summaryrefslogtreecommitdiffstats
path: root/watch-library/hardware/hpl/nvmctrl/hpl_nvmctrl.c
blob: c1d42c5e8f0e55daa1c68fe418588bff51e63e41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/**
 * \file
 *
 * \brief Non-Volatile Memory Controller
 *
 * Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
 *
 * \asf_license_start
 *
 * \page License
 *
 * Subject to your compliance with these terms, you may use Microchip
 * software and any derivatives exclusively with Microchip products.
 * It is your responsibility to comply with third party license terms applicable
 * to your use of third party software (including open source software) that
 * may accompany Microchip software.
 *
 * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
 * INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
 * AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
 * LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
 * LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
 * SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
 * POSSIBILITY OR THE DAMAGES ARE FORESEEABLE.  TO THE FULLEST EXTENT
 * ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
 * RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
 * THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
 *
 * \asf_license_stop
 *
 */

#include <hpl_flash.h>
#include <hpl_user_area.h>
#include <string.h>
#include <utils_assert.h>
#include <utils.h>
#include <hpl_nvmctrl_config.h>

#define NVM_MEMORY ((volatile uint16_t *)FLASH_ADDR)

/**
 * \brief NVM configuration type
 */
struct nvm_configuration {
	hri_nvmctrl_ctrlb_reg_t ctrlb; /*!< Control B Register */
};

/**
 * \brief Array of NVM configurations
 */
static struct nvm_configuration _nvm
    = {(CONF_NVM_CACHE << NVMCTRL_CTRLB_CACHEDIS_Pos) | (CONF_NVM_READ_MODE << NVMCTRL_CTRLB_READMODE_Pos)
       | (CONF_NVM_SLEEPPRM << NVMCTRL_CTRLB_SLEEPPRM_Pos)};

/*!< Pointer to hpl device */
static struct _flash_device *_nvm_dev = NULL;

static void _flash_erase_row(void *const hw, const uint32_t dst_addr, uint32_t nvmctrl_cmd);
static void _flash_program(void *const hw, const uint32_t dst_addr, const uint8_t *buffer, const uint16_t size,
                           uint32_t nvmctrl_cmd);

/**
 * \brief Initialize NVM
 */
int32_t _flash_init(struct _flash_device *const device, void *const hw)
{
	ASSERT(device && (hw == NVMCTRL));
	uint32_t ctrlb;

	device->hw = hw;
	ctrlb      = _nvm.ctrlb & ~(NVMCTRL_CTRLB_RWS_Msk | NVMCTRL_CTRLB_MANW);
	ctrlb |= hri_nvmctrl_get_CTRLB_reg(device->hw, NVMCTRL_CTRLB_RWS_Msk | NVMCTRL_CTRLB_MANW);
	hri_nvmctrl_write_CTRLB_reg(device->hw, ctrlb);

	_nvm_dev = device;
	NVIC_DisableIRQ(NVMCTRL_IRQn);
	NVIC_ClearPendingIRQ(NVMCTRL_IRQn);
	NVIC_EnableIRQ(NVMCTRL_IRQn);
	return ERR_NONE;
}

/**
 * \brief De-initialize NVM
 */
void _flash_deinit(struct _flash_device *const device)
{
	device->hw = NULL;
	NVIC_DisableIRQ(NVMCTRL_IRQn);
}

/**
 * \brief Get the flash page size.
 */
uint32_t _flash_get_page_size(struct _flash_device *const device)
{
	(void)device;
	return (uint32_t)NVMCTRL_PAGE_SIZE;
}

/**
 * \brief Get the numbers of flash page.
 */
uint32_t _flash_get_total_pages(struct _flash_device *const device)
{
	(void)device;
	return (uint32_t)FLASH_NB_OF_PAGES;
}

/**
 * \brief Get the number of wait states for read and write operations.
 */
uint8_t _flash_get_wait_state(struct _flash_device *const device)
{
	return hri_nvmctrl_get_CTRLB_reg(device->hw, NVMCTRL_CTRLB_RWS_Msk);
}

/**
 * \brief Set the number of wait states for read and write operations.
 */
void _flash_set_wait_state(struct _flash_device *const device, uint8_t state)
{
	hri_nvmctrl_write_CTRLB_RWS_bf(device->hw, state);
}

