From 3f2546b2ef55b661fd8dd69682b38992225e86f6 Mon Sep 17 00:00:00 2001 From: fishsoupisgood Date: Mon, 29 Apr 2019 01:17:54 +0100 Subject: Initial import of qemu-2.4.1 --- kvm-all.c | 2352 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2352 insertions(+) create mode 100644 kvm-all.c (limited to 'kvm-all.c') diff --git a/kvm-all.c b/kvm-all.c new file mode 100644 index 00000000..06e06f2b --- /dev/null +++ b/kvm-all.c @@ -0,0 +1,2352 @@ +/* + * QEMU KVM support + * + * Copyright IBM, Corp. 2008 + * Red Hat, Inc. 2008 + * + * Authors: + * Anthony Liguori + * Glauber Costa + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include +#include +#include +#include + +#include + +#include "qemu-common.h" +#include "qemu/atomic.h" +#include "qemu/option.h" +#include "qemu/config-file.h" +#include "hw/hw.h" +#include "hw/pci/msi.h" +#include "hw/s390x/adapter.h" +#include "exec/gdbstub.h" +#include "sysemu/kvm_int.h" +#include "qemu/bswap.h" +#include "exec/memory.h" +#include "exec/ram_addr.h" +#include "exec/address-spaces.h" +#include "qemu/event_notifier.h" +#include "trace.h" +#include "hw/irq.h" + +#include "hw/boards.h" + +/* This check must be after config-host.h is included */ +#ifdef CONFIG_EVENTFD +#include +#endif + +/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ +#define PAGE_SIZE TARGET_PAGE_SIZE + +//#define DEBUG_KVM + +#ifdef DEBUG_KVM +#define DPRINTF(fmt, ...) \ + do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) +#else +#define DPRINTF(fmt, ...) \ + do { } while (0) +#endif + +#define KVM_MSI_HASHTAB_SIZE 256 + +struct KVMState +{ + AccelState parent_obj; + + int nr_slots; + int fd; + int vmfd; + int coalesced_mmio; + struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; + bool coalesced_flush_in_progress; + int broken_set_mem_region; + int vcpu_events; + int robust_singlestep; + int debugregs; +#ifdef KVM_CAP_SET_GUEST_DEBUG + struct kvm_sw_breakpoint_head kvm_sw_breakpoints; +#endif + int pit_state2; + int xsave, xcrs; + int many_ioeventfds; + int intx_set_mask; + /* The man page (and posix) say ioctl numbers are signed int, but + * they're not. Linux, glibc and *BSD all treat ioctl numbers as + * unsigned, and treating them as signed here can break things */ + unsigned irq_set_ioctl; + unsigned int sigmask_len; + GHashTable *gsimap; +#ifdef KVM_CAP_IRQ_ROUTING + struct kvm_irq_routing *irq_routes; + int nr_allocated_irq_routes; + uint32_t *used_gsi_bitmap; + unsigned int gsi_count; + QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; + bool direct_msi; +#endif + KVMMemoryListener memory_listener; +}; + +KVMState *kvm_state; +bool kvm_kernel_irqchip; +bool kvm_async_interrupts_allowed; +bool kvm_halt_in_kernel_allowed; +bool kvm_eventfds_allowed; +bool kvm_irqfds_allowed; +bool kvm_resamplefds_allowed; +bool kvm_msi_via_irqfd_allowed; +bool kvm_gsi_routing_allowed; +bool kvm_gsi_direct_mapping; +bool kvm_allowed; +bool kvm_readonly_mem_allowed; +bool kvm_vm_attributes_allowed; + +static const KVMCapabilityInfo kvm_required_capabilites[] = { + KVM_CAP_INFO(USER_MEMORY), + KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), + KVM_CAP_LAST_INFO +}; + +static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) +{ + KVMState *s = kvm_state; + int i; + + for (i = 0; i < s->nr_slots; i++) { + if (kml->slots[i].memory_size == 0) { + return &kml->slots[i]; + } + } + + return NULL; +} + +bool kvm_has_free_slot(MachineState *ms) +{ + KVMState *s = KVM_STATE(ms->accelerator); + + return kvm_get_free_slot(&s->memory_listener); +} + +static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) +{ + KVMSlot *slot = kvm_get_free_slot(kml); + + if (slot) { + return slot; + } + + fprintf(stderr, "%s: no free slot available\n", __func__); + abort(); +} + +static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, + hwaddr start_addr, + hwaddr end_addr) +{ + KVMState *s = kvm_state; + int i; + + for (i = 0; i < s->nr_slots; i++) { + KVMSlot *mem = &kml->slots[i]; + + if (start_addr == mem->start_addr && + end_addr == mem->start_addr + mem->memory_size) { + return mem; + } + } + + return NULL; +} + +/* + * Find overlapping slot with lowest start address + */ +static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml, + hwaddr start_addr, + hwaddr end_addr) +{ + KVMState *s = kvm_state; + KVMSlot *found = NULL; + int i; + + for (i = 0; i < s->nr_slots; i++) { + KVMSlot *mem = &kml->slots[i]; + + if (mem->memory_size == 0 || + (found && found->start_addr < mem->start_addr)) { + continue; + } + + if (end_addr > mem->start_addr && + start_addr < mem->start_addr + mem->memory_size) { + found = mem; + } + } + + return found; +} + +int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, + hwaddr *phys_addr) +{ + KVMMemoryListener *kml = &s->memory_listener; + int i; + + for (i = 0; i < s->nr_slots; i++) { + KVMSlot *mem = &kml->slots[i]; + + if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { + *phys_addr = mem->start_addr + (ram - mem->ram); + return 1; + } + } + + return 0; +} + +static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot) +{ + KVMState *s = kvm_state; + struct kvm_userspace_memory_region mem; + + mem.slot = slot->slot | (kml->as_id << 16); + mem.guest_phys_addr = slot->start_addr; + mem.userspace_addr = (unsigned long)slot->ram; + mem.flags = slot->flags; + + if (slot->memory_size && mem.flags & KVM_MEM_READONLY) { + /* Set the slot size to 0 before setting the slot to the desired + * value. This is needed based on KVM commit 75d61fbc. */ + mem.memory_size = 0; + kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); + } + mem.memory_size = slot->memory_size; + return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); +} + +int kvm_init_vcpu(CPUState *cpu) +{ + KVMState *s = kvm_state; + long mmap_size; + int ret; + + DPRINTF("kvm_init_vcpu\n"); + + ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); + if (ret < 0) { + DPRINTF("kvm_create_vcpu failed\n"); + goto err; + } + + cpu->kvm_fd = ret; + cpu->kvm_state = s; + cpu->kvm_vcpu_dirty = true; + + mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); + if (mmap_size < 0) { + ret = mmap_size; + DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); + goto err; + } + + cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, + cpu->kvm_fd, 0); + if (cpu->kvm_run == MAP_FAILED) { + ret = -errno; + DPRINTF("mmap'ing vcpu state failed\n"); + goto err; + } + + if (s->coalesced_mmio && !s->coalesced_mmio_ring) { + s->coalesced_mmio_ring = + (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; + } + + ret = kvm_arch_init_vcpu(cpu); +err: + return ret; +} + +/* + * dirty pages logging control + */ + +static int kvm_mem_flags(MemoryRegion *mr) +{ + bool readonly = mr->readonly || memory_region_is_romd(mr); + int