + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + /* TLB entry is for a different page */ + if (!VICTIM_TLB_HIT(addr_write)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); + } + } +} +#endif +#endif /* !defined(SOFTMMU_CODE_ACCESS) */ + +#undef READ_ACCESS_TYPE +#undef SHIFT +#undef DATA_TYPE +#undef SUFFIX +#undef LSUFFIX +#undef DATA_SIZE +#undef ADDR_READ +#undef WORD_TYPE +#undef SDATA_TYPE +#undef USUFFIX +#undef SSUFFIX +#undef BSWAP +#undef TGT_BE +#undef TGT_LE +#undef CPU_BE +#undef CPU_LE +#undef helper_le_ld_name +#undef helper_be_ld_name +#undef helper_le_lds_name +#undef helper_be_lds_name +#undef helper_le_st_name +#undef helper_be_st_name +#undef helper_te_ld_name +#undef helper_te_st_name -- cgit v1.2.3