summaryrefslogtreecommitdiffstats
path: root/tinyusb/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c
blob: eeba7204f9714961a63ee2cb26e81b445343d020 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
/* 
 * The MIT License (MIT)
 *
 * Copyright (c) 2019 Nathan Conrad
 *
 * Portions:
 * Copyright (c) 2016 STMicroelectronics
 * Copyright (c) 2019 Ha Thach (tinyusb.org)
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * This file is part of the TinyUSB stack.
 */

/**********************************************
 * This driver has been tested with the following MCUs:
 *  - F070, F072, L053, F042F6
 *
 * It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This
 *  covers:
 *
 * F04x, F072, F078, 070x6/B      1024 byte buffer
 * F102, F103                      512 byte buffer; no internal D+ pull-up (maybe many more changes?)
 * F302xB/C, F303xB/C, F373        512 byte buffer; no internal D+ pull-up
 * F302x6/8, F302xD/E2, F303xD/E  1024 byte buffer; no internal D+ pull-up
 * L0x2, L0x3                     1024 byte buffer
 * L1                              512 byte buffer
 * L4x2, L4x3                     1024 byte buffer
 *
 * To use this driver, you must:
 * - If you are using a device with crystal-less USB, set up the clock recovery system (CRS)
 * - Remap pins to be D+/D- on devices that they are shared (for example: F042Fx)
 *   - This is different to the normal "alternate function" GPIO interface, needs to go through SYSCFG->CFGRx register
 * - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE();
 * - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins)
 * - call tusb_init();
 * - periodically call tusb_task();
 *
 * Assumptions of the driver:
 * - You are not using CAN (it must share the packet buffer)
 * - APB clock is >= 10 MHz
 * - On some boards, series resistors are required, but not on others.
 * - On some boards, D+ pull up resistor (1.5kohm) is required, but not on others.
 * - You don't have long-running interrupts; some USB packets must be quickly responded to.
 * - You have the ST CMSIS library linked into the project. HAL is not used.
 *
 * Current driver limitations (i.e., a list of features for you to add):
 * - STALL handled, but not tested.
 *   - Does it work? No clue.
 * - All EP BTABLE buffers are created based on max packet size of first EP opened with that address.
 * - No isochronous endpoints
 * - Endpoint index is the ID of the endpoint
 *   - This means that priority is given to endpoints with lower ID numbers
 *   - Code is mixing up EP IX with EP ID. Everywhere.
 * - Packet buffer memory is copied in the interrupt.
 *   - This is better for performance, but means interrupts are disabled for longer
 *   - DMA may be the best choice, but it could also be pushed to the USBD task.
 * - No double-buffering
 * - No DMA
 * - Minimal error handling
 *   - Perhaps error interrupts should be reported to the stack, or cause a device reset?
 * - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine.
 * - Add a callback for enabling/disabling the D+ PU on devices without an internal PU.
 * - F3 models use three separate interrupts. I think we could only use the LP interrupt for
 *     everything?  However, the interrupts are configurable so the DisableInt and EnableInt
 *     below functions could be adjusting the wrong interrupts (if they had been reconfigured)
 * - LPM is not used correctly, or at all?
 *
 * USB documentation and Reference implementations
 * - STM32 Reference manuals
 * - STM32 USB Hardware Guidelines AN4879
 *
 * - STM32 HAL (much of this driver is based on this)
 * - libopencm3/lib/stm32/common/st_usbfs_core.c
 * - Keil USB Device http://www.keil.com/pack/doc/mw/USB/html/group__usbd.html
 *
 * - YouTube OpenTechLab 011; https://www.youtube.com/watch?v=4FOkJLp_PUw
 *
 * Advantages over HAL driver:
 * - Tiny (saves RAM, assumes a single USB peripheral)
 *
 * Notes:
 * - The buffer table is allocated as endpoints are opened. The allocation is only
 *   cleared when the device is reset. This may be bad if the USB device needs
 *   to be reconfigured.
 */

#include "tusb_option.h"

#if defined(STM32F102x6) || defined(STM32F102xB) || \
    defined(STM32F103x6) || defined(STM32F103xB) || \
    defined(STM32F103xE) || defined(STM32F103xG)
#define STM32F1_FSDEV
#endif