flags = 0; + + if (memory_region_get_dirty_log_mask(mr) != 0) { + flags |= KVM_MEM_LOG_DIRTY_PAGES; + } + if (readonly && kvm_readonly_mem_allowed) { + flags |= KVM_MEM_READONLY; + } + return flags; +} + +static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, + MemoryRegion *mr) +{ + int old_flags; + + old_flags = mem->flags; + mem->flags = kvm_mem_flags(mr); + + /* If nothing changed effectively, no need to issue ioctl */ + if (mem->flags == old_flags) { + return 0; + } + + return kvm_set_user_memory_region(kml, mem); +} + +static int kvm_section_update_flags(KVMMemoryListener *kml, + MemoryRegionSection *section) +{ + hwaddr phys_addr = section->offset_within_address_space; + ram_addr_t size = int128_get64(section->size); + KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size); + + if (mem == NULL) { + return 0; + } else { + return kvm_slot_update_flags(kml, mem, section->mr); + } +} + +static void kvm_log_start(MemoryListener *listener, + MemoryRegionSection *section, + int old, int new) +{ + KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); + int r; + + if (old != 0) { + return; + } + + r = kvm_section_update_flags(kml, section); + if (r < 0) { + abort(); + } +} + +static void kvm_log_stop(MemoryListener *listener, + MemoryRegionSection *section, + int old, int new) +{ + KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); + int r; + + if (new != 0) { + return; + } + + r = kvm_section_update_flags(kml, section); + if (r < 0) { + abort(); + } +} + +/* get kvm's dirty pages bitmap and update qemu's */ +static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, + unsigned long *bitmap) +{ + ram_addr_t start = section->offset_within_region + section->mr->ram_addr; + ram_addr_t pages = int128_get64(section->size) / getpagesize(); + + cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages); + return 0; +} + +#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) + +/** + * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space + * This function updates qemu's dirty bitmap using + * memory_region_set_dirty(). This means all bits are set + * to dirty. + * + * @start_add: start of logged region. + * @end_addr: end of logged region. + */ +static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, + MemoryRegionSection *section) +{ + KVMState *s = kvm_state; + unsigned long size, allocated_size = 0; + struct kvm_dirty_log d = {}; + KVMSlot *mem; + int ret = 0; + hwaddr start_addr = section->offset_within_address_space; + hwaddr end_addr = start_addr + int128_get64(section->size); + + d.dirty_bitmap = NULL; + while (start_addr < end_addr) { + mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr); + if (mem == NULL) { + break; + } + + /* XXX bad kernel interface alert + * For dirty bitmap, kernel allocates array of size aligned to + * bits-per-long. But for case when the kernel is 64bits and + * the userspace is 32bits, userspace can't align to the same + * bits-per-long, since sizeof(long) is different between kernel + * and user space. This way, userspace will provide buffer which + * may be 4 bytes less than the kernel will use, resulting in + * userspace memory corruption (which is not detectable by valgrind + * too, in most cases). + * So for now, let's align to 64 instead of HOST_LONG_BITS here, in + * a hope that sizeof(long) wont become >8 any time soon. + */ + size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), + /*HOST_LONG_BITS*/ 64) / 8; + if (!d.dirty_bitmap) { + d.dirty_bitmap = g_malloc(size); + } else if (size > allocated_size) { + d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); + } + allocated_size = size; + memset(d.dirty_bitmap, 0, allocated_size); + + d.slot = mem->slot | (kml->as_id << 16); + if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { + DPRINTF("ioctl failed %d\n", errno); + ret = -1; + break; + } + + kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); + start_addr = mem->start_addr + mem->memory_size; + } + g_free(d.dirty_bitmap); + + return ret; +} + +static void kvm_coalesce_mmio_region(MemoryListener *listener, + MemoryRegionSection *secion, + hwaddr start, hwaddr size) +{ + KVMState *s = kvm_state; + + if (s->coalesced_mmio) { + struct kvm_coalesced_mmio_zone zone; + + zone.addr = start; + zone.size = size; + zone.pad = 0; + + (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); + } +} + +static void kvm_uncoalesce_mmio_region(MemoryListener *listener, + MemoryRegionSection *secion, + hwaddr start, hwaddr size) +{ + KVMState *s = kvm_state; + + if (s->coalesced_mmio) { + struct kvm_coalesced_mmio_zone zone; + + zone.addr = start; + zone.size = size; + zone.pad = 0; + + (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); + } +} + +int kvm_check_extension(KVMState *s, unsigned int extension) +{ + int ret; + + ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); + if (ret < 0) { + ret = 0; + } + + return ret; +} + +int kvm_vm_check_extension(KVMState *s, unsigned int extension) +{ + int ret; + + ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); + if (ret < 0) { + /* VM wide version not implemented, use global one instead */ + ret = kvm_check_extension(s, extension); + } + + return ret; +} + +static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) +{ +#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) + /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN + * endianness, but the memory core hands them in target endianness. + * For example, PPC is always treated as big-endian even if running + * on KVM and on PPC64LE. Correct here. + */ + switch (size) { + case 2: + val = bswap16(val); + break; + case 4: + val = bswap32(val); + break; + } +#endif + return val; +} + +static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, + bool assign, uint32_t size, bool datamatch) +{ + int ret; + struct kvm_ioeventfd iofd = { + .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, + .addr = addr, + .len = size, + .flags = 0, + .fd = fd, + }; + + if (!kvm_enabled()) { + return -ENOSYS; + } + + if (datamatch) { + iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; + } + if (!assign) { + iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; + } + + ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); + + if (ret < 0) { + return -errno; + } + + return 0; +} + +static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, + bool assign, uint32_t size, bool datamatch) +{ + struct kvm_ioeventfd kick = { + .