/**
 * \brief Reads a number of bytes to a page in the internal Flash.
 */
void _flash_read(struct _flash_device *const device, const uint32_t src_addr, uint8_t *buffer, uint32_t length)
{
	uint32_t nvm_address = src_addr / 2;
	uint32_t i;
	uint16_t data;

	/* Check if the module is busy */
	while (!hri_nvmctrl_get_interrupt_READY_bit(device->hw)) {
		/* Wait until this module isn't busy */
	}

	/* Clear flags */
	hri_nvmctrl_clear_STATUS_reg(device->hw, NVMCTRL_STATUS_MASK);

	/* Check whether byte address is word-aligned*/
	if (src_addr % 2) {
		data      = NVM_MEMORY[nvm_address++];
		buffer[0] = data >> 8;
		i         = 1;
	} else {
		i = 0;
	}

	/* NVM _must_ be accessed as a series of 16-bit words, perform manual copy
	 * to ensure alignment */
	while (i < length) {
		data      = NVM_MEMORY[nvm_address++];
		buffer[i] = (data & 0xFF);
		if (i < (length - 1)) {
			buffer[i + 1] = (data >> 8);
		}
		i += 2;
	}
}

/**
 * \brief Writes a number of bytes to a page in the internal Flash.
 */
void _flash_write(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
{
	uint8_t  tmp_buffer[NVMCTRL_ROW_PAGES][NVMCTRL_PAGE_SIZE];
	uint32_t row_start_addr, row_end_addr;
	uint32_t i, j, k;
	uint32_t wr_start_addr = dst_addr;

	do {
		row_start_addr = wr_start_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);
		row_end_addr   = row_start_addr + NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE - 1;

		/* store the erase data into temp buffer before write */
		for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
			_flash_read(device, row_start_addr + i * NVMCTRL_PAGE_SIZE, tmp_buffer[i], NVMCTRL_PAGE_SIZE);
		}

		/* temp buffer update */
		j = (wr_start_addr - row_start_addr) / NVMCTRL_PAGE_SIZE;
		k = wr_start_addr - row_start_addr - j * NVMCTRL_PAGE_SIZE;
		while ((wr_start_addr <= row_end_addr) && (length > 0)) {
			tmp_buffer[j][k] = *buffer;
			k                = (k + 1) % NVMCTRL_PAGE_SIZE;
			if (0 == k) {
				j++;
			}
			wr_start_addr++;
			buffer++;
			length--;
		}

		/* erase row before write */
		_flash_erase_row(device->hw, row_start_addr, NVMCTRL_CTRLA_CMD_ER);

		/* write buffer to flash */
		for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
			_flash_program(device->hw,
			               row_start_addr + i * NVMCTRL_PAGE_SIZE,
			               tmp_buffer[i],
			               NVMCTRL_PAGE_SIZE,
			               NVMCTRL_CTRLA_CMD_WP);
		}

	} while (row_end_addr < (wr_start_addr + length - 1));
}

/**
 * \brief Appends a number of bytes in the internal Flash.
 */
void _flash_append(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
{
	uint32_t page_start_addr = dst_addr & ~(NVMCTRL_PAGE_SIZE - 1);
	uint32_t size;
	uint32_t offset = 0;

	if (dst_addr != page_start_addr) {
		/* Need to write some data to the end of a page */
		size = min(length, NVMCTRL_PAGE_SIZE - (dst_addr - page_start_addr));
		_flash_program(device->hw, dst_addr, buffer, size, NVMCTRL_CTRLA_CMD_WP);
		page_start_addr += NVMCTRL_PAGE_SIZE;
		offset += size;
	}

	while (offset < length) {
		size = min(length - offset, NVMCTRL_PAGE_SIZE);
		_flash_program(device->hw, page_start_addr, buffer + offset, size, NVMCTRL_CTRLA_CMD_WP);
		page_start_addr += NVMCTRL_PAGE_SIZE;
		offset += size;
	}
}

/**
 * \brief Execute erase in the internal flash
 */
void _flash_erase(struct _flash_device *const device, uint32_t dst_addr, uint32_t page_nums)
{
	uint8_t  tmp_buffer[NVMCTRL_PAGE_SIZE];
	uint32_t row_start_addr;
	uint32_t i;

	row_start_addr = dst_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);

	memset(tmp_buffer, 0xFF, NVMCTRL_PAGE_SIZE);