#if (TUSB_OPT_DEVICE_ENABLED) && ( \
      (CFG_TUSB_MCU == OPT_MCU_STM32F0                          ) || \
      (CFG_TUSB_MCU == OPT_MCU_STM32F1 && defined(STM32F1_FSDEV)) || \
      (CFG_TUSB_MCU == OPT_MCU_STM32F3                          ) || \
	  (CFG_TUSB_MCU == OPT_MCU_STM32L0                          ) || \
      (CFG_TUSB_MCU == OPT_MCU_STM32L1                          ) \
    )

// In order to reduce the dependance on HAL, we undefine this.
// Some definitions are copied to our private include file.
#undef USE_HAL_DRIVER

#include "device/dcd.h"
#include "portable/st/stm32_fsdev/dcd_stm32_fsdev_pvt_st.h"


/*****************************************************
 * Configuration
 *****************************************************/

// HW supports max of 8 bidirectional endpoints, but this can be reduced to save RAM
// (8u here would mean 8 IN and 8 OUT)
#ifndef MAX_EP_COUNT
#  define MAX_EP_COUNT 8U
#endif

// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
// Both of these MUST be a multiple of 2, and are in byte units.
#ifndef DCD_STM32_BTABLE_BASE
#  define DCD_STM32_BTABLE_BASE 0U
#endif

#ifndef DCD_STM32_BTABLE_LENGTH
#  define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE)
#endif

// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#ifndef USE_SOF
#  define USE_SOF     0
#endif

/***************************************************
 * Checks, structs, defines, function definitions, etc.
 */

TU_VERIFY_STATIC((MAX_EP_COUNT) <= STFSDEV_EP_COUNT, "Only 8 endpoints supported on the hardware");

TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_LENGTH))<=(PMA_LENGTH),
    "BTABLE does not fit in PMA RAM");

TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes");

// One of these for every EP IN & OUT, uses a bit of RAM....
typedef struct
{
  uint8_t * buffer;
  // tu_fifo_t * ff;  // TODO support dcd_edpt_xfer_fifo API
  uint16_t total_len;
  uint16_t queued_len;
  uint16_t pma_ptr;
  uint8_t max_packet_size;
  uint8_t pma_alloc_size;
} xfer_ctl_t;

static xfer_ctl_t xfer_status[MAX_EP_COUNT][2];

static inline xfer_ctl_t* xfer_ctl_ptr(uint32_t epnum, uint32_t dir)
{
  return &xfer_status[epnum][dir];
}

static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];

static uint8_t remoteWakeCountdown; // When wake is requested

// into the stack.
static void dcd_handle_bus_reset(void);
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix);
static void dcd_ep_ctr_handler(void);

// PMA allocation/access 
static uint8_t open_ep_count;
static uint16_t ep_buf_ptr; ///< Points to first free memory location
static void dcd_pma_alloc_reset(void);
static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length);
static void dcd_pma_free(uint8_t ep_addr);
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes);
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes);

//static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes);
//static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes);

// Using a function due to better type checks
// This seems better than having to do type casts everywhere else
static inline void reg16_clear_bits(__IO uint16_t *reg, uint16_t mask) {
  *reg = (uint16_t)(*reg & ~mask);
}

// Bits in ISTR are cleared upon writing 0
static inline void clear_istr_bits(uint16_t mask) {
  USB->ISTR = ~mask;
}

void dcd_init (uint8_t rhport)
{
  /* Clocks should already be enabled */
  /* Use __HAL_RCC_USB_CLK_ENABLE(); to enable the clocks before calling this function */

  /* The RM mentions to use a special ordering of PDWN and FRES, but this isn't done in HAL.
   * Here, the RM is followed. */

  for(uint32_t i = 0; i<200; i++) // should be a few us
  {
    asm("NOP");
  }
	// Perform USB peripheral reset
  USB->CNTR = USB_CNTR_FRES | USB_CNTR_PDWN;
  for(uint32_t i = 0; i<200; i++) // should be a few us
  {
    asm("NOP");
  }
  reg16_clear_bits(&USB->CNTR, USB_CNTR_PDWN);// Remove powerdown
  // Wait startup time, for F042 and F070, this is <= 1 us.
  for(uint32_t i = 0; i<200; i++) // should be a few us
  {
    asm("NOP");
  }
  USB->CNTR = 0; // Enable USB
  
  USB->BTABLE = DCD_STM32_BTABLE_BASE;

  USB->ISTR = 0; // Clear pending interrupts

  // Reset endpoints to disabled
  for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
  {
    // This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
    pcd_set_endpoint(USB,i,0u);
  }