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, + .addr = addr, + .flags = KVM_IOEVENTFD_FLAG_PIO, + .len = size, + .fd = fd, + }; + int r; + if (!kvm_enabled()) { + return -ENOSYS; + } + if (datamatch) { + kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; + } + if (!assign) { + kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; + } + r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); + if (r < 0) { + return r; + } + return 0; +} + + +static int kvm_check_many_ioeventfds(void) +{ + /* Userspace can use ioeventfd for io notification. This requires a host + * that supports eventfd(2) and an I/O thread; since eventfd does not + * support SIGIO it cannot interrupt the vcpu. + * + * Older kernels have a 6 device limit on the KVM io bus. Find out so we + * can avoid creating too many ioeventfds. + */ +#if defined(CONFIG_EVENTFD) + int ioeventfds[7]; + int i, ret = 0; + for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { + ioeventfds[i] = eventfd(0, EFD_CLOEXEC); + if (ioeventfds[i] < 0) { + break; + } + ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); + if (ret < 0) { + close(ioeventfds[i]); + break; + } + } + + /* Decide whether many devices are supported or not */ + ret = i == ARRAY_SIZE(ioeventfds); + + while (i-- > 0) { + kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); + close(ioeventfds[i]); + } + return ret; +#else + return 0; +#endif +} + +static const KVMCapabilityInfo * +kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) +{ + while (list->name) { + if (!kvm_check_extension(s, list->value)) { + return list; + } + list++; + } + return NULL; +} + +static void kvm_set_phys_mem(KVMMemoryListener *kml, + MemoryRegionSection *section, bool add) +{ + KVMState *s = kvm_state; + KVMSlot *mem, old; + int err; + MemoryRegion *mr = section->mr; + bool writeable = !mr->readonly && !mr->rom_device; + hwaddr start_addr = section->offset_within_address_space; + ram_addr_t size = int128_get64(section->size); + void *ram = NULL; + unsigned delta; + + /* kvm works in page size chunks, but the function may be called + with sub-page size and unaligned start address. Pad the start + address to next and truncate size to previous page boundary. */ + delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK)); + delta &= ~TARGET_PAGE_MASK; + if (delta > size) { + return; + } + start_addr += delta; + size -= delta; + size &= TARGET_PAGE_MASK; + if (!size || (start_addr & ~TARGET_PAGE_MASK)) { + return; + } + + if (!memory_region_is_ram(mr)) { + if (writeable || !kvm_readonly_mem_allowed) { + return; + } else if (!mr->romd_mode) { + /* If the memory device is not in romd_mode, then we actually want + * to remove the kvm memory slot so all accesses will trap. */ + add = false; + } + } + + ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; + + while (1) { + mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size); + if (!mem) { + break; + } + + if (add && start_addr >= mem->start_addr && + (start_addr + size <= mem->start_addr + mem->memory_size) && + (ram - start_addr == mem->ram - mem->start_addr)) { + /* The new slot fits into the existing one and comes with + * identical parameters - update flags and done. */ + kvm_slot_update_flags(kml, mem, mr); + return; + } + + old = *mem; + + if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { + kvm_physical_sync_dirty_bitmap(kml, section); + } + + /* unregister the overlapping slot */ + mem->memory_size = 0; + err = kvm_set_user_memory_region(kml, mem); + if (err) { + fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", + __func__, strerror(-err)); + abort(); + } + + /* Workaround for older KVM versions: we can't join slots, even not by + * unregistering the previous ones and then registering the larger + * slot. We have to maintain the existing fragmentation. Sigh. + * + * This workaround assumes that the new slot starts at the same + * address as the first existing one. If not or if some overlapping + * slot comes around later, we will fail (not seen in practice so far) + * - and actually require a recent KVM version. */ + if (s->broken_set_mem_region && + old.start_addr == start_addr && old.memory_size < size && add) { + mem = kvm_alloc_slot(kml); + mem->memory_size = old.memory_size; + mem->start_addr = old.start_addr; + mem->ram = old.ram; + mem->flags = kvm_mem_flags(mr); + + err = kvm_set_user_memory_region(kml, mem); + if (err) { + fprintf(stderr, "%s: error updating slot: %s\n", __func__, + strerror(-err)); + abort(); + } + + start_addr += old.memory_size; + ram += old.memory_size; + size -= old.memory_size; + continue; + } + + /* register prefix slot */ + if (old.start_addr < start_addr) { + mem = kvm_alloc_slot(kml); + mem->memory_size = start_addr - old.start_addr; + mem->start_addr = old.start_addr; + mem->ram = old.ram; + mem->flags = kvm_mem_flags(mr); + + err = kvm_set_user_memory_region(kml, mem); + if (err) { + fprintf(stderr, "%s: error registering prefix slot: %s\n", + __func__, strerror(-err)); +#ifdef TARGET_PPC + fprintf(stderr, "%s: This is probably because your kernel's " \ + "PAGE_SIZE is too big. Please try to use 4k " \ + "PAGE_SIZE!\n", __func__); +#endif + abort(); + } + } + + /* register suffix slot */ + if (old.start_addr + old.memory_size > start_addr + size) { + ram_addr_t size_delta; + + mem = kvm_alloc_slot(kml); + mem->start_addr = start_addr + size; + size_delta = mem->start_addr - old.start_addr; + mem->memory_size = old.memory_size - size_delta; + mem->ram = old.ram + size_delta; + mem->flags = kvm_mem_flags(mr); + + err = kvm_set_user_memory_region(kml, mem); + if (err) { + fprintf(stderr, "%s: error registering suffix slot: %s\n", + __func__, strerror(-err)); + abort(); + } + } + } + + /* in case the KVM bug workaround already "consumed" the new slot */ + if (!size) { + return; + } + if (!add) { + return; + } + mem = kvm_alloc_slot(kml); + mem->memory_size = size; + mem->start_addr = start_addr; + mem->ram = ram; + mem->flags = kvm_mem_flags(mr); + + err = kvm_set_user_memory_region(kml, mem); + if (err) { + fprintf(stderr, "%s: error registering slot: %s\n", __func__, + strerror(-err)); + abort(); + } +} + +static void kvm_region_add(MemoryListener *listener, + MemoryRegionSection *section) +{ + KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); + + memory_region_ref(section->mr); + kvm_set_phys_mem(kml, section, true); +} + +static void kvm_region_del(MemoryListener *listener, + MemoryRegionSection *section) +{ + KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); + + kvm_set_phys_mem(kml, section, false); + memory_region_unref(section->mr); +} + +static void kvm_log_sync(MemoryListener *listener, + MemoryRegionSection *section) +{ + KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); + int r; + + r = kvm_physical_sync_dirty_bitmap(kml, section); + if (r < 0) { + abort(); + } +} + +static void kvm_mem_ioeventfd_add(MemoryListener *listener, + MemoryRegionSection *section, + bool match_data, uint64_t data, + EventNotifier *e) +{ + int fd = event_notifier_get_fd(e); + int r; + + r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, + data, true, int128_get64(section->size), + match_data); + if (r < 0) { + fprintf(stderr, "%s: error adding ioeventfd: %s\n", + __func__, strerror(-r)); + abort(); + } +} + +static void kvm_mem_ioeventfd_del(MemoryListener *listener, + MemoryRegionSection *section, + bool match_data, uint64_t data, + EventNotifier *e) +{ + int fd = event_notifier_get_fd(e); + int r; + + r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, + data, false, int128_get64(section->size), + match_data); + if (r < 0) { + abort(); + } +} + +static void kvm_io_ioeventfd_add(MemoryListener *listener, + MemoryRegionSection *section, + bool match_data, uint64_t data, + EventNotifier *e) +{ + int fd = event_notifier_get_fd(e); + int r; + + r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, + data, true, int128_get64(section->size), + match_data); + if (r < 0) { + fprintf(stderr, "%s: error adding ioeventfd: %s\n", + __func__, strerror(-r)); + abort(); + } +} + +static void kvm_io_ioeventfd_del(MemoryListener *listener, + MemoryRegionSection *section, + bool match_data, uint64_t data, + EventNotifier *e) + +{ + int fd = event_notifier_get_fd(e); + int r; + + r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, + data, false, int128_get64(section->size), + match_data); + if (r < 0) { + abort(); + } +} + +void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, + AddressSpace *as, int as_id) +{ + int i; + + kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot)); + kml->as_id = as_id; + + for (i = 0; i < s->nr_slots; i++) { + kml->slots[i].slot = i; + } + + kml->listener.region_add = kvm_region_add; + kml->listener.region_del = kvm_region_del; + kml->listener.log_start = kvm_log_start; + kml->listener.log_stop = kvm_log_stop; + kml->listener.log_sync = kvm_log_sync; + kml->listener.priority = 10; + + memory_listener_register(&kml->listener, as); +} + +static MemoryListener kvm_io_listener = { + .eventfd_add = kvm_io_ioeventfd_add, + .eventfd_del = kvm_io_ioeventfd_del, + .priority = 10, +}; + +static void kvm_handle_interrupt(CPUState *cpu, int mask) +{ + cpu->interrupt_request |= mask; + + if (!qemu_cpu_is_self(cpu)) { + qemu_cpu_kick(cpu); + } +} + +int kvm_set_irq(KVMState *s, int irq, int level) +{ + struct kvm_irq_level event; + int ret; + + assert(kvm_async_interrupts_enabled()); + + event.level = level; + event.irq = irq; + ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); + if (ret < 0) { + perror("kvm_set_irq"); + abort(); + } + + return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; +} + +#ifdef KVM_CAP_IRQ_ROUTING +typedef struct KVMMSIRoute { + struct kvm_irq_routing_entry kroute; + QTAILQ_ENTRY(KVMMSIRoute) entry; +} KVMMSIRoute; + +static void set_gsi(KVMState *s, unsigned int gsi) +{ + s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); +} + +static void clear_gsi(KVMState *s, unsigned int gsi) +{ + s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); +} + +void kvm_init_irq_routing(KVMState *s) +{ + int gsi_count, i; + + gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; + if (gsi_count > 0) { + unsigned int gsi_bits, i; + + /* Round up so we can search ints using ffs */ + gsi_bits = ALIGN(gsi_count, 32); + s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); + s->gsi_count = gsi_count; + + /* Mark any over-allocated bits as already in use */ + for (i = gsi_count; i < gsi_bits; i++) { + set_gsi(s, i); + } + } + + s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); + s->nr_allocated_irq_routes = 0; + + if (!s->direct_msi) { + for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { + QTAILQ_INIT(&s->msi_hashtab[i]); + } + } + + kvm_arch_init_irq_routing(s); +} + +void kvm_irqchip_commit_routes(KVMState *s) +{ + int ret; + + s->irq_routes->flags = 0; + ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); + assert(ret == 0); +} + +static void kvm_add_routing_entry(KVMState *s, + struct kvm_irq_routing_entry *entry) +{ + struct kvm_irq_routing_entry *new; + int n, size; + + if (s->irq_routes->nr == s->nr_allocated_irq_routes) { + n = s->nr_allocated_irq_routes * 2; + if (n < 64) { + n = 64; + } + size = sizeof(struct kvm_irq_routing); + size += n * sizeof(*new); + s->irq_routes = g_realloc(s->irq_routes, size); + s->nr_allocated_irq_routes = n; + } + n = s->irq_routes->nr++; + new = &s->irq_routes->entries[n]; + + *new = *entry; + + set_gsi(s, entry->gsi); +} + +static int kvm_update_routing_entry(KVMState *s, + struct kvm_irq_routing_entry *new_entry) +{ + struct kvm_irq_routing_entry *entry; + int n; + + for (n = 0; n < s->irq_routes->nr; n++) { + entry = &s->irq_routes->entries[n]; + if (entry->gsi != new_entry->gsi) { + continue; + } + + if(!memcmp(entry, new_entry, sizeof *entry)) { + return 0; + } + + *entry = *new_entry; + + kvm_irqchip_commit_routes(s); + + return 0; + } + + return -ESRCH; +} + +void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) +{ + struct kvm_irq_routing_entry e = {}; + + assert(pin < s->gsi_count); + + e.gsi = irq; + e.type = KVM_IRQ_ROUTING_IRQCHIP; + e.flags = 0; + e.u.irqchip.irqchip = irqchip; + e.u.irqchip.pin = pin; + kvm_add_routing_entry(s, &e); +} + +void kvm_irqchip_release_virq(KVMState *s, int virq) +{ + struct kvm_irq_routing_entry *e; + int i; + + if (kvm_gsi_direct_mapping()) { + return; + } + + for (i = 0; i < s->irq_routes->nr; i++) { + e = &s->irq_routes->entries[i]; + if (e->gsi == virq) { + s->irq_routes->nr--; + *e = s->irq_routes->entries[s->irq_routes->nr]; + } + } + clear_gsi(s, virq); +} + +static unsigned int kvm_hash_msi(uint32_t data) +{ + /* This is optimized for IA32 MSI layout. However, no other arch shall + * repeat the mistake of not providing a direct MSI injection API. */ + return data & 0xff; +} + +static void kvm_flush_dynamic_msi_routes(KVMState *s) +{ + KVMMSIRoute *route, *next; + unsigned int hash; + + for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { + QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { + kvm_irqchip_release_virq(s, route->kroute.gsi); + QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); + g_free(route); + } + } +} + +static int kvm_irqchip_get_virq(KVMState *s) +{ + uint32_t *word = s->used_gsi_bitmap; + int max_words = ALIGN(s->gsi_count, 32) / 32; + int i, zeroes; + + /* + * PIC and IOAPIC share the first 16 GSI numbers, thus the available + * GSI numbers are more than the number of IRQ route. Allocating a GSI + * number can succeed even though a new route entry cannot be added. + * When this happens, flush dynamic MSI entries to free IRQ route entries. + */ + if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) { + kvm_flush_dynamic_msi_routes(s); + } + + /* Return the lowest unused GSI in the bitmap */ + for (i = 0; i < max_words; i++) { + zeroes = ctz32(~word[i]); + if (zeroes == 32) { + continue; + } + + return zeroes + i * 32; + } + return -ENOSPC; + +} + +static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) +{ + unsigned int hash = kvm_hash_msi(msg.data); + KVMMSIRoute *route; + + QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { + if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && + route->kroute.u.msi.address_hi == (msg.address >> 32) && + route->kroute.u.msi.data == le32_to_cpu(msg.data)) { + return route; + } + } + return NULL; +} + +int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) +{ + struct kvm_msi msi; + KVMMSIRoute *route; + + if (s->direct_msi) { + msi.address_lo = (uint32_t)msg.address; + msi.address_hi = msg.address >> 32; + msi.data = le32_to_cpu(msg.data); + msi.flags = 0; + memset(msi.pad, 0, sizeof(msi.pad)); + + return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); + } + + route = kvm_lookup_msi_route(s, msg); + if (!route) { + int virq; + + virq = kvm_irqchip_get_virq(s); + if (virq < 0) { + return virq; + } + + route = g_malloc0(sizeof(KVMMSIRoute)); + route->kroute.gsi = virq; + route->kroute.type = KVM_IRQ_ROUTING_MSI; + route->kroute.flags = 0; + route->kroute.u.msi.address_lo = (uint32_t)msg.address; + route->kroute.u.msi.address_hi = msg.address >> 32; + route->kroute.u.msi.data = le32_to_cpu(msg.data); + + kvm_add_routing_entry(s, &route->kroute); + kvm_irqchip_commit_routes(s); + + QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, + entry); + } + + assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); + + return kvm_set_irq(s, route->kroute.gsi, 1); +} + +int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) +{ + struct kvm_irq_routing_entry kroute = {}; + int virq; + + if (kvm_gsi_direct_mapping()) { + return kvm_arch_msi_data_to_gsi(msg.data); + } + + if (!kvm_gsi_routing_enabled()) { + return -ENOSYS; + } + + virq = kvm_irqchip_get_virq(s); + if (virq < 0) { + return virq; + } + + kroute.gsi = virq; + kroute.type = KVM_IRQ_ROUTING_MSI; + kroute.flags = 0; + kroute.u.msi.address_lo = (uint32_t)msg.address; + kroute.u.msi.address_hi = msg.address >> 32; + kroute.u.msi.data = le32_to_cpu(msg.data); + if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) { + kvm_irqchip_release_virq(s, virq); + return -EINVAL; + } + + kvm_add_routing_entry(s, &kroute); + kvm_irqchip_commit_routes(s); + + return virq; +} + +int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) +{ + struct kvm_irq_routing_entry kroute = {}; + + if (kvm_gsi_direct_mapping()) { + return 0; + } + + if (!kvm_irqchip_in_kernel()) { + return -ENOSYS; + } + + kroute.gsi = virq; + kroute.type = KVM_IRQ_ROUTING_MSI; + kroute.flags = 0; + kroute.u.msi.address_lo = (uint32_t)msg.address; + kroute.u.msi.address_hi = msg.address >> 32; + kroute.u.msi.data = le32_to_cpu(msg.data); + if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) { + return -EINVAL; + } + + return kvm_update_routing_entry(s, &kroute); +} + +static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq, + bool assign) +{ + struct kvm_irqfd irqfd = { + .fd = fd, + .gsi = virq, + .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, + }; + + if (rfd != -1) { + irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; + irqfd.resamplefd = rfd; + } + + if (!kvm_irqfds_enabled()) { + return -ENOSYS; + } + + return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); +} + +int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) +{ + struct kvm_irq_routing_entry kroute = {}; + int virq; + + if (!kvm_gsi_routing_enabled()) { + return -ENOSYS; + } + + virq = kvm_irqchip_get_virq(s); + if (virq < 0) { + return virq; + } + + kroute.gsi = virq; + kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; + kroute.flags = 0; + kroute.u.adapter.summary_addr = adapter->summary_addr; + kroute.u.adapter.ind_addr = adapter->ind_addr; + kroute.u.adapter.summary_offset = adapter->summary_offset; + kroute.u.adapter.ind_offset = adapter->ind_offset; + kroute.u.adapter.adapter_id = adapter->adapter_id; + + kvm_add_routing_entry(s, &kroute); + kvm_irqchip_commit_routes(s); + + return virq; +} + +#else /* !KVM_CAP_IRQ_ROUTING */ + +void kvm_init_irq_routing(KVMState *s) +{ +} + +void kvm_irqchip_release_virq(KVMState *s, int virq) +{ +} + +int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) +{ + abort(); +} + +int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) +{ + return -ENOSYS; +} + +int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) +{ + return -ENOSYS; +} + +static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) +{ + abort(); +} + +int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) +{ + return -ENOSYS; +} +#endif /* !KVM_CAP_IRQ_ROUTING */ + +int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, + EventNotifier *rn, int virq) +{ + return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), + rn ? event_notifier_get_fd(rn) : -1, virq, true); +} + +int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, + int virq) +{ + return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq, + false); +} + +int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, + EventNotifier *rn, qemu_irq irq) +{ + gpointer key, gsi; + gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); + + if (!found) { + return -ENXIO; + } + return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); +} + +int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, + qemu_irq irq) +{ + gpointer key, gsi; + gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); + + if (!found) { + return -ENXIO; + } + return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); +} + +void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) +{ + g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); +} + +static void kvm_irqchip_create(MachineState *machine, KVMState *s) +{ + int ret; + + if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { + ; + } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { + ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); + if (ret < 0) { + fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); + exit(1); + } + } else { + return; + } + + /* First probe and see if there's a arch-specific hook to create the + * in-kernel irqchip for us */ + ret = kvm_arch_irqchip_create(s); + if (ret == 0) { + ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); + } + if (ret < 0) { + fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); + exit(1); + } + + kvm_kernel_irqchip = true; + /* If we have an in-kernel IRQ chip then we must have asynchronous + * interrupt delivery (though the reverse is not necessarily true) + */ + kvm_async_interrupts_allowed = true; + kvm_halt_in_kernel_allowed = true; + + kvm_init_irq_routing(s); + + s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); +} + +/* Find number of supported CPUs using the recommended + * procedure from the kernel API documentation to cope with + * older kernels that may be missing capabilities. + */ +static int kvm_recommended_vcpus(KVMState *s) +{ + int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); + return (ret) ? ret : 4; +} + +static int kvm_max_vcpus(KVMState *s) +{ + int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); + return (ret) ? ret : kvm_recommended_vcpus(s); +} + +static int kvm_init(MachineState *ms) +{ + MachineClass *mc = MACHINE_GET_CLASS(ms); + static const char upgrade_note[] = + "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" + "(see http://sourceforge.net/projects/kvm).