	/* when address is not aligned with row start address */
	if (dst_addr != row_start_addr) {
		row_start_addr += NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE;
		for (i = 0; i < NVMCTRL_ROW_PAGES - 1; i++) {
			_flash_write(device, dst_addr, tmp_buffer, NVMCTRL_PAGE_SIZE);
			if (--page_nums == 0) {
				return;
			}
			dst_addr += NVMCTRL_PAGE_SIZE;
			if (dst_addr == row_start_addr) {
				break;
			}
		}
	}

	while (page_nums >= NVMCTRL_ROW_PAGES) {
		_flash_erase_row(device->hw, row_start_addr, NVMCTRL_CTRLA_CMD_ER);
		row_start_addr += NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE;
		page_nums -= NVMCTRL_ROW_PAGES;
	}

	if (page_nums != 0) {
		for (i = 0; i < page_nums; i++) {
			_flash_write(device, row_start_addr, tmp_buffer, NVMCTRL_PAGE_SIZE);
			row_start_addr += NVMCTRL_PAGE_SIZE;
		}
	}
}

/**
 * \brief Execute lock in the internal flash
 */
int32_t _flash_lock(struct _flash_device *const device, const uint32_t dst_addr, uint32_t page_nums)
{
	uint32_t region_pages;
	uint32_t row_start_addr;

	region_pages   = (uint32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
	row_start_addr = dst_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);

	if ((page_nums != region_pages) || (dst_addr != row_start_addr)) {
		return ERR_INVALID_ARG;
	}

	while (!hri_nvmctrl_get_interrupt_READY_bit(device->hw)) {
		/* Wait until this module isn't busy */
	}

	/* Clear flags */
	hri_nvmctrl_clear_STATUS_reg(device->hw, NVMCTRL_STATUS_MASK);

	hri_nvmctrl_write_ADDR_reg(device->hw, dst_addr / 2);
	hri_nvmctrl_write_CTRLA_reg(device->hw, NVMCTRL_CTRLA_CMD_LR | NVMCTRL_CTRLA_CMDEX_KEY);

	return (int32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
}

/**
 * \brief Execute unlock in the internal flash
 */
int32_t _flash_unlock(struct _flash_device *const device, const uint32_t dst_addr, uint32_t page_nums)
{
	uint32_t region_pages;
	uint32_t row_start_addr;

	region_pages   = (uint32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
	row_start_addr = dst_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);

	if ((page_nums != region_pages) || (dst_addr != row_start_addr)) {
		return ERR_INVALID_ARG;
	}

	while (!hri_nvmctrl_get_interrupt_READY_bit(device->hw)) {
		/* Wait until this module isn't busy */
	}

	/* Clear flags */
	hri_nvmctrl_clear_STATUS_reg(device->hw, NVMCTRL_STATUS_MASK);

	hri_nvmctrl_write_ADDR_reg(device->hw, dst_addr / 2);
	hri_nvmctrl_write_CTRLA_reg(device->hw, NVMCTRL_CTRLA_CMD_UR | NVMCTRL_CTRLA_CMDEX_KEY);

	return (int32_t)NVMCTRL_FLASH_SIZE / (16 * NVMCTRL_PAGE_SIZE);
}

/**
 * \brief check whether the region which is pointed by address
 */
bool _flash_is_locked(struct _flash_device *const device, const uint32_t dst_addr)
{
	uint16_t region_id;

	/* Get region for given page */
	region_id = dst_addr / (NVMCTRL_FLASH_SIZE / 16);

	return !(hri_nvmctrl_get_LOCK_reg(device->hw, 1 << region_id));
}

/**
 * \brief Enable/disable Flash interrupt
 */
void _flash_set_irq_state(struct _flash_device *const device, const enum _flash_cb_type type, const bool state)
{
	ASSERT(device);

	if (FLASH_DEVICE_CB_READY == type) {
		hri_nvmctrl_write_INTEN_READY_bit(device->hw, state);
	} else if (FLASH_DEVICE_CB_ERROR == type) {
		hri_nvmctrl_write_INTEN_ERROR_bit(device->hw, state);
	}
}

/**
 * \internal   erase a row in flash
 * \param[in]  hw            The pointer to hardware instance
 * \param[in]  dst_addr      Destination page address to erase
 */
static void _flash_erase_row(void *const hw, const uint32_t dst_addr, uint32_t nvmctrl_cmd)
{
	while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
		/* Wait until this module isn't busy */
	}

