summaryrefslogtreecommitdiffstats
path: root/tinyusb/hw/bsp/gd32vf103/system_gd32vf103.c
blob: 29518a54a774b1f3ef98b90944cccd03d943f220 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
/*!
 \file    system_gd32vf103.h
\brief   RISC-V Device Peripheral Access Layer Source File for
          GD32VF103 Device Series

*/

/*
    Copyright (c) 2020, GigaDevice Semiconductor Inc.

    Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    1. Redistributions of source code must retain the above copyright notice, this
       list of conditions and the following disclaimer.
    2. Redistributions in binary form must reproduce the above copyright notice,
       this list of conditions and the following disclaimer in the documentation
       and/or other materials provided with the distribution.
    3. Neither the name of the copyright holder nor the names of its contributors
       may be used to endorse or promote products derived from this software without
       specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
*/

/* This file refers the RISC-V standard, some adjustments are made according to GigaDevice chips */
#include "board.h"

/* system frequency define */
#define __IRC8M           (IRC8M_VALUE)            /* internal 8 MHz RC oscillator frequency */
#define __HXTAL           (HXTAL_VALUE)            /* high speed crystal oscillator frequency */
#define __SYS_OSC_CLK     (__IRC8M)                /* main oscillator frequency */
#define __SYSTEM_CLOCK_HXTAL                    (HXTAL_VALUE)

#if !defined(__SYSTEM_CLOCK)
#define __SYSTEM_CLOCK 72000000
#endif

#if __SYSTEM_CLOCK == 48000000
  #define __SYSTEM_CLOCK_48M_PLL_HXTAL            (uint32_t)(48000000)
  uint32_t SystemCoreClock = __SYSTEM_CLOCK_48M_PLL_HXTAL;
  static void system_clock_48m_hxtal(void);

#elif __SYSTEM_CLOCK == 72000000
  #define __SYSTEM_CLOCK_72M_PLL_HXTAL            (uint32_t)(72000000)
  uint32_t SystemCoreClock = __SYSTEM_CLOCK_72M_PLL_HXTAL;
  static void system_clock_72m_hxtal(void);

#elif __SYSTEM_CLOCK == 96000000
  #define __SYSTEM_CLOCK_96M_PLL_HXTAL            (uint32_t)(96000000)
  uint32_t SystemCoreClock = __SYSTEM_CLOCK_96M_PLL_HXTAL;
  static void system_clock_96m_hxtal(void);

#else
#error No valid system clock configuration set!
#endif

/* configure the system clock */
static void system_clock_config(void);

/*!
    \brief      configure the system clock
    \param[in]  none
    \param[out] none
    \retval     none
*/
static void system_clock_config(void)
{
#if defined (__SYSTEM_CLOCK_48M_PLL_HXTAL)
    system_clock_48m_hxtal();
#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
    system_clock_72m_hxtal();
#elif defined (__SYSTEM_CLOCK_96M_PLL_HXTAL)
    system_clock_96m_hxtal();
#endif /* __SYSTEM_CLOCK_HXTAL */
}

/*!
    \brief      setup the microcontroller system, initialize the system
    \param[in]  none
    \param[out] none
    \retval     none
*/
void SystemInit(void)
{
    /* reset the RCC clock configuration to the default reset state */
    /* enable IRC8M */
    RCU_CTL |= RCU_CTL_IRC8MEN;
    
    /* reset SCS, AHBPSC, APB1PSC, APB2PSC, ADCPSC, CKOUT0SEL bits */
    RCU_CFG0 &= ~(RCU_CFG0_SCS | RCU_CFG0_AHBPSC | RCU_CFG0_APB1PSC | RCU_CFG0_APB2PSC |
                  RCU_CFG0_ADCPSC | RCU_CFG0_ADCPSC_2 | RCU_CFG0_CKOUT0SEL);

    /* reset HXTALEN, CKMEN, PLLEN bits */
    RCU_CTL &= ~(RCU_CTL_HXTALEN | RCU_CTL_CKMEN | RCU_CTL_PLLEN);

    /* Reset HXTALBPS bit */
    RCU_CTL &= ~(RCU_CTL_HXTALBPS);