\n"; + struct { + const char *name; + int num; + } num_cpus[] = { + { "SMP", smp_cpus }, + { "hotpluggable", max_cpus }, + { NULL, } + }, *nc = num_cpus; + int soft_vcpus_limit, hard_vcpus_limit; + KVMState *s; + const KVMCapabilityInfo *missing_cap; + int ret; + int type = 0; + const char *kvm_type; + + s = KVM_STATE(ms->accelerator); + + /* + * On systems where the kernel can support different base page + * sizes, host page size may be different from TARGET_PAGE_SIZE, + * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum + * page size for the system though. + */ + assert(TARGET_PAGE_SIZE <= getpagesize()); + page_size_init(); + + s->sigmask_len = 8; + +#ifdef KVM_CAP_SET_GUEST_DEBUG + QTAILQ_INIT(&s->kvm_sw_breakpoints); +#endif + s->vmfd = -1; + s->fd = qemu_open("/dev/kvm", O_RDWR); + if (s->fd == -1) { + fprintf(stderr, "Could not access KVM kernel module: %m\n"); + ret = -errno; + goto err; + } + + ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); + if (ret < KVM_API_VERSION) { + if (ret >= 0) { + ret = -EINVAL; + } + fprintf(stderr, "kvm version too old\n"); + goto err; + } + + if (ret > KVM_API_VERSION) { + ret = -EINVAL; + fprintf(stderr, "kvm version not supported\n"); + goto err; + } + + s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); + + /* If unspecified, use the default value */ + if (!s->nr_slots) { + s->nr_slots = 32; + } + + /* check the vcpu limits */ + soft_vcpus_limit = kvm_recommended_vcpus(s); + hard_vcpus_limit = kvm_max_vcpus(s); + + while (nc->name) { + if (nc->num > soft_vcpus_limit) { + fprintf(stderr, + "Warning: Number of %s cpus requested (%d) exceeds " + "the recommended cpus supported by KVM (%d)\n", + nc->name, nc->num, soft_vcpus_limit); + + if (nc->num > hard_vcpus_limit) { + fprintf(stderr, "Number of %s cpus requested (%d) exceeds " + "the maximum cpus supported by KVM (%d)\n", + nc->name, nc->num, hard_vcpus_limit); + exit(1); + } + } + nc++; + } + + kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type"); + if (mc->kvm_type) { + type = mc->kvm_type(kvm_type); + } else if (kvm_type) { + ret = -EINVAL; + fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type); + goto err; + } + + do { + ret = kvm_ioctl(s, KVM_CREATE_VM, type); + } while (ret == -EINTR); + + if (ret < 0) { + fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, + strerror(-ret)); + +#ifdef TARGET_S390X + if (ret == -EINVAL) { + fprintf(stderr, + "Host kernel setup problem detected. Please verify:\n"); + fprintf(stderr, "- for kernels supporting the switch_amode or" + " user_mode parameters, whether\n"); + fprintf(stderr, + " user space is running in primary address space\n"); + fprintf(stderr, + "- for kernels supporting the vm.allocate_pgste sysctl, " + "whether it is enabled\n"); + } +#endif + goto err; + } + + s->vmfd = ret; + missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); + if (!missing_cap) { + missing_cap = + kvm_check_extension_list(s, kvm_arch_required_capabilities); + } + if (missing_cap) { + ret = -EINVAL; + fprintf(stderr, "kvm does not support %s\n%s", + missing_cap->name, upgrade_note); + goto err; + } + + s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); + + s->broken_set_mem_region = 1; + ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); + if (ret > 0) { + s->broken_set_mem_region = 0; + } + +#ifdef KVM_CAP_VCPU_EVENTS + s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); +#endif + + s->robust_singlestep = + kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); + +#ifdef KVM_CAP_DEBUGREGS + s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); +#endif + +#ifdef KVM_CAP_XSAVE + s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); +#endif + +#ifdef KVM_CAP_XCRS + s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); +#endif + +#ifdef KVM_CAP_PIT_STATE2 + s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); +#endif + +#ifdef KVM_CAP_IRQ_ROUTING + s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); +#endif + + s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); + + s->irq_set_ioctl = KVM_IRQ_LINE; + if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { + s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; + } + +#ifdef KVM_CAP_READONLY_MEM + kvm_readonly_mem_allowed = + (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); +#endif + + kvm_eventfds_allowed = + (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0); + + kvm_irqfds_allowed = + (kvm_check_extension(s, KVM_CAP_IRQFD) > 0); + + kvm_resamplefds_allowed = + (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); + + kvm_vm_attributes_allowed = + (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); + + ret = kvm_arch_init(ms, s); + if (ret < 0) { + goto err; + } + + if (machine_kernel_irqchip_allowed(ms)) { + kvm_irqchip_create(ms, s); + } + + kvm_state = s; + + s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; + s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; + s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region; + s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region; + + kvm_memory_listener_register(s, &s->memory_listener, + &address_space_memory, 0); + memory_listener_register(&kvm_io_listener, + &address_space_io); + + s->many_ioeventfds = kvm_check_many_ioeventfds(); + + cpu_interrupt_handler = kvm_handle_interrupt; + + return 0; + +err: + assert(ret < 0); + if (s->vmfd >= 0) { + close(s->vmfd); + } + if (s->fd != -1) { + close(s->fd); + } + g_free(s->memory_listener.slots); + + return ret; +} + +void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) +{ + s->sigmask_len = sigmask_len; +} + +static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, + int size, uint32_t count) +{ + int i; + uint8_t *ptr = data; + + for (i = 0; i < count; i++) { + address_space_rw(&address_space_io, port, attrs, + ptr, size, + direction == KVM_EXIT_IO_OUT); + ptr += size; + } +} + +static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) +{ + fprintf(stderr, "KVM internal