	/* Clear flags */
	hri_nvmctrl_clear_STATUS_reg(hw, NVMCTRL_STATUS_MASK);

	/* Set address and command */
	hri_nvmctrl_write_ADDR_reg(hw, dst_addr / 2);
	hri_nvmctrl_write_CTRLA_reg(hw, nvmctrl_cmd | NVMCTRL_CTRLA_CMDEX_KEY);
}

/**
 * \internal   write a page in flash
 * \param[in]  hw            The pointer to hardware instance
 * \param[in]  dst_addr      Destination page address to write
 * \param[in]  buffer        Pointer to buffer where the data to
 *                           write is stored
 * \param[in] size           The size of data to write to a page
 */
static void _flash_program(void *const hw, const uint32_t dst_addr, const uint8_t *buffer, const uint16_t size,
                           uint32_t nvmctrl_cmd)
{
	ASSERT(!(dst_addr % 2));

	uint32_t nvm_address = dst_addr / 2;
	uint16_t i, data;

	while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
		/* Wait until this module isn't busy */
	}

	hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_PBC | NVMCTRL_CTRLA_CMDEX_KEY);

	while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
		/* Wait until this module isn't busy */
	}

	/* Clear flags */
	hri_nvmctrl_clear_STATUS_reg(hw, NVMCTRL_STATUS_MASK);

	for (i = 0; i < size; i += 2) {
		data = buffer[i];
		if (i < NVMCTRL_PAGE_SIZE - 1) {
			data |= (buffer[i + 1] << 8);
		}
		NVM_MEMORY[nvm_address++] = data;
	}

	while (!hri_nvmctrl_get_interrupt_READY_bit(hw)) {
		/* Wait until this module isn't busy */
	}

	hri_nvmctrl_write_ADDR_reg(hw, dst_addr / 2);
	hri_nvmctrl_write_CTRLA_reg(hw, nvmctrl_cmd | NVMCTRL_CTRLA_CMDEX_KEY);
}

/**
 * \internal NVM interrupt handler
 */
void NVMCTRL_Handler(void)
{
	void *const hw = _nvm_dev->hw;

	if (hri_nvmctrl_get_interrupt_READY_bit(hw)) {
		if (NULL != _nvm_dev->flash_cb.ready_cb) {
			_nvm_dev->flash_cb.ready_cb(_nvm_dev);
		}
	} else if (hri_nvmctrl_get_interrupt_ERROR_bit(hw)) {
		hri_nvmctrl_clear_interrupt_ERROR_bit(hw);
		if (NULL != _nvm_dev->flash_cb.error_cb) {
			_nvm_dev->flash_cb.error_cb(_nvm_dev);
		}
	}
}

/*
The NVM User Row contains calibration data that are automatically read at device
power on.
The NVM User Row can be read at address 0x804000.
*/
#ifndef _NVM_USER_ROW_BASE
#define _NVM_USER_ROW_BASE 0x804000
#endif
#define _NVM_USER_ROW_N_BITS 64
#define _NVM_USER_ROW_N_BYTES (_NVM_USER_ROW_N_BITS / 8)
#define _NVM_USER_ROW_END (((uint8_t *)_NVM_USER_ROW_BASE) + _NVM_USER_ROW_N_BYTES - 1)
#define _IS_NVM_USER_ROW(b)                                                                                            \
	(((uint8_t *)(b) >= (uint8_t *)(_NVM_USER_ROW_BASE)) && ((uint8_t *)(b) <= (uint8_t *)(_NVM_USER_ROW_END)))
#define _IN_NVM_USER_ROW(b, o) (((uint8_t *)(b) + (o)) <= (uint8_t *)(_NVM_USER_ROW_END))

/*
The NVM Software Calibration Area can be read at address 0x806020.
The NVM Software Calibration Area can not be written.
*/
#ifndef _NVM_SW_CALIB_AREA_BASE
#define _NVM_SW_CALIB_AREA_BASE 0x806020
#endif
#define _NVM_SW_CALIB_AREA_N_BITS 128
#define _NVM_SW_CALIB_AREA_N_BYTES (_NVM_SW_CALIB_AREA_N_BITS / 8)
#define _NVM_SW_CALIB_AREA_END (((uint8_t *)_NVM_SW_CALIB_AREA_BASE) + _NVM_SW_CALIB_AREA_N_BYTES - 1)
#define _IS_NVM_SW_CALIB_AREA(b)                                                                                       \
	(((uint8_t *)(b) >= (uint8_t *)_NVM_SW_CALIB_AREA_BASE) && ((uint8_t *)(b) <= (uint8_t *)_NVM_SW_CALIB_AREA_END))
#define _IN_NVM_SW_CALIB_AREA(b, o) (((uint8_t *)(b) + (o)) <= (uint8_t *)(_NVM_SW_CALIB_AREA_END))

/**
 * \internal Read left aligned data bits
 * \param[in] base       Base address for the data
 * \param[in] bit_offset Offset for the bitfield start
 * \param[in] n_bits     Number of bits in the bitfield
 */
static inline uint32_t _user_area_read_l32_bits(const volatile uint32_t *base, const uint32_t bit_offset,
                                                const uint8_t n_bits)
{
	return base[bit_offset >> 5] & ((1 << n_bits) - 1);
}

/**
 * \internal Read right aligned data bits
 * \param[in] base       Base address for the data
 * \param[in] bit_offset Offset for the bitfield start
 * \param[in] n_bits     Number of bits in the bitfield
 */
static inline uint32_t _user_area_read_r32_bits(const volatile uint32_t *base, const uint32_t bit_offset,
                                                const uint8_t n_bits)
{
	return (base[bit_offset >> 5] >> (bit_offset & 0x1F)) & ((1 << n_bits) - 1);
}

int32_t _user_area_read(const void *base, const uint32_t offset, uint8_t *buf, uint32_t size)
{
	ASSERT(buf);

	/** Parameter check. */
	if (_IS_NVM_USER_ROW(base)) {
		if (!_IN_NVM_USER_ROW(base, offset)) {
			return ERR_BAD_ADDRESS;
		}
		/* Cut off if request too many bytes */
		if (!_IN_NVM_USER_ROW(base, offset + size - 1)) {
			return ERR_INVALID_ARG;
		}
	} else if (_IS_NVM_SW_CALIB_AREA(base)) {
		if (!_IN_NVM_SW_CALIB_AREA(base, offset)) {
			return ERR_BAD_ADDRESS;
		}
		/* Cut off if request too many bytes */
		if (!_IN_NVM_SW_CALIB_AREA(base, offset + size - 1)) {
			return ERR_INVALID_ARG;
		}
	} else {
		return ERR_UNSUPPORTED_OP;
	}

	/* Copy data */
	memcpy(buf, ((uint8_t *)base) + offset, size);
	return ERR_NONE;
}

uint32_t _user_area_read_bits(const void *base, const uint32_t bit_offset, const uint8_t n_bits)
{
	volatile uint32_t *mem_base = (volatile uint32_t *)base;
	uint32_t           l_off, l_bits;
	uint32_t           r_off, r_bits;

	/** Parameter check. */
	if (_IS_NVM_USER_ROW(base)) {
		ASSERT(_IN_NVM_USER_ROW(base, bit_offset >> 3) && _IN_NVM_USER_ROW(base, (bit_offset + n_bits - 1) >> 3));
	} else if (_IS_NVM_SW_CALIB_AREA(base)) {
		ASSERT(_IN_NVM_SW_CALIB_AREA(base, bit_offset >> 3)
		       && _IN_NVM_SW_CALIB_AREA(base, (bit_offset + n_bits - 1) >> 3));
	} else {
		ASSERT(false);
	}

	/* Since the bitfield can cross 32-bits boundaries,
	 * left and right bits are read from 32-bit aligned address
	 * and then combined together. */
	l_off  = bit_offset & (~(32 - 1));
	r_off  = l_off + 32;
	l_bits = 32 - (bit_offset & (32 - 1));
	if (n_bits > l_bits) {
		r_bits = n_bits - l_bits;
	} else {
		l_bits = n_bits;
		r_bits = 0;
	}
	return _user_area_read_r32_bits(mem_base, bit_offset, l_bits)
	       + (_user_area_read_l32_bits(mem_base, r_off, r_bits) << l_bits);
}

/** \internal Write 64-bit user row
 *  \param[in] _row Pointer to 64-bit user row data.
 */
static int32_t _user_row_write_exec(const uint32_t *_row)
{
	Nvmctrl *hw    = NVMCTRL;
	uint32_t ctrlb = hri_nvmctrl_read_CTRLB_reg(NVMCTRL);

	/* Denie if Security Bit is set */
	if (hri_nvmctrl_get_STATUS_reg(hw, NVMCTRL_STATUS_SB)) {
		return ERR_DENIED;
	}

	/* Do Save */

	/* - Prepare. */
	while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
		/* Wait until this module isn't busy */
	}
	hri_nvmctrl_clear_STATUS_reg(hw, NVMCTRL_STATUS_MASK);
	hri_nvmctrl_set_CTRLB_MANW_bit(hw);

	/* - Erase AUX row. */
	hri_nvmctrl_write_ADDR_reg(hw, (hri_nvmctrl_addr_reg_t)(_NVM_USER_ROW_BASE / 2));
	hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_EAR | NVMCTRL_CTRLA_CMDEX_KEY);
	while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
		/* Wait until this module isn't busy */
	}

	/* - Page buffer clear & write. */
	hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_PBC | NVMCTRL_CTRLA_CMDEX_KEY);
	while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
		/* Wait until this module isn't busy */
	}
	*((uint32_t *)NVMCTRL_AUX0_ADDRESS)       = _row[0];
	*(((uint32_t *)NVMCTRL_AUX0_ADDRESS) + 1) = _row[1];

	/* - Write AUX row. */
	hri_nvmctrl_write_ADDR_reg(hw, (hri_nvmctrl_addr_reg_t)(_NVM_USER_ROW_BASE / 2));
	hri_nvmctrl_write_CTRLA_reg(hw, NVMCTRL_CTRLA_CMD_WAP | NVMCTRL_CTRLA_CMDEX_KEY);
	while (!hri_nvmctrl_get_INTFLAG_reg(hw, NVMCTRL_INTFLAG_READY)) {
		/* Wait until this module isn't busy */
	}

	/* Restore CTRLB */
	hri_nvmctrl_write_CTRLB_reg(NVMCTRL, ctrlb);

	return ERR_NONE;
}

int32_t _user_area_write(void *base, const uint32_t offset, const uint8_t *buf, const uint32_t size)
{
	uint32_t _row[2]; /* Copy of user row. */

	/** Parameter check. */
	if (_IS_NVM_USER_ROW(base)) {
		if (!_IN_NVM_USER_ROW(base, offset)) {
			return ERR_BAD_ADDRESS;
		} else if (!_IN_NVM_USER_ROW(base, offset + size - 1)) {
			return ERR_INVALID_ARG;
		}
	} else if (_IS_NVM_SW_CALIB_AREA(base)) {
		return ERR_DENIED;
	} else {
		return ERR_UNSUPPORTED_OP;
	}

	memcpy(_row, base, 8);                       /* Store previous data. */
	memcpy((uint8_t *)_row + offset, buf, size); /* Modify with buf data. */

	return _user_row_write_exec(_row);
}

int32_t _user_area_write_bits(void *base, const uint32_t bit_offset, const uint32_t bits, const uint8_t n_bits)
{
	uint32_t _row[2]; /* Copy of user row. */
	uint32_t l_off, l_bits;
	uint32_t r_off, r_bits;

	/** Parameter check. */
	if (_IS_NVM_USER_ROW(base)) {
		if (!_IN_NVM_USER_ROW(base, bit_offset >> 3)) {
			return ERR_BAD_ADDRESS;
		} else if (!_IN_NVM_USER_ROW(base, (bit_offset + n_bits - 1) >> 3)) {
			return ERR_INVALID_ARG;
		}
	} else if (_IS_NVM_SW_CALIB_AREA(base)) {
		return ERR_DENIED;
	} else {
		return ERR_UNSUPPORTED_OP;
	}

	/* Since the bitfield can cross 32-bits boundaries,
	 * left and right bits are splitted for 32-bit aligned address
	 * and then saved. */
	l_off  = bit_offset & (~(32 - 1));
	r_off  = l_off + 32;
	l_bits = 32 - (bit_offset & (32 - 1));
	if (n_bits > l_bits) {
		r_bits = n_bits - l_bits;
	} else {
		l_bits = n_bits;
		r_bits = 0;
	}

	memcpy(_row, base, 8); /* Store previous data. */
	if (l_bits) {
		uint32_t l_mask = ((1 << l_bits) - 1) << (bit_offset & (32 - 1));
		_row[bit_offset >> 5] &= ~l_mask;
		_row[bit_offset >> 5] |= (bits << (bit_offset & (32 - 1))) & l_mask;
	}
	if (r_bits) {
		uint32_t r_mask = (1 << r_bits) - 1;
		_row[r_off >> 5] &= ~r_mask;
		_row[r_off >> 5] |= bits >> l_bits;
	}
	return _user_row_write_exec(_row);
}