    /* reset PLLSEL, PREDV0_LSB, PLLMF, USBFSPSC bits */
    
    RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PREDV0_LSB | RCU_CFG0_PLLMF |
                  RCU_CFG0_USBFSPSC | RCU_CFG0_PLLMF_4);
    RCU_CFG1 = 0x00000000U;

    /* Reset HXTALEN, CKMEN, PLLEN, PLL1EN and PLL2EN bits */
    RCU_CTL &= ~(RCU_CTL_PLLEN | RCU_CTL_PLL1EN | RCU_CTL_PLL2EN | RCU_CTL_CKMEN | RCU_CTL_HXTALEN);
    /* disable all interrupts */
    RCU_INT = 0x00FF0000U;

    /* Configure the System clock source, PLL Multiplier, AHB/APBx prescalers and Flash settings */
    system_clock_config();
}

/*!
    \brief      update the SystemCoreClock with current core clock retrieved from cpu registers
    \param[in]  none
    \param[out] none
    \retval     none
*/
void SystemCoreClockUpdate(void)
{
    uint32_t scss;
    uint32_t pllsel, predv0sel, pllmf, ck_src;
    uint32_t predv0, predv1, pll1mf;

    scss = GET_BITS(RCU_CFG0, 2, 3);

    switch (scss)
    {
        /* IRC8M is selected as CK_SYS */
        case SEL_IRC8M:
            SystemCoreClock = IRC8M_VALUE;
            break;
            
        /* HXTAL is selected as CK_SYS */
        case SEL_HXTAL:
            SystemCoreClock = HXTAL_VALUE;
            break;
            
        /* PLL is selected as CK_SYS */
        case SEL_PLL:
            /* PLL clock source selection, HXTAL or IRC8M/2 */
            pllsel = (RCU_CFG0 & RCU_CFG0_PLLSEL);


            if(RCU_PLLSRC_IRC8M_DIV2 == pllsel){
                /* PLL clock source is IRC8M/2 */
                ck_src = IRC8M_VALUE / 2U;
            }else{
                /* PLL clock source is HXTAL */
                ck_src = HXTAL_VALUE;

                predv0sel = (RCU_CFG1 & RCU_CFG1_PREDV0SEL);

                /* source clock use PLL1 */
                if(RCU_PREDV0SRC_CKPLL1 == predv0sel){
                    predv1 = ((RCU_CFG1 & RCU_CFG1_PREDV1) >> 4) + 1U;
                    pll1mf = ((RCU_CFG1 & RCU_CFG1_PLL1MF) >> 8) + 2U;
                    if(17U == pll1mf){
                        pll1mf = 20U;
                    }
                    ck_src = (ck_src / predv1) * pll1mf;
                }
                predv0 = (RCU_CFG1 & RCU_CFG1_PREDV0) + 1U;
                ck_src /= predv0;
            }

            /* PLL multiplication factor */
            pllmf = GET_BITS(RCU_CFG0, 18, 21);

            if((RCU_CFG0 & RCU_CFG0_PLLMF_4)){
                pllmf |= 0x10U;
            }

            if(pllmf >= 15U){
                pllmf += 1U;
            }else{
                pllmf += 2U;
            }

            SystemCoreClock = ck_src * pllmf;

            if(15U == pllmf){
                /* PLL source clock multiply by 6.5 */
                SystemCoreClock = ck_src * 6U + ck_src / 2U;
            }

            break;

        /* IRC8M is selected as CK_SYS */
        default:
            SystemCoreClock = IRC8M_VALUE;
            break;
    }
}

#if defined (__SYSTEM_CLOCK_48M_PLL_HXTAL)
/*!
    \brief      configure the system clock to 48M by PLL which selects HXTAL(MD/HD/XD:8M; CL:25M) as its clock source
    \param[in]  none
    \param[out] none
    \retval     none
*/
static void system_clock_48m_hxtal(void)
{
    uint32_t timeout = 0U;
    uint32_t stab_flag = 0U;

    /* enable HXTAL */
    RCU_CTL |= RCU_CTL_HXTALEN;

    /* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
    do{
        timeout++;
        stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
    }while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));

    /* if fail */
    if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
        while(1){
        }
    }

    /* HXTAL is stable */
    /* AHB = SYSCLK */
    RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
    /* APB2 = AHB/1 */
    RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
    /* APB1 = AHB/2 */
    RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;

    /* CK_PLL = (CK_PREDIV0) * 12 = 48 MHz */
    RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4);
    RCU_CFG0 |= (RCU_PLLSRC_HXTAL | RCU_PLL_MUL12);

    if(HXTAL_VALUE==25000000){

        /* CK_PREDIV0 = (CK_HXTAL)/5 *8 /10 = 4 MHz */
        RCU_CFG1 &= ~(RCU_CFG1_PREDV0SEL | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV1 | RCU_CFG1_PREDV0);
        RCU_CFG1 |= (RCU_PREDV0SRC_CKPLL1 | RCU_PLL1_MUL8 | RCU_PREDV1_DIV5 | RCU_PREDV0_DIV10);

        /* enable PLL1 */
        RCU_CTL |= RCU_CTL_PLL1EN;
        /* wait till PLL1 is ready */
        while((RCU_CTL & RCU_CTL_PLL1STB) == 0){
        }

    }else if(HXTAL_VALUE==8000000){
        RCU_CFG1 &= ~(RCU_CFG1_PREDV0SEL | RCU_CFG1_PREDV1 | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV0);
        RCU_CFG1 |= (RCU_PREDV0SRC_HXTAL | RCU_PREDV0_DIV2 );
    }



    /* enable PLL */
    RCU_CTL |= RCU_CTL_PLLEN;

    /* wait until PLL is stable */
    while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
    }

    /* select PLL as system clock */
    RCU_CFG0 &= ~RCU_CFG0_SCS;
    RCU_CFG0 |= RCU_CKSYSSRC_PLL;

    /* wait until PLL is selected as system clock */
    while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
    }
}

#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
/*!
    \brief      configure the system clock to 72M by PLL which selects HXTAL(MD/HD/XD:8M; CL:25M) as its clock source
    \param[in]  none
    \param[out] none
    \retval     none
*/
static void system_clock_72m_hxtal(void)
{
    uint32_t timeout = 0U;
    uint32_t stab_flag = 0U;

    /* enable HXTAL */
    RCU_CTL |= RCU_CTL_HXTALEN;

    /* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
    do{
        timeout++;
        stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
    }while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));

    /* if fail */
    if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
        while(1){
        }
    }

    /* HXTAL is stable */
    /* AHB = SYSCLK */
    RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
    /* APB2 = AHB/1 */
    RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
    /* APB1 = AHB/2 */
    RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;

    /* CK_PLL = (CK_PREDIV0) * 18 = 72 MHz */ 
    RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4);
    RCU_CFG0 |= (RCU_PLLSRC_HXTAL | RCU_PLL_MUL18);


    if(HXTAL_VALUE==25000000){

        /* CK_PREDIV0 = (CK_HXTAL)/5 *8 /10 = 4 MHz */
        RCU_CFG1 &= ~(RCU_CFG1_PREDV0SEL | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV1 | RCU_CFG1_PREDV0);
        RCU_CFG1 |= (RCU_PREDV0SRC_CKPLL1 | RCU_PLL1_MUL8 | RCU_PREDV1_DIV5 | RCU_PREDV0_DIV10);

        /* enable PLL1 */
        RCU_CTL |= RCU_CTL_PLL1EN;
        /* wait till PLL1 is ready */
        while((RCU_CTL & RCU_CTL_PLL1STB) == 0){
        }

    }else if(HXTAL_VALUE==8000000){
        RCU_CFG1 &= ~(RCU_CFG1_PREDV0SEL | RCU_CFG1_PREDV1 | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV0);
        RCU_CFG1 |= (RCU_PREDV0SRC_HXTAL | RCU_PREDV0_DIV2 );
    }

    /* enable PLL */
    RCU_CTL |= RCU_CTL_PLLEN;

    /* wait until PLL is stable */
    while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
    }

    /* select PLL as system clock */
    RCU_CFG0 &= ~RCU_CFG0_SCS;
    RCU_CFG0 |= RCU_CKSYSSRC_PLL;