  USB->CNTR |= USB_CNTR_RESETM | (USE_SOF ? USB_CNTR_SOFM : 0) | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
  dcd_handle_bus_reset();
  
  // Enable pull-up if supported
  if ( dcd_connect ) dcd_connect(rhport);
}

// Define only on MCU with internal pull-up. BSP can define on MCU without internal PU.
#if defined(USB_BCDR_DPPU)

// Disable internal D+ PU
void dcd_disconnect(uint8_t rhport)
{
  (void) rhport;
  USB->BCDR &= ~(USB_BCDR_DPPU);
}

// Enable internal D+ PU
void dcd_connect(uint8_t rhport)
{
  (void) rhport;
  USB->BCDR |= USB_BCDR_DPPU;
}

#elif defined(SYSCFG_PMC_USB_PU) // works e.g. on STM32L151
// Disable internal D+ PU
void dcd_disconnect(uint8_t rhport)
{
  (void) rhport;
  SYSCFG->PMC &= ~(SYSCFG_PMC_USB_PU);
}

// Enable internal D+ PU
void dcd_connect(uint8_t rhport)
{
  (void) rhport;
  SYSCFG->PMC |= SYSCFG_PMC_USB_PU;
}
#endif

// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
  (void)rhport;
  // Member here forces write to RAM before allowing ISR to execute
  __DSB();
  __ISB();
#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
  NVIC_EnableIRQ(USB_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
  NVIC_EnableIRQ(USB_LP_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
  // Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
  // shared USB/CAN IRQs to separate CAN and USB IRQs.
  // This dynamically checks if this remap is active to enable the right IRQs.
  #ifdef SYSCFG_CFGR1_USB_IT_RMP
  if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
  {
    NVIC_EnableIRQ(USB_HP_IRQn);
    NVIC_EnableIRQ(USB_LP_IRQn);
    NVIC_EnableIRQ(USBWakeUp_RMP_IRQn);
  }
  else
  #endif
  {
    NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn);
    NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
    NVIC_EnableIRQ(USBWakeUp_IRQn);
  }
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
  NVIC_EnableIRQ(USB_HP_CAN1_TX_IRQn);
  NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
  NVIC_EnableIRQ(USBWakeUp_IRQn);
#else
  #error Unknown arch in USB driver
#endif
}

// Disable device interrupt
void dcd_int_disable(uint8_t rhport)
{
  (void)rhport;

#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
  NVIC_DisableIRQ(USB_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
  NVIC_DisableIRQ(USB_LP_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
  // Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
  // shared USB/CAN IRQs to separate CAN and USB IRQs.
  // This dynamically checks if this remap is active to disable the right IRQs.
  #ifdef SYSCFG_CFGR1_USB_IT_RMP
  if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
  {
    NVIC_DisableIRQ(USB_HP_IRQn);
    NVIC_DisableIRQ(USB_LP_IRQn);
    NVIC_DisableIRQ(USBWakeUp_RMP_IRQn);
  }
  else
  #endif
  {
    NVIC_DisableIRQ(USB_HP_CAN_TX_IRQn);
    NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
    NVIC_DisableIRQ(USBWakeUp_IRQn);
  }
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
  NVIC_DisableIRQ(USB_HP_CAN1_TX_IRQn);
  NVIC_DisableIRQ(USB_LP_CAN1_RX0_IRQn);
  NVIC_DisableIRQ(USBWakeUp_IRQn);
#else
  #error Unknown arch in USB driver
#endif

  // CMSIS has a membar after disabling interrupts
}

// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
  (void) rhport;
  (void) dev_addr;

  // Respond with status
  dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);

  // DCD can only set address after status for this request is complete.
  // do it at dcd_edpt0_status_complete()
}

void dcd_remote_wakeup(uint8_t rhport)
{
  (void) rhport;

  USB->CNTR |= (uint16_t) USB_CNTR_RESUME;
  remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
}

static const tusb_desc_endpoint_t ep0OUT_desc =
{
  .bLength          = sizeof(tusb_desc_endpoint_t),
  .bDescriptorType  = TUSB_DESC_ENDPOINT,

  .bEndpointAddress = 0x00,
  .bmAttributes     = { .xfer = TUSB_XFER_CONTROL },
  .wMaxPacketSize   = { .size = CFG_TUD_ENDPOINT0_SIZE },
  .bInterval        = 0
};

static const tusb_desc_endpoint_t ep0IN_desc =
{
  .bLength          = sizeof(tusb_desc_endpoint_t),
  .bDescriptorType  = TUSB_DESC_ENDPOINT,