error. Suberror: %d\n", + run->internal.suberror); + + if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { + int i; + + for (i = 0; i < run->internal.ndata; ++i) { + fprintf(stderr, "extra data[%d]: %"PRIx64"\n", + i, (uint64_t)run->internal.data[i]); + } + } + if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { + fprintf(stderr, "emulation failure\n"); + if (!kvm_arch_stop_on_emulation_error(cpu)) { + cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); + return EXCP_INTERRUPT; + } + } + /* FIXME: Should trigger a qmp message to let management know + * something went wrong. + */ + return -1; +} + +void kvm_flush_coalesced_mmio_buffer(void) +{ + KVMState *s = kvm_state; + + if (s->coalesced_flush_in_progress) { + return; + } + + s->coalesced_flush_in_progress = true; + + if (s->coalesced_mmio_ring) { + struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; + while (ring->first != ring->last) { + struct kvm_coalesced_mmio *ent; + + ent = &ring->coalesced_mmio[ring->first]; + + cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); + smp_wmb(); + ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; + } + } + + s->coalesced_flush_in_progress = false; +} + +static void do_kvm_cpu_synchronize_state(void *arg) +{ + CPUState *cpu = arg; + + if (!cpu->kvm_vcpu_dirty) { + kvm_arch_get_registers(cpu); + cpu->kvm_vcpu_dirty = true; + } +} + +void kvm_cpu_synchronize_state(CPUState *cpu) +{ + if (!cpu->kvm_vcpu_dirty) { + run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); + } +} + +static void do_kvm_cpu_synchronize_post_reset(void *arg) +{ + CPUState *cpu = arg; + + kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); + cpu->kvm_vcpu_dirty = false; +} + +void kvm_cpu_synchronize_post_reset(CPUState *cpu) +{ + run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu); +} + +static void do_kvm_cpu_synchronize_post_init(void *arg) +{ + CPUState *cpu = arg; + + kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); + cpu->kvm_vcpu_dirty = false; +} + +void kvm_cpu_synchronize_post_init(CPUState *cpu) +{ + run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu); +} + +void kvm_cpu_clean_state(CPUState *cpu) +{ + cpu->kvm_vcpu_dirty = false; +} + +int kvm_cpu_exec(CPUState *cpu) +{ + struct kvm_run *run = cpu->kvm_run; + int ret, run_ret; + + DPRINTF("kvm_cpu_exec()\n"); + + if (kvm_arch_process_async_events(cpu)) { + cpu->exit_request = 0; + return EXCP_HLT; + } + + qemu_mutex_unlock_iothread(); + + do { + MemTxAttrs attrs; + + if (cpu->kvm_vcpu_dirty) { + kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); + cpu->kvm_vcpu_dirty = false; + } + + kvm_arch_pre_run(cpu, run); + if (cpu->exit_request) { + DPRINTF("interrupt exit requested\n"); + /* + * KVM requires us to reenter the kernel after IO exits to complete + * instruction emulation. This self-signal will ensure that we + * leave ASAP again. + */ + qemu_cpu_kick_self(); + } + + run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); + + attrs = kvm_arch_post_run(cpu, run); + + if (run_ret < 0) { + if (run_ret == -EINTR || run_ret == -EAGAIN) { + DPRINTF("io window exit\n"); + ret = EXCP_INTERRUPT; + break; + } + fprintf(stderr, "error: kvm run failed %s\n", + strerror(-run_ret)); +#ifdef TARGET_PPC + if (run_ret == -EBUSY) { + fprintf(stderr, + "This is probably because your SMT is enabled.\n" + "VCPU can only run on primary threads with all " + "secondary threads offline.\n"); + } +#endif + ret = -1; + break; + } + + trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); + switch (run->exit_reason) { + case KVM_EXIT_IO: + DPRINTF("handle_io\n"); + /* Called outside BQL */ + kvm_handle_io(run->io.port, attrs, + (uint8_t *)run + run->io.data_offset, + run->io.direction, + run->io.size, + run->io.count); + ret = 0; + break; + case KVM_EXIT_MMIO: + DPRINTF("handle_mmio\n"); + /* Called outside BQL */ + address_space_rw(&address_space_memory, + run->mmio.phys_addr, attrs, + run->mmio.data, + run->mmio.len, + run->mmio.is_write); + ret = 0; + break; + case KVM_EXIT_IRQ_WINDOW_OPEN: + DPRINTF("irq_window_open\n"); + ret = EXCP_INTERRUPT; + break; + case KVM_EXIT_SHUTDOWN: + DPRINTF("shutdown\n"); + qemu_system_reset_request(); + ret = EXCP_INTERRUPT; + break; + case KVM_EXIT_UNKNOWN: + fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", + (uint64_t)run->hw.hardware_exit_reason); + ret = -1; + break; + case KVM_EXIT_INTERNAL_ERROR: + ret = kvm_handle_internal_error(cpu, run); + break; + case KVM_EXIT_SYSTEM_EVENT: + switch (run->system_event.type) { + case KVM_SYSTEM_EVENT_SHUTDOWN: + qemu_system_shutdown_request(); + ret = EXCP_INTERRUPT; + break; + case KVM_SYSTEM_EVENT_RESET: + qemu_system_reset_request(); + ret = EXCP_INTERRUPT; + break; + default: + DPRINTF("kvm_arch_handle_exit\n"); + ret = kvm_arch_handle_exit(cpu, run); + break; + } + break; + default: + DPRINTF("kvm_arch_handle_exit\n"); + ret = kvm_arch_handle_exit(cpu, run); + break; + } + } while (ret == 0); + + qemu_mutex_lock_iothread(); + + if (ret < 0) { + cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE); + vm_stop(RUN_STATE_INTERNAL_ERROR); + } + + cpu->exit_request = 0; + return ret; +} + +int kvm_ioctl(KVMState *s, int type, ...) +{ + int ret; + void *arg; + va_list ap; + + va_start(ap, type); + arg = va_arg(ap, void *); + va_end(ap); + + trace_kvm_ioctl(type, arg); + ret = ioctl(s->fd, type, arg); + if (ret == -1) { + ret = -errno; + } + return ret; +} + +int kvm_vm_ioctl(KVMState *s, int type, ...) +{ + int ret; + void *arg; + va_list ap; + + va_start(ap, type); + arg = va_arg(ap, void *); + va_end(ap); + + trace_kvm_vm_ioctl(type, arg); + ret = ioctl(s->vmfd, type, arg); + if (ret == -1) { + ret = -errno; + } + return ret; +} + +int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) +{ + int ret; + void *arg; + va_list ap; + + va_start(ap, type); + arg = va_arg(ap, void *); + va_end(ap); + + trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); + ret = ioctl(cpu->kvm_fd, type, arg); + if (ret == -1) { + ret = -errno; + } + return ret; +} + +int kvm_device_ioctl(int fd, int type, ...) +{ + int ret; + void *arg; + va_list ap; + + va_start(ap, type); + arg = va_arg(ap, void *); + va_end(ap); + + trace_kvm_device_ioctl(fd, type, arg); + ret = ioctl(fd, type, arg); + if (ret == -1) { + ret = -errno; + } + return ret; +} + +int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) +{ + int ret; + struct kvm_device_attr attribute = { + .group = group, + .attr = attr, + }; + + if (!kvm_vm_attributes_allowed) { + return 0; + } + + ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); + /* kvm returns 0 on success for HAS_DEVICE_ATTR */ + return ret ? 