    /* wait until PLL is selected as system clock */
    while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
    }
}

#elif defined (__SYSTEM_CLOCK_96M_PLL_HXTAL)
/*!
    \brief      configure the system clock to 96M by PLL which selects HXTAL(MD/HD/XD:8M; CL:25M) as its clock source
    \param[in]  none
    \param[out] none
    \retval     none
*/
static void system_clock_96m_hxtal(void)
{
    uint32_t timeout = 0U;
    uint32_t stab_flag = 0U;

    /* enable HXTAL */
    RCU_CTL |= RCU_CTL_HXTALEN;

    /* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
    do{
        timeout++;
        stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
    }while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));

    /* if fail */
    if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
        while(1){
        }
    }

    /* HXTAL is stable */
    /* AHB = SYSCLK */
    RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
    /* APB2 = AHB/1 */
    RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
    /* APB1 = AHB/2 */
    RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;

    if(HXTAL_VALUE==25000000){

        /* CK_PLL = (CK_PREDIV0) * 24 = 96 MHz */
        RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4);
        RCU_CFG0 |= (RCU_PLLSRC_HXTAL | RCU_PLL_MUL24);

        /* CK_PREDIV0 = (CK_HXTAL)/5 *8 /10 = 4 MHz */
        RCU_CFG1 &= ~(RCU_CFG1_PREDV0SEL | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV1 | RCU_CFG1_PREDV0);
        RCU_CFG1 |= (RCU_PREDV0SRC_CKPLL1 | RCU_PLL1_MUL8 | RCU_PREDV1_DIV5 | RCU_PREDV0_DIV10);
        /* enable PLL1 */
        RCU_CTL |= RCU_CTL_PLL1EN;
        /* wait till PLL1 is ready */
        while((RCU_CTL & RCU_CTL_PLL1STB) == 0){
        }

    }else if(HXTAL_VALUE==8000000){
        /* CK_PLL = (CK_PREDIV0) * 24 = 96 MHz */
        RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4);
        RCU_CFG0 |= (RCU_PLLSRC_HXTAL | RCU_PLL_MUL24);

        RCU_CFG1 &= ~(RCU_CFG1_PREDV0SEL | RCU_CFG1_PREDV1 | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV0);
        RCU_CFG1 |= (RCU_PREDV0SRC_HXTAL | RCU_PREDV0_DIV2 );
    }

    /* enable PLL */
    RCU_CTL |= RCU_CTL_PLLEN;

    /* wait until PLL is stable */
    while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
    }

    /* select PLL as system clock */
    RCU_CFG0 &= ~RCU_CFG0_SCS;
    RCU_CFG0 |= RCU_CKSYSSRC_PLL;

    /* wait until PLL is selected as system clock */
    while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
    }
}

#endif

/**
 * \defgroup  NMSIS_Core_IntExcNMI_Handling   Interrupt and Exception and NMI Handling
 * \brief Functions for interrupt, exception and nmi handle available in system_<device>.c.
 * \details
 * Nuclei provide a template for interrupt, exception and NMI handling. Silicon Vendor could adapat according
 * to their requirement. Silicon vendor could implement interface for different exception code and
 * replace current implementation.
 *
 * @{
 */
/** \brief Max exception handler number, don't include the NMI(0xFFF) one */
#define MAX_SYSTEM_EXCEPTION_NUM        12
/**
 * \brief      Store the exception handlers for each exception ID
 * \note
 * - This SystemExceptionHandlers are used to store all the handlers for all
 * the exception codes Nuclei N/NX core provided.
 * - Exception code 0 - 11, totally 12 exceptions are mapped to SystemExceptionHandlers[0:11]
 * - Exception for NMI is also re-routed to exception handling(exception code 0xFFF) in startup code configuration, the handler itself is mapped to SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM]
 */
static unsigned long SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM + 1];

/**
 * \brief      Exception Handler Function Typedef
 * \note
 * This typedef is only used internal in this system_gd32vf103.c file.
 * It is used to do type conversion for registered exception handler before calling it.
 */
typedef void (*EXC_HANDLER)(unsigned long mcause, unsigned long sp);