  .bEndpointAddress = 0x80,
  .bmAttributes     = { .xfer = TUSB_XFER_CONTROL },
  .wMaxPacketSize   = { .size = CFG_TUD_ENDPOINT0_SIZE },
  .bInterval        = 0
};

static void dcd_handle_bus_reset(void)
{
  //__IO uint16_t * const epreg = &(EPREG(0));
  USB->DADDR = 0u; // disable USB peripheral by clearing the EF flag

  // Clear all EPREG (or maybe this is automatic? I'm not sure)
  for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
  {
    pcd_set_endpoint(USB,i,0u);
  }

  dcd_pma_alloc_reset();
  dcd_edpt_open (0, &ep0OUT_desc);
  dcd_edpt_open (0, &ep0IN_desc);

  USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
}

// Handle CTR interrupt for the TX/IN direction
//
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
static void dcd_ep_ctr_tx_handler(uint32_t wIstr)
{
  uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
  uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);

  // Verify the CTR_TX bit is set. This was in the ST Micro code,
  // but I'm not sure it's actually necessary?
  if((wEPRegVal & USB_EP_CTR_TX) == 0U)
  {
    return;
  }

  /* clear int flag */
  pcd_clear_tx_ep_ctr(USB, EPindex);

  xfer_ctl_t * xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_IN);
  if((xfer->total_len != xfer->queued_len)) /* TX not complete */
  {
      dcd_transmit_packet(xfer, EPindex);
  }
  else /* TX Complete */
  {
    dcd_event_xfer_complete(0, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true);
  }
}

// Handle CTR interrupt for the RX/OUT direction
//
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
static void dcd_ep_ctr_rx_handler(uint32_t wIstr)
{
  uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
  uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);
  uint32_t count = pcd_get_ep_rx_cnt(USB,EPindex);

  xfer_ctl_t *xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_OUT);

  // Verify the CTR_RX bit is set. This was in the ST Micro code,
  // but I'm not sure it's actually necessary?
  if((wEPRegVal & USB_EP_CTR_RX) == 0U)
  {
    return;
  }
  
  if((EPindex == 0U) && ((wEPRegVal & USB_EP_SETUP) != 0U)) /* Setup packet */
  {
    // The setup_received function uses memcpy, so this must first copy the setup data into
    // user memory, to allow for the 32-bit access that memcpy performs.
    uint8_t userMemBuf[8];
    /* Get SETUP Packet*/
    if(count == 8) // Setup packet should always be 8 bytes. If not, ignore it, and try again.
    {
      // Must reset EP to NAK (in case it had been stalling) (though, maybe too late here)
      pcd_set_ep_rx_status(USB,0u,USB_EP_RX_NAK);
      pcd_set_ep_tx_status(USB,0u,USB_EP_TX_NAK);
      dcd_read_packet_memory(userMemBuf, *pcd_ep_rx_address_ptr(USB,EPindex), 8);
      dcd_event_setup_received(0, (uint8_t*)userMemBuf, true);
    }
  }
  else
  {
    // Clear RX CTR interrupt flag
    if(EPindex != 0u)
    {
      pcd_clear_rx_ep_ctr(USB, EPindex);
    }

    if (count != 0U)
    {
#if 0 // TODO support dcd_edpt_xfer_fifo API
      if (xfer->ff)
      {
        dcd_read_packet_memory_ff(xfer->ff, *pcd_ep_rx_address_ptr(USB,EPindex), count);
      }
      else
#endif
      {
        dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]), *pcd_ep_rx_address_ptr(USB,EPindex), count);
      }

      xfer->queued_len = (uint16_t)(xfer->queued_len + count);
    }

    if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
    {
      /* RX COMPLETE */
      dcd_event_xfer_complete(0, EPindex, xfer->queued_len, XFER_RESULT_SUCCESS, true);
      // Though the host could still send, we don't know.
      // Does the bulk pipe need to be reset to valid to allow for a ZLP?
    }
    else
    {
      uint32_t remaining = (uint32_t)xfer->total_len - (uint32_t)xfer->queued_len;
      if(remaining >= xfer->max_packet_size) {
        pcd_set_ep_rx_cnt(USB, EPindex,xfer->max_packet_size);
      } else {
        pcd_set_ep_rx_cnt(USB, EPindex,remaining);
      }
      pcd_set_ep_rx_status(USB, EPindex, USB_EP_RX_VALID);
    }
  }

  // For EP0, prepare to receive another SETUP packet.
  // Clear CTR last so that a new packet does not overwrite the packing being read.
  // (Based on the docs, it seems SETUP will always be accepted after CTR is cleared)
  if(EPindex == 0u)
  {
      // Always be prepared for a status packet...
    pcd_set_ep_rx_cnt(USB, EPindex, CFG_TUD_ENDPOINT0_SIZE);
    pcd_clear_rx_ep_ctr(USB, EPindex);
  }
}

static void dcd_ep_ctr_handler(void)
{
  uint32_t wIstr;

  /* stay in loop while pending interrupts */
  while (((wIstr = USB->ISTR) & USB_ISTR_CTR) != 0U)
  {

    if ((wIstr & USB_ISTR_DIR) == 0U) /* TX/IN */
    {
      dcd_ep_ctr_tx_handler(wIstr);
    }
    else /* RX/OUT*/
    {
      dcd_ep_ctr_rx_handler(wIstr);
    }
  }
}

void dcd_int_handler(uint8_t rhport) {

  (void) rhport;

  uint32_t int_status = USB->ISTR;
  //const uint32_t handled_ints = USB_ISTR_CTR | USB_ISTR_RESET | USB_ISTR_WKUP
  //    | USB_ISTR_SUSP | USB_ISTR_SOF | USB_ISTR_ESOF;
  // unused IRQs: (USB_ISTR_PMAOVR | USB_ISTR_ERR | USB_ISTR_L1REQ )

  // The ST driver loops here on the CTR bit, but that loop has been moved into the
  // dcd_ep_ctr_handler(), so less need to loop here. The other interrupts shouldn't
  // be triggered repeatedly.

  if(int_status & USB_ISTR_RESET) {
    // USBRST is start of reset.
    clear_istr_bits(USB_ISTR_RESET);
    dcd_handle_bus_reset();
    dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
    return; // Don't do the rest of the things here; perhaps they've been cleared?
  }

  if (int_status & USB_ISTR_CTR)
  {
    /* servicing of the endpoint correct transfer interrupt */
    /* clear of the CTR flag into the sub */
    dcd_ep_ctr_handler();
  }

  if (int_status & USB_ISTR_WKUP)
  {
    reg16_clear_bits(&USB->CNTR, USB_CNTR_LPMODE);
    reg16_clear_bits(&USB->CNTR, USB_CNTR_FSUSP);
    clear_istr_bits(USB_ISTR_WKUP);
    dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
  }

  if (int_status & USB_ISTR_SUSP)
  {
    /* Suspend is asserted for both suspend and unplug events. without Vbus monitoring,
     * these events cannot be differentiated, so we only trigger suspend. */

    /* Force low-power mode in the macrocell */
    USB->CNTR |= USB_CNTR_FSUSP;
    USB->CNTR |= USB_CNTR_LPMODE;

    /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
    clear_istr_bits(USB_ISTR_SUSP);
    dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
  }

#if USE_SOF
  if(int_status & USB_ISTR_SOF) {
    clear_istr_bits(USB_ISTR_SOF);
    dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
  }
#endif 

  if(int_status & USB_ISTR_ESOF) {
    if(remoteWakeCountdown == 1u)
    {
      USB->CNTR &= (uint16_t)(~USB_CNTR_RESUME);
    }
    if(remoteWakeCountdown > 0u)
    {
      remoteWakeCountdown--;
    }
    clear_istr_bits(USB_ISTR_ESOF);
  }
}

//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+

// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
  (void) rhport;

  if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
      request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
      request->bRequest == TUSB_REQ_SET_ADDRESS )
  {
    uint8_t const dev_addr = (uint8_t) request->wValue;

    // Setting new address after the whole request is complete
    reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
    USB->DADDR = (uint16_t)(USB->DADDR | dev_addr); // leave the enable bit set
  }
}

static void dcd_pma_alloc_reset(void)
{
  ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
  //TU_LOG2("dcd_pma_alloc_reset()\r\n");
  for(uint32_t i=0; i<MAX_EP_COUNT; i++)
  {
    xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
    xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
    xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
    xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
  }
}