/**
 * \brief Return if given address is in Flash RWWEE array range.
 */
static bool _is_valid_rww_flash_address(uint32_t addr)
{
#define RWWEE_ADDR_START NVMCTRL_RWW_EEPROM_ADDR
#define RWWEE_ADDR_END (NVMCTRL_RWW_EEPROM_ADDR + NVMCTRL_PAGE_SIZE * NVMCTRL_RWWEE_PAGES)

	if ((addr < NVMCTRL_RWW_EEPROM_ADDR)
	    || (addr > (NVMCTRL_RWW_EEPROM_ADDR + NVMCTRL_PAGE_SIZE * NVMCTRL_RWWEE_PAGES))) {
		return false;
	}
	return true;
}

/**
 * \brief Get the RWWEE flash page size.
 */
uint32_t _rww_flash_get_page_size(struct _flash_device *const device)
{
	(void)device;
	return (uint32_t)NVMCTRL_PAGE_SIZE;
}

/**
 * \brief Get the total page numbers of RWWEE flash.
 */
uint32_t _rww_flash_get_total_pages(struct _flash_device *const device)
{
	(void)device;
	return (uint32_t)NVMCTRL_RWWEE_PAGES;
}

/**
 * \brief Reads a number of bytes in the internal RWWEE Flash.
 */
int32_t _rww_flash_read(struct _flash_device *const device, const uint32_t src_addr, uint8_t *buffer, uint32_t length)
{
	/* Check if the address is valid */
	if (!_is_valid_rww_flash_address(src_addr) || !_is_valid_rww_flash_address(src_addr + length)) {
		return ERR_BAD_ADDRESS;
	}

	_flash_read(device, src_addr, buffer, length);

	return ERR_NONE;
}

/**
 * \brief Writes a number of bytes in the internal RWWEE Flash.
 */
int32_t _rww_flash_write(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
{
	uint8_t  tmp_buffer[NVMCTRL_ROW_PAGES][NVMCTRL_PAGE_SIZE];
	uint32_t row_start_addr, row_end_addr;
	uint32_t i, j, k;
	uint32_t wr_start_addr = dst_addr;

	/* Check if the address is valid */
	if (!_is_valid_rww_flash_address(dst_addr) || !_is_valid_rww_flash_address(dst_addr + length)) {
		return ERR_BAD_ADDRESS;
	}

	do {
		row_start_addr = wr_start_addr & ~((NVMCTRL_PAGE_SIZE * NVMCTRL_ROW_PAGES) - 1);
		row_end_addr   = row_start_addr + NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE - 1;

		/* store the erase data into temp buffer before write */
		for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
			_rww_flash_read(device, row_start_addr + i * NVMCTRL_PAGE_SIZE, tmp_buffer[i], NVMCTRL_PAGE_SIZE);
		}

		/* temp buffer update */
		j = (wr_start_addr - row_start_addr) / NVMCTRL_PAGE_SIZE;
		k = wr_start_addr - row_start_addr - j * NVMCTRL_PAGE_SIZE;
		while ((wr_start_addr <= row_end_addr) && (length > 0)) {
			tmp_buffer[j][k] = *buffer;
			k                = (k + 1) % NVMCTRL_PAGE_SIZE;
			if (0 == k) {
				j++;
			}
			wr_start_addr++;
			buffer++;
			length--;
		}

		/* erase row before write */
		_flash_erase_row(device->hw, row_start_addr, NVMCTRL_CTRLA_CMD_RWWEEER);

		/* write buffer to flash */
		for (i = 0; i < NVMCTRL_ROW_PAGES; i++) {
			_flash_program(device->hw,
			               row_start_addr + i * NVMCTRL_PAGE_SIZE,
			               tmp_buffer[i],
			               NVMCTRL_PAGE_SIZE,
			               NVMCTRL_CTRLA_CMD_RWWEEWP);
		}

	} while (row_end_addr < (wr_start_addr + length - 1));

	return ERR_NONE;
}