/**
 * \brief      System Default Exception Handler
 * \details
 * This function provided a default exception and NMI handling code for all exception ids.
 * By default, It will just print some information for debug, Vendor can customize it according to its requirements.
 */
static void system_default_exception_handler(unsigned long mcause, unsigned long sp)
{
    /* TODO: Uncomment this if you have implement printf function */
    /*printf("MCAUSE: 0x%lx\r\n", mcause);
    printf("MEPC  : 0x%lx\r\n", __RV_CSR_READ(CSR_MEPC));
    printf("MTVAL : 0x%lx\r\n", __RV_CSR_READ(CSR_MBADADDR));*/
    while (1);
}

/**
 * \brief      Initialize all the default core exception handlers
 * \details
 * The core exception handler for each exception id will be initialized to \ref system_default_exception_handler.
 * \note
 * Called in \ref _init function, used to initialize default exception handlers for all exception IDs
 */
static void Exception_Init(void)
{
    for (int i = 0; i < MAX_SYSTEM_EXCEPTION_NUM + 1; i++) {
        SystemExceptionHandlers[i] = (unsigned long)system_default_exception_handler;
    }
}

/**
 * \brief       Register an exception handler for exception code EXCn
 * \details
 * * For EXCn < \ref MAX_SYSTEM_EXCEPTION_NUM, it will be registered into SystemExceptionHandlers[EXCn-1].
 * * For EXCn == NMI_EXCn, it will be registered into SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM].
 * \param   EXCn    See \ref EXCn_Type
 * \param   exc_handler     The exception handler for this exception code EXCn
 */
void Exception_Register_EXC(uint32_t EXCn, unsigned long exc_handler)
{
    if ((EXCn < MAX_SYSTEM_EXCEPTION_NUM) && (EXCn != 0)) {
        SystemExceptionHandlers[EXCn] = exc_handler;
    } else if (EXCn == NMI_EXCn) {
        SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM] = exc_handler;
    }
}

/**
 * \brief       Get current exception handler for exception code EXCn
 * \details
 * * For EXCn < \ref MAX_SYSTEM_EXCEPTION_NUM, it will return SystemExceptionHandlers[EXCn-1].
 * * For EXCn == NMI_EXCn, it will return SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM].
 * \param   EXCn    See \ref EXCn_Type
 * \return  Current exception handler for exception code EXCn, if not found, return 0.
 */
unsigned long Exception_Get_EXC(uint32_t EXCn)
{
    if ((EXCn < MAX_SYSTEM_EXCEPTION_NUM) && (EXCn != 0)) {
        return SystemExceptionHandlers[EXCn];
    } else if (EXCn == NMI_EXCn) {
        return SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM];
    } else {
        return 0;
    }
}

/**
 * \brief      Common NMI and Exception handler entry
 * \details
 * This function provided a command entry for NMI and exception. Silicon Vendor could modify
 * this template implementation according to requirement.
 * \remarks
 * - RISCV provided common entry for all types of exception. This is proposed code template
 *   for exception entry function, Silicon Vendor could modify the implementation.
 * - For the core_exception_handler template, we provided exception register function \ref Exception_Register_EXC
 *   which can help developer to register your exception handler for specific exception number.
 */
uint32_t core_exception_handler(unsigned long mcause, unsigned long sp)
{
    uint32_t EXCn = (uint32_t)(mcause & 0X00000fff);
    EXC_HANDLER exc_handler;

    if ((EXCn < MAX_SYSTEM_EXCEPTION_NUM) && (EXCn > 0)) {
        exc_handler = (EXC_HANDLER)SystemExceptionHandlers[EXCn];
    } else if (EXCn == NMI_EXCn) {
        exc_handler = (EXC_HANDLER)SystemExceptionHandlers[MAX_SYSTEM_EXCEPTION_NUM];
    } else {
        exc_handler = (EXC_HANDLER)system_default_exception_handler;
    }
    if (exc_handler != NULL) {
        exc_handler(mcause, sp);
    }
    return 0;
}
/** @} */ /* End of Doxygen Group NMSIS_Core_ExceptionAndNMI */

