1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "watch.h"
#include "bme280.h"
#include "app.h"
ApplicationState application_state;
char buf[16] = {0};
/**
* @brief Zeroes out the application state struct.
*/
void app_init() {
memset(&application_state, 0, sizeof(application_state));
}
void app_wake_from_deep_sleep() {
// This app does not support deep sleep mode.
}
void app_setup() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
if (date_time.date.year < 2020) {
date_time.date.year = 2020;
watch_set_date_time(date_time);
}
watch_enable_external_interrