summaryrefslogtreecommitdiffstats
path: root/watch-library/hardware/watch/watch_private.c
blob: 5ec1de216a681cc86cfedd587c18536067e86d0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
 * MIT License
 *
 * Copyright (c) 2020 Joey Castillo
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "watch_private.h"
#include "watch_utility.h"
#include "tusb.h"

void _watch_init(void) {
    // disable the LED pin (it may have been enabled by the bootloader)
    watch_disable_digital_output(RED);

    // RAM should be back-biased in STANDBY
    PM->STDBYCFG.bit.BBIASHS = 1;

    // Use switching regulator for lower power consumption.
    SUPC->VREG.bit.SEL = 1;
    while(!SUPC->STATUS.bit.VREGRDY);

    // set up the brownout detector (low battery warning)
    NVIC_DisableIRQ(SYSTEM_IRQn);
    NVIC_ClearPendingIRQ(SYSTEM_IRQn);
    NVIC_EnableIRQ(SYSTEM_IRQn);
    SUPC->BOD33.bit.ENABLE = 0;     // BOD33 must be disabled to change its configuration
    SUPC->BOD33.bit.VMON = 0;       // Monitor VDD in active and standby mode
    SUPC->BOD33.bit.ACTCFG = 1;     // Enable sampling mode when active
    SUPC->BOD33.bit.RUNSTDBY = 1;   // Enable sampling mode in standby
    SUPC->BOD33.bit.STDBYCFG = 1;   // Run in standby
    SUPC->BOD33.bit.RUNBKUP = 0;    // Don't run in backup mode
    SUPC->BOD33.bit.PSEL = 0xB;     // Check battery level every 4 seconds
    SUPC->BOD33.bit.LEVEL = 31;     // Detect brownout at 2.5V (1.445V + level * 34mV)
    SUPC->BOD33.bit.ACTION = 0x2;   // Generate an interrupt when BOD33 is triggered
    SUPC->BOD33.bit.HYST = 0;       // Disable hysteresis
    while(!SUPC->STATUS.bit.B33SRDY);

    // Enable interrupt on BOD33 detect
    SUPC->INTENSET.bit.BOD33DET = 1;
    SUPC->BOD33.bit.ENABLE = 1;

    // External wake depends on RTC; calendar is a required module.
    _watch_rtc_init();

    // set up state
    btn_alarm_callback = NULL;
    a2_callback = NULL;
    a4_callback = NULL;
}

static inline void _watch_wait_for_entropy() {
    while (!hri_trng_get_INTFLAG_reg(TRNG, TRNG_INTFLAG_DATARDY));
}

// this function is called by arc4random to get entropy for random number generation.
int getentropy(void *buf, size_t buflen);

// let's use the SAM L22's true random number generator to seed the PRNG!
int getentropy(void *buf, size_t buflen) {
    hri_mclk_set_APBCMASK_TRNG_bit(MCLK);
    hri_trng_set_CTRLA_ENABLE_bit(TRNG);

    size_t i = 0;
    while(i < buflen / 4) {
        _watch_wait_for_entropy();
        ((uint32_t *)buf)[i++] = hri_trng_read_DATA_reg(TRNG);
    }

    // but what if they asked for an awkward number of bytes?
    if (buflen % 4) {
        // all good: let's fill in one, two or three bytes at the end of the buffer.
        _watch_wait_for_entropy();
        uint32_t last_little_bit = hri_trng_read_DATA_reg(TRNG);
        for(size_t j = 0; j <= (buflen % 4); j++) {
            ((uint8_t *)buf)[i * 4 + j] = (last_little_bit >> (j * 8)) & 0xFF;
        }
    }

    hri_trng_clear_CTRLA_ENABLE_bit(TRNG);
    hri_mclk_clear_APBCMASK_TRNG_bit(MCLK);

    return 0;
}

void _watch_enable_tcc(void) {
    // clock TCC0 with the main clock (8 MHz) and enable the peripheral clock.
    hri_gclk_write_PCHCTRL_reg(GCLK, TCC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
    hri_mclk_set_APBCMASK_TCC0_bit(MCLK);
    // disable and reset TCC0.
    hri_tcc_clear_CTRLA_ENABLE_bit(TCC0);
    hri_tcc_wait_for_sync(TCC0, TCC_SYNCBUSY_ENABLE);
    hri_tcc_write_CTRLA_reg(TCC0, TCC_CTRLA_SWRST);
    hri_tcc_wait_for_sync(TCC0, TCC_SYNCBUSY_SWRST);
    // divide the clock down to 1 MHz
    if (hri_usbdevice_get_CTRLA_ENABLE_bit(USB)) {
        // if USB is enabled, we are running an 8 MHz clock.
        hri_tcc_write_CTRLA_reg(TCC0, TCC_CTRLA_PRESCALER_DIV8);
    } else {
        // otherwise it's 4 Mhz.
        hri_tcc_write_CTRLA_reg(TCC0, TCC_CTRLA_PRESCALER_DIV4);
    }
    // We're going to use normal PWM mode, which means period is controlled by PER, and duty cycle is controlled by
    // each compare channel's value:
    //  * Buzzer tones are set by setting PER to the desired period for a given frequency, and CC[1] to half of that
    //    period (i.e. a square wave with a 50% duty cycle).
    //  * LEDs on CC[2] and CC[3] can be set to any value from 0 (off) to PER (fully on).
    hri_tcc_write_WAVE_reg(TCC0, TCC_WAVE_WAVEGEN_NPWM);
    #ifdef WATCH_INVERT_LED_POLARITY
    // This is here for the dev board, which uses a common anode LED (instead of common cathode like the actual watch).
    hri_tcc_set_WAVE_reg(TCC0, (1 << (TCC_WAVE_POL0_Pos + WATCH_RED_TCC_CHANNEL)) |
                               (1 << (TCC_WAVE_POL0_Pos + WATCH_GREEN_TCC_CHANNEL)));
    #endif
    // The buzzer will set the period depending on the tone it wants to play, but we have to set some period here to
    // get the LED working. Almost any period will do, tho it should be below 20000 (i.e. 50 Hz) to avoid flickering.
    hri_tcc_write_PER_reg(TCC0, 4096);
    // Set the duty cycle of all pins to 0: LED's off, buzzer not buzzing.
    hri_tcc_write_CC_reg(TCC0, WATCH_BUZZER_TCC_CHANNEL, 0);
    hri_tcc_write_CC_reg(TCC0, WATCH_RED_TCC_CHANNEL, 0);
    hri_tcc_write_CC_reg(TCC0, WATCH_GREEN_TCC_CHANNEL, 0);
    // Enable the TCC
    hri_tcc_set_CTRLA_ENABLE_bit(TCC0);
    hri_tcc_wait_for_sync(TCC0, TCC_SYNCBUSY_ENABLE);

    // enable LED PWM pins (the LED driver assumes if the TCC is on, the pins are enabled)
    gpio_set_pin_direction(RED, GPIO_DIRECTION_OUT);
    gpio_set_pin_function(RED, WATCH_RED_TCC_PINMUX);
    gpio_set_pin_direction(GREEN, GPIO_DIRECTION_OUT);
    gpio_set_pin_function(GREEN, WATCH_GREEN_TCC_PINMUX);
}

void _watch_disable_tcc(void) {
    // disable all PWM pins
    gpio_set_pin_direction(BUZZER, GPIO_DIRECTION_OFF);
    gpio_set_pin_function(BUZZER, GPIO_PIN_FUNCTION_OFF);
    gpio_set_pin_direction(RED, GPIO_DIRECTION_OFF);
    gpio_set_pin_function(RED, GPIO_PIN_FUNCTION_OFF);
    gpio_set_pin_direction(GREEN, GPIO_DIRECTION_OFF);
    gpio_set_pin_function(GREEN, GPIO_PIN_FUNCTION_OFF);

    // disable the TCC
    hri_tcc_clear_CTRLA_ENABLE_bit(TCC0);
    hri_mclk_clear_APBCMASK_TCC0_bit(MCLK);
}

void _watch_enable_usb(void) {
    // disable USB, just in case.
    hri_usb_clear_CTRLA_ENABLE_bit(USB);

    // bump clock up to 8 MHz
    hri_oscctrl_write_OSC16MCTRL_FSEL_bf(OSCCTRL, OSCCTRL_OSC16MCTRL_FSEL_8_Val);

    // reset flags and disable DFLL
    OSCCTRL->INTFLAG.reg = OSCCTRL_INTFLAG_DFLLRDY;
    OSCCTRL->DFLLCTRL.reg = 0;
    while (!(OSCCTRL->STATUS.reg & OSCCTRL_STATUS_DFLLRDY));

    // set the coarse and fine values to speed up frequency lock.
    uint32_t coarse =(*((uint32_t *)NVMCTRL_OTP5)) >> 26;
    OSCCTRL->DFLLVAL.reg = OSCCTRL_DFLLVAL_COARSE(coarse) |
                           OSCCTRL_DFLLVAL_FINE(0x200);
    // set coarse and fine steps, and multiplier (48 MHz = 32768 Hz * 1465)
    OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_CSTEP( 1 ) |
                           OSCCTRL_DFLLMUL_FSTEP( 1 ) |
                           OSCCTRL_DFLLMUL_MUL( 1465 );
    // set closed loop mode, chill cycle disable and USB clock recovery mode, and enable the DFLL.
    OSCCTRL->DFLLCTRL.reg = OSCCTRL_DFLLCTRL_MODE | OSCCTRL_DFLLCTRL_CCDIS | OSCCTRL_DFLLCTRL_ONDEMAND | OSCCTRL_DFLLCTRL_RUNSTDBY | OSCCTRL_DFLLCTRL_USBCRM | OSCCTRL_DFLLCTRL_ENABLE;
    while (!(OSCCTRL->STATUS.reg & OSCCTRL_STATUS_DFLLRDY));

    // assign DFLL to GCLK1
    GCLK->GENCTRL[1].reg = GCLK_GENCTRL_SRC(GCLK_GENCTRL_SRC_DFLL48M) | GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_GENEN;// | GCLK_GENCTRL_OE;
    while (GCLK->SYNCBUSY.bit.GENCTRL1);

    // assign GCLK1 to USB
    hri_gclk_write_PCHCTRL_reg(GCLK, USB_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK1_Val | GCLK_PCHCTRL_CHEN);
    hri_mclk_set_AHBMASK_USB_bit(MCLK);
    hri_mclk_set_APBBMASK_USB_bit(MCLK);

    // USB Pin Init
    gpio_set_pin_direction(PIN_PA24, GPIO_DIRECTION_OUT);
    gpio_set_pin_level(PIN_PA24, false);
    gpio_set_pin_pull_mode(PIN_PA24, GPIO_PULL_OFF);
    gpio_set_pin_direction(PIN_PA25, GPIO_DIRECTION_OUT);
    gpio_set_pin_level(PIN_PA25, false);
    gpio_set_pin_pull_mode(PIN_PA25, GPIO_PULL_OFF);

    gpio_set_pin_function(PIN_PA24, PINMUX_PA24G_USB_DM);
    gpio_set_pin_function(PIN_PA25, PINMUX_PA25G_USB_DP);

    // before we init TinyUSB, we are going to need a periodic callback to handle TinyUSB tasks.
    // TC2 and TC3 are reserved for devices on the 9-pin connector, so let's use TC0.
    // clock TC0 with the 8 MHz clock on GCLK0.
    hri_gclk_write_PCHCTRL_reg(GCLK, TC0_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK0_Val | GCLK_PCHCTRL_CHEN);
    // and enable the peripheral clock.
    hri_mclk_set_APBCMASK_TC0_bit(MCLK);
    // disable and reset TC0.
    hri_tc_clear_CTRLA_ENABLE_bit(TC0);
    hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_ENABLE);
    hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_SWRST);
    hri_tc_wait_for_sync(TC0, TC_SYNCBUSY_SWRST);
    // configure the TC to overflow 1,000 times per second
    hri_tc_write_CTRLA_reg(TC0, TC_CTRLA_PRESCALER_DIV64 |  // divide the 8 MHz clock by 64 to count at 125 KHz
                                TC_CTRLA_MODE_COUNT8 |      // count in 8-bit mode
                                TC_CTRLA_RUNSTDBY);         // run in standby, just in case we figure that out
    hri_tccount8_write_PER_reg(TC0, 125);                   // 125000 Hz / 125 = 1,000 Hz
    // set an interrupt on overflow; this will call TC0_Handler below.
    hri_tc_set_INTEN_OVF_bit(TC0);
    NVIC_ClearPendingIRQ(TC0_IRQn);
    NVIC_EnableIRQ (TC0_IRQn);

    // now we can init TinyUSB
    tusb_init();
    // and start the timer that handles USB device tasks.
    hri_tc_set_CTRLA_ENABLE_bit(TC0);
}

// this function ends up getting called by printf to log stuff to the USB console.
int _write(int file, char *ptr, int len) {
    (void)file;
    if (hri_usbdevice_get_CTRLA_ENABLE_bit(USB)) {
        tud_cdc_n_write(0, (void const*)ptr, len);
        tud_cdc_n_write_flush(0);
        return len;
    }

    return 0;
}

// this method could be overridden to read stuff from the USB console? but no need rn.
int _read(void) {
    return 0;
}

// Alternate function that outputs to the debug UART. useful for debugging USB issues.
// int _write(int file, char *ptr, int len) {
//     (void)file;
//     int pos = 0;
//     while(pos < len) watch_debug_putc(ptr[pos++]);

//     return 0;
// }

void USB_Handler(void) {
    tud_int_handler(0);
}

void TC0_Handler(void) {
    tud_task();
    TC0->COUNT8.INTFLAG.reg |= TC_INTFLAG_OVF;
}


// USB Descriptors and tinyUSB callbacks follow.

/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2019 Ha Thach (tinyusb.org)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */

//--------------------------------------------------------------------+
// Device Descriptors
//--------------------------------------------------------------------+
tusb_desc_device_t const desc_device =
{
    .bLength            = sizeof(tusb_desc_device_t),
    .bDescriptorType    = TUSB_DESC_DEVICE,
    .bcdUSB             = 0x0200,

    // Use Interface Association Descriptor (IAD) for CDC
    // As required by USB Specs IAD's subclass must be common class (2) and protocol must be IAD (1)
    .bDeviceClass       = TUSB_CLASS_MISC,
    .bDeviceSubClass    = MISC_SUBCLASS_COMMON,
    .bDeviceProtocol    = MISC_PROTOCOL_IAD,

    .bMaxPacketSize0    = CFG_TUD_ENDPOINT0_SIZE,

    .idVendor           = 0x1209,
    .idProduct          = 0x2151,
    .bcdDevice          = 0x0100,

    .iManufacturer      = 0x01,
    .iProduct           = 0x02,
    .iSerialNumber      = 0x03,

    .bNumConfigurations = 0x01
};

// Invoked when received GET DEVICE DESCRIPTOR
// Application return pointer to descriptor
uint8_t const * tud_descriptor_device_cb(void) {
  return (uint8_t const *) &desc_device;
}

//--------------------------------------------------------------------+
// Configuration Descriptor
//--------------------------------------------------------------------+

enum {
  ITF_NUM_CDC = 0,
  ITF_NUM_CDC_DATA,
  ITF_NUM_TOTAL
};

#define CONFIG_TOTAL_LEN    (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN)

#define EPNUM_CDC_NOTIF   0x81
#define EPNUM_CDC_OUT     0x02
#define EPNUM_CDC_IN      0x82


uint8_t const desc_fs_configuration[] = {
  // Config number, interface count, string index, total length, attribute, power in mA
  TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),

  // Interface number, string index, EP notification address and size, EP data address (out, in) and size.
  TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, EPNUM_CDC_NOTIF, 8, EPNUM_CDC_OUT, EPNUM_CDC_IN, 64),
};

// Invoked when received GET CONFIGURATION DESCRIPTOR
// Application return pointer to descriptor
// Descriptor contents must exist long enough for transfer to complete
uint8_t const * tud_descriptor_configuration_cb(uint8_t index) {
    (void) index; // for multiple configurations
    return desc_fs_configuration;
}

//--------------------------------------------------------------------+
// String Descriptors
//--------------------------------------------------------------------+

// array of pointer to string descriptors
char const* string_desc_arr [] =
{
  (const char[]) { 0x09, 0x04 }, // 0: is supported language is English (0x0409)
  "TinyUSB",                     // 1: Manufacturer
  "TinyUSB Device",              // 2: Product
  "123456",                      // 3: Serials, should use chip ID
  "TinyUSB CDC",                 // 4: CDC Interface
};

static uint16_t _desc_str[32];

// Invoked when received GET STRING DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to complete
uint16_t const* tud_descriptor_string_cb(uint8_t index, uint16_t langid)
{
    (void) langid;

    uint8_t chr_count;

    if ( index == 0) {
        memcpy(&_desc_str[1], string_desc_arr[0], 2);
        chr_count = 1;
    } else {
        // Note: the 0xEE index string is a Microsoft OS 1.0 Descriptors.
        // https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors

        if ( !(index < sizeof(string_desc_arr)/sizeof(string_desc_arr[0])) ) return NULL;

        const char* str = string_desc_arr[index];

        // Cap at max char
        chr_count = strlen(str);
        if ( chr_count > 31 ) chr_count = 31;

        // Convert ASCII string into UTF-16
        for(uint8_t i=0; i<chr_count; i++)
        {
            _desc_str[1+i] = str[i];
        }
    }

    // first byte is length (including header), second byte is string type
    _desc_str[0] = (TUSB_DESC_STRING << 8 ) | (2*chr_count + 2);

    return _desc_str;
}