/**
 * \brief initialize eclic config
 * \details
 * Eclic need initialize after boot up, Vendor could also change the initialization
 * configuration.
 */
void ECLIC_Init(void)
{
    /* TODO: Add your own initialization code here. This function will be called by main */
    ECLIC_SetMth(0);
    ECLIC_SetCfgNlbits(__ECLIC_INTCTLBITS);
}

/**
 * \brief  Initialize a specific IRQ and register the handler
 * \details
 * This function set vector mode, trigger mode and polarity, interrupt level and priority,
 * assign handler for specific IRQn.
 * \param [in]  IRQn        NMI interrupt handler address
 * \param [in]  shv         \ref ECLIC_NON_VECTOR_INTERRUPT means non-vector mode, and \ref ECLIC_VECTOR_INTERRUPT is vector mode
 * \param [in]  trig_mode   see \ref ECLIC_TRIGGER_Type
 * \param [in]  lvl         interupt level
 * \param [in]  priority    interrupt priority
 * \param [in]  handler     interrupt handler, if NULL, handler will not be installed
 * \return       -1 means invalid input parameter. 0 means successful.
 * \remarks
 * - This function use to configure specific eclic interrupt and register its interrupt handler and enable its interrupt.
 * - If the vector table is placed in read-only section(FLASHXIP mode), handler could not be installed
 */
int32_t ECLIC_Register_IRQ(IRQn_Type IRQn, uint8_t shv, ECLIC_TRIGGER_Type trig_mode, uint8_t lvl, uint8_t priority, void* handler)
{
    if ((IRQn > SOC_INT_MAX) || (shv > ECLIC_VECTOR_INTERRUPT) \
        || (trig_mode > ECLIC_NEGTIVE_EDGE_TRIGGER)) {
        return -1;
    }

    /* set interrupt vector mode */
    ECLIC_SetShvIRQ(IRQn, shv);
    /* set interrupt trigger mode and polarity */
    ECLIC_SetTrigIRQ(IRQn, trig_mode);
    /* set interrupt level */
    ECLIC_SetLevelIRQ(IRQn, lvl);
    /* set interrupt priority */
    ECLIC_SetPriorityIRQ(IRQn, priority);
    if (handler != NULL) {
        /* set interrupt handler entry to vector table */
        ECLIC_SetVector(IRQn, (rv_csr_t)handler);
    }
    /* enable interrupt */
    ECLIC_EnableIRQ(IRQn);
    return 0;
}
/** @} */ /* End of Doxygen Group NMSIS_Core_ExceptionAndNMI */

/**
 * \brief early init function before main
 * \details
 * This function is executed right before main function.
 * For RISC-V gnu toolchain, _init function might not be called
 * by __libc_init_array function, so we defined a new function
 * to do initialization
 */
void _premain_init(void)
{
    /* Initialize exception default handlers */
    Exception_Init();
    /* ECLIC initialization, mainly MTH and NLBIT */
    ECLIC_Init();
}

/**
 * \brief finish function after main
 * \param [in]  status     status code return from main
 * \details
 * This function is executed right after main function.
 * For RISC-V gnu toolchain, _fini function might not be called
 * by __libc_fini_array function, so we defined a new function
 * to do initialization
 */
void _postmain_fini(int status)
{
    /* TODO: Add your own finishing code here, called after main */
}

/**
 * \brief _init function called in __libc_init_array()
 * \details
 * This `__libc_init_array()` function is called during startup code,
 * user need to implement this function, otherwise when link it will
 * error init.c:(.text.__libc_init_array+0x26): undefined reference to `_init'
 * \note
 * Please use \ref _premain_init function now
 */
void _init(void)
{
    /* Don't put any code here, please use _premain_init now */
}

/**
 * \brief _fini function called in __libc_fini_array()
 * \details
 * This `__libc_fini_array()` function is called when exit main.
 * user need to implement this function, otherwise when link it will
 * error fini.c:(.text.__libc_fini_array+0x28): undefined reference to `_fini'
 * \note
 * Please use \ref _postmain_fini function now
 */
void _fini(void)
{
    /* Don't put any code here, please use _postmain_fini now */
}

/** @} */ /* End of Doxygen Group NMSIS_Core_SystemAndClock */