0 : 1; +} + +int kvm_has_sync_mmu(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); +} + +int kvm_has_vcpu_events(void) +{ + return kvm_state->vcpu_events; +} + +int kvm_has_robust_singlestep(void) +{ + return kvm_state->robust_singlestep; +} + +int kvm_has_debugregs(void) +{ + return kvm_state->debugregs; +} + +int kvm_has_xsave(void) +{ + return kvm_state->xsave; +} + +int kvm_has_xcrs(void) +{ + return kvm_state->xcrs; +} + +int kvm_has_pit_state2(void) +{ + return kvm_state->pit_state2; +} + +int kvm_has_many_ioeventfds(void) +{ + if (!kvm_enabled()) { + return 0; + } + return kvm_state->many_ioeventfds; +} + +int kvm_has_gsi_routing(void) +{ +#ifdef KVM_CAP_IRQ_ROUTING + return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); +#else + return false; +#endif +} + +int kvm_has_intx_set_mask(void) +{ + return kvm_state->intx_set_mask; +} + +void kvm_setup_guest_memory(void *start, size_t size) +{ + if (!kvm_has_sync_mmu()) { + int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); + + if (ret) { + perror("qemu_madvise"); + fprintf(stderr, + "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); + exit(1); + } + } +} + +#ifdef KVM_CAP_SET_GUEST_DEBUG +struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, + target_ulong pc) +{ + struct kvm_sw_breakpoint *bp; + + QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { + if (bp->pc == pc) { + return bp; + } + } + return NULL; +} + +int kvm_sw_breakpoints_active(CPUState *cpu) +{ + return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); +} + +struct kvm_set_guest_debug_data { + struct kvm_guest_debug dbg; + CPUState *cpu; + int err; +}; + +static void kvm_invoke_set_guest_debug(void *data) +{ + struct kvm_set_guest_debug_data *dbg_data = data; + + dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, + &dbg_data->dbg); +} + +int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) +{ + struct kvm_set_guest_debug_data data; + + data.dbg.control = reinject_trap; + + if (cpu->singlestep_enabled) { + data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; + } + kvm_arch_update_guest_debug(cpu, &data.dbg); + data.cpu = cpu; + + run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); + return data.err; +} + +int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, + target_ulong len, int type) +{ + struct kvm_sw_breakpoint *bp; + int err; + + if (type == GDB_BREAKPOINT_SW) { + bp = kvm_find_sw_breakpoint(cpu, addr); + if (bp) { + bp->use_count++; + return 0; + } + + bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); + bp->pc = addr; + bp->use_count = 1; + err = kvm_arch_insert_sw_breakpoint(cpu, bp); + if (err) { + g_free(bp); + return err; + } + + QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); + } else { + err = kvm_arch_insert_hw_breakpoint(addr, len, type); + if (err) { + return err; + } + } + + CPU_FOREACH(cpu) { + err = kvm_update_guest_debug(cpu, 0); + if (err) { + return err; + } + } + return 0; +} + +int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, + target_ulong len, int type) +{ + struct kvm_sw_breakpoint *bp; + int err; + + if (type == GDB_BREAKPOINT_SW) { + bp = kvm_find_sw_breakpoint(cpu, addr); + if (!bp) { + return -ENOENT; + } + + if (bp->use_count > 1) { + bp->use_count--; + return 0; + } + + err = kvm_arch_remove_sw_breakpoint(cpu, bp); + if (err) { + return err; + } + + QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); + g_free(bp); + } else { + err = kvm_arch_remove_hw_breakpoint(addr, len, type); + if (err) { + return err; + } + } + + CPU_FOREACH(cpu) { + err = kvm_update_guest_debug(cpu, 0); + if (err) { + return err; + } + } + return 0; +} + +void kvm_remove_all_breakpoints(CPUState *cpu) +{ + struct kvm_sw_breakpoint *bp, *next; + KVMState *s = cpu->kvm_state; + CPUState *tmpcpu; + + QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { + if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { + /* Try harder to find a CPU that currently sees the breakpoint. */ + CPU_FOREACH(tmpcpu) { + if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { + break; + } + } + } + QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); + g_free(bp); + } + kvm_arch_remove_all_hw_breakpoints(); + + CPU_FOREACH(cpu) { + kvm_update_guest_debug(cpu, 0); + } +} + +#else /* !KVM_CAP_SET_GUEST_DEBUG */ + +int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) +{ + return -EINVAL; +} + +int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr, + target_ulong len, int type) +{ + return -EINVAL; +} + +int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr, + target_ulong len, int type) +{ + return -EINVAL; +} + +void kvm_remove_all_breakpoints(CPUState *cpu) +{ +} +#endif /* !KVM_CAP_SET_GUEST_DEBUG */ + +int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) +{ + KVMState *s = kvm_state; + struct kvm_signal_mask *sigmask; + int r; + + if (!sigset) { + return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); + } + + sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); + + sigmask->len = s->sigmask_len; + memcpy(sigmask->sigset, sigset, sizeof(*sigset)); + r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); + g_free(sigmask); + + return r; +} +int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) +{ + return kvm_arch_on_sigbus_vcpu(cpu, code, addr); +} + +int kvm_on_sigbus(int code, void *addr) +{ + return kvm_arch_on_sigbus(code, addr); +} + +int kvm_create_device(KVMState *s, uint64_t type, bool test) +{ + int ret; + struct kvm_create_device create_dev; + + create_dev.type = type; + create_dev.fd = -1; + create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; + + if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { + return -ENOTSUP; + } + + ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); + if (ret) { + return ret; + } + + return test ? 0 : create_dev.fd; +} + +int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) +{ + struct kvm_one_reg reg; + int r; + + reg.id = id; + reg.addr = (uintptr_t) source; + r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (r) { + trace_kvm_failed_reg_set(id, strerror(r)); + } + return r; +} + +int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) +{ + struct kvm_one_reg reg; + int r; + + reg.id = id; + reg.addr = (uintptr_t) target; + r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (r) { + trace_kvm_failed_reg_get(id, strerror(r)); + } + return r; +} + +static void kvm_accel_class_init(ObjectClass *oc, void *data) +{ + AccelClass *ac = ACCEL_CLASS(oc); + ac->name = "KVM"; + ac->init_machine = kvm_init; + ac->allowed = &kvm_allowed; +} + +static const TypeInfo kvm_accel_type = { + .name = TYPE_KVM_ACCEL, + .parent = TYPE_ACCEL, + .class_init = kvm_accel_class_init, + .instance_size = sizeof(KVMState), +}; + +static void kvm_type_init(void) +{ + type_register_static(&kvm_accel_type); +} + +type_init(kvm_type_init); -- cgit v1.2.3