/***
 * Allocate a section of PMA
 * 
 * If the EP number has already been allocated, and the new allocation
 * is larger than the old allocation, then this will fail with a TU_ASSERT.
 * (This is done to simplify the code. More complicated algorithms could be used)
 * 
 * During failure, TU_ASSERT is used. If this happens, rework/reallocate memory manually.
 */
static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length)
{
  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);
  xfer_ctl_t* epXferCtl = xfer_ctl_ptr(epnum,dir);

  if(epXferCtl->pma_alloc_size != 0U)
  {
    //TU_LOG2("dcd_pma_alloc(%x,%x)=%x (cached)\r\n",ep_addr,length,epXferCtl->pma_ptr);
    // Previously allocated
    TU_ASSERT(length <= epXferCtl->pma_alloc_size, 0xFFFF);  // Verify no larger than previous alloc
    return epXferCtl->pma_ptr;
  }
  
  uint16_t addr = ep_buf_ptr; 
  ep_buf_ptr = (uint16_t)(ep_buf_ptr + length); // increment buffer pointer
  
  // Verify no overflow
  TU_ASSERT(ep_buf_ptr <= PMA_LENGTH, 0xFFFF);
  
  epXferCtl->pma_ptr = addr;
  epXferCtl->pma_alloc_size = length;
  //TU_LOG2("dcd_pma_alloc(%x,%x)=%x\r\n",ep_addr,length,addr);

  return addr;
}

/***
 * Free a block of PMA space
 */
static void dcd_pma_free(uint8_t ep_addr)
{
  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  // Presently, this should never be called for EP0 IN/OUT
  TU_ASSERT(open_ep_count > 2, /**/);
  TU_ASSERT(xfer_ctl_ptr(epnum,dir)->max_packet_size != 0, /**/);
  open_ep_count--;

  // If count is 2, only EP0 should be open, so allocations can be mostly reset.

  if(open_ep_count == 2)
  {
    ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT + 2*CFG_TUD_ENDPOINT0_SIZE; // 8 bytes per endpoint (two TX and two RX words, each), and EP0

    // Skip EP0
    for(uint32_t i=1; i<MAX_EP_COUNT; i++)
    {
      xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_alloc_size = 0U;
      xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_alloc_size = 0U;
      xfer_ctl_ptr(i,TUSB_DIR_OUT)->pma_ptr = 0U;
      xfer_ctl_ptr(i,TUSB_DIR_IN)->pma_ptr = 0U;
    }
  }
}

// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
// so I'm using the #define from HAL here, instead.

bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
  (void)rhport;
  uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
  uint8_t const dir   = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
  const uint16_t epMaxPktSize = p_endpoint_desc->wMaxPacketSize.size;
  uint16_t pma_addr;
  uint32_t wType;
  
  // Isochronous not supported (yet), and some other driver assumptions.
  TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
  TU_ASSERT(epnum < MAX_EP_COUNT);

  // Set type
  switch(p_endpoint_desc->bmAttributes.xfer) {
  case TUSB_XFER_CONTROL:
    wType = USB_EP_CONTROL;
    break;
#if (0)
  case TUSB_XFER_ISOCHRONOUS: // FIXME: Not yet supported
    wType = USB_EP_ISOCHRONOUS;
    break;
#endif

  case TUSB_XFER_BULK:
    wType = USB_EP_CONTROL;
    break;

  case TUSB_XFER_INTERRUPT:
    wType = USB_EP_INTERRUPT;
    break;

  default:
    TU_ASSERT(false);
  }

  pcd_set_eptype(USB, epnum, wType);
  pcd_set_ep_address(USB, epnum, epnum);
  // Be normal, for now, instead of only accepting zero-byte packets (on control endpoint)
  // or being double-buffered (bulk endpoints)
  pcd_clear_ep_kind(USB,0);

  pma_addr = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, p_endpoint_desc->wMaxPacketSize.size);

  if(dir == TUSB_DIR_IN)
  {
    *pcd_ep_tx_address_ptr(USB, epnum) = pma_addr;
    pcd_set_ep_tx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
    pcd_clear_tx_dtog(USB, epnum);
    pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_NAK);
  }
  else
  {
    *pcd_ep_rx_address_ptr(USB, epnum) = pma_addr;
    pcd_set_ep_rx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
    pcd_clear_rx_dtog(USB, epnum);
    pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK);
  }

  xfer_ctl_ptr(epnum, dir)->max_packet_size = epMaxPktSize;

  return true;
}

/**
 * Close an endpoint.
 * 
 * This function may be called with interrupts enabled or disabled.
 * 
 * This also clears transfers in progress, should there be any.
 */
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
  (void)rhport;
  uint32_t const epnum = tu_edpt_number(ep_addr);
  uint32_t const dir   = tu_edpt_dir(ep_addr);
  
  if(dir == TUSB_DIR_IN)
  {
    pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_DIS);
  }
  else
  {
    pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_DIS);
  }

  dcd_pma_free(ep_addr);
}

// Currently, single-buffered, and only 64 bytes at a time (max)

static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix)
{
  uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len);

  if(len > xfer->max_packet_size) // max packet size for FS transfer
  {
    len = xfer->max_packet_size;
  }
  uint16_t oldAddr = *pcd_ep_tx_address_ptr(USB,ep_ix);

#if 0 // TODO support dcd_edpt_xfer_fifo API
  if (xfer->ff)
  {
    dcd_write_packet_memory_ff(xfer->ff, oldAddr, len);
  }
  else
#endif
  {
    dcd_write_packet_memory(oldAddr, &(xfer->buffer[xfer->queued_len]), len);
  }
  xfer->queued_len = (uint16_t)(xfer->queued_len + len);

  pcd_set_ep_tx_cnt(USB,ep_ix,len);
  pcd_set_ep_tx_status(USB, ep_ix, USB_EP_TX_VALID);
}

bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
  (void) rhport;

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);

  xfer->buffer = buffer;
  // xfer->ff     = NULL; // TODO support dcd_edpt_xfer_fifo API
  xfer->total_len = total_bytes;
  xfer->queued_len = 0;

  if ( dir == TUSB_DIR_OUT )
  {
    // A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
    // buffer for the control endpoint.
    if (epnum == 0 && buffer == NULL)
    {
        xfer->buffer = (uint8_t*)_setup_packet;
    }
    if(total_bytes > xfer->max_packet_size)
    {
      pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
    } else {
      pcd_set_ep_rx_cnt(USB,epnum,total_bytes);
    }
    pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
  }
  else // IN
  {
    dcd_transmit_packet(xfer,epnum);
  }
  return true;
}

#if 0 // TODO support dcd_edpt_xfer_fifo API
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
  (void) rhport;

  uint8_t const epnum = tu_edpt_number(ep_addr);
  uint8_t const dir   = tu_edpt_dir(ep_addr);

  xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);

  xfer->buffer = NULL;
  // xfer->ff     = ff; // TODO support dcd_edpt_xfer_fifo API
  xfer->total_len = total_bytes;
  xfer->queued_len = 0;

  if ( dir == TUSB_DIR_OUT )
  {
    if(total_bytes > xfer->max_packet_size)
    {
      pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
    } else {
      pcd_set_ep_rx_cnt(USB,epnum,total_bytes);
    }
    pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
  }
  else // IN
  {
    dcd_transmit_packet(xfer,epnum);
  }
  return true;
}
#endif

void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
  (void)rhport;

  if (ep_addr & 0x80)
  { // IN
    pcd_set_ep_tx_status(USB, ep_addr & 0x7F, USB_EP_TX_STALL);
  }
  else
  { // OUT
    pcd_set_ep_rx_status(USB, ep_addr, USB_EP_RX_STALL);
  }
}

void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
  (void)rhport;

  if (ep_addr & 0x80)
  { // IN
    ep_addr &= 0x7F;

    pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_NAK);

    /* Reset to DATA0 if clearing stall condition. */
    pcd_clear_tx_dtog(USB,ep_addr);
  }
  else
  { // OUT
    /* Reset to DATA0 if clearing stall condition. */
    pcd_clear_rx_dtog(USB,ep_addr);

    pcd_set_ep_rx_status(USB,ep_addr, USB_EP_RX_NAK);
  }
}

// Packet buffer access can only be 8- or 16-bit.
/**
  * @brief Copy a buffer from user memory area to packet memory area (PMA).
  *        This uses byte-access for user memory (so support non-aligned buffers)
  *        and 16-bit access for packet memory.
  * @param   dst, byte address in PMA; must be 16-bit aligned
  * @param   src pointer to user memory area.
  * @param   wPMABufAddr address into PMA.
  * @param   wNBytes no. of bytes to be copied.
  * @retval None
  */
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes)
{
  uint32_t n =  ((uint32_t)wNBytes + 1U) >> 1U;
  uint32_t i;
  uint16_t temp1, temp2;
  const uint8_t * srcVal;

  // The GCC optimizer will combine access to 32-bit sizes if we let it. Force
  // it volatile so that it won't do that.
  __IO uint16_t *pdwVal;

  srcVal = src;
  pdwVal = &pma[PMA_STRIDE*(dst>>1)];

  for (i = n; i != 0; i--)
  {
    temp1 = (uint16_t) *srcVal;
    srcVal++;
    temp2 = temp1 | ((uint16_t)((uint16_t) ((*srcVal) << 8U))) ;
    *pdwVal = temp2;
    pdwVal += PMA_STRIDE;
    srcVal++;
  }
  return true;
}

#if 0 // TODO support dcd_edpt_xfer_fifo API
/**
  * @brief Copy from FIFO to packet memory area (PMA).
  *        Uses byte-access of system memory and 16-bit access of packet memory
  * @param   wNBytes no. of bytes to be copied.
  * @retval None
  */

// THIS FUNCTION IS UNTESTED

static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes)
{
  // Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
  // Check for first linear part
  void * src;
  uint16_t len = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes);  // We want to read from the FIFO        - THIS FUNCTION CHANGED!!!
  TU_VERIFY(len && dcd_write_packet_memory(dst, src, len));           // and write it into the PMA
  tu_fifo_advance_read_pointer(ff, len);

  // Check for wrapped part
  if (len < wNBytes)
  {
    // Get remaining wrapped length
    uint16_t len2 = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes - len);
    TU_VERIFY(len2);

    // Update destination pointer
    dst += len;

    // Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
    if (len % 2)    // If len is uneven there is a byte left to copy
    {
      // Since PMA can accessed only 16 bit-wise we copy the last byte again
      tu_fifo_backward_read_pointer(ff, 1);                 // Move one byte back and copy two bytes for the PMA
      tu_fifo_read_n(ff, (void *) &pma[PMA_STRIDE*(dst>>1)], 2);     // Since EP FIFOs must be of item size 1 this is safe to do
      dst++;
      len2--;
    }

    TU_VERIFY(dcd_write_packet_memory(dst, src, len2));
    tu_fifo_advance_write_pointer(ff, len2);
  }

  return true;
}
#endif

/**
  * @brief Copy a buffer from packet memory area (PMA) to user memory area.
  *        Uses byte-access of system memory and 16-bit access of packet memory
  * @param   wNBytes no. of bytes to be copied.
  * @retval None
  */
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes)
{
  uint32_t n = (uint32_t)wNBytes >> 1U;
  uint32_t i;
  // The GCC optimizer will combine access to 32-bit sizes if we let it. Force
  // it volatile so that it won't do that.
  __IO const uint16_t *pdwVal;
  uint32_t temp;

  pdwVal = &pma[PMA_STRIDE*(src>>1)];
  uint8_t *dstVal = (uint8_t*)dst;

  for (i = n; i != 0U; i--)
  {
    temp = *pdwVal;
    pdwVal += PMA_STRIDE;
    *dstVal++ = ((temp >> 0) & 0xFF);
    *dstVal++ = ((temp >> 8) & 0xFF);
  }

  if (wNBytes % 2)
  {
    temp = *pdwVal;
    pdwVal += PMA_STRIDE;
    *dstVal++ = ((temp >> 0) & 0xFF);
  }
  return true;
}

#if 0 // TODO support dcd_edpt_xfer_fifo API
/**
  * @brief Copy a buffer from user packet memory area (PMA) to FIFO.
  *        Uses byte-access of system memory and 16-bit access of packet memory
  * @param   wNBytes no. of bytes to be copied.
  * @retval None
  */

// THIS FUNCTION IS UNTESTED

static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes)
{
  // Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
  // Check for first linear part
  void * dst;
  uint16_t len = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes);           // THIS FUNCTION CHANGED!!!!
  TU_VERIFY(len && dcd_read_packet_memory(dst, src, len));
  tu_fifo_advance_write_pointer(ff, len);

  // Check for wrapped part
  if (len < wNBytes)
  {
    // Get remaining wrapped length
    uint16_t len2 = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes - len);
    TU_VERIFY(len2);

    // Update source pointer
    src += len;

    // Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
    if (len % 2)    // If len is uneven there is a byte left to copy
    {
      uint32_t temp = pma[PMA_STRIDE*(src>>1)];
      *((uint8_t *)dst++) = ((temp >> 8) & 0xFF);
      src++;
      len2--;
    }

    TU_VERIFY(dcd_read_packet_memory(dst, src, len2));
    tu_fifo_advance_write_pointer(ff, len2);
  }

  return true;
}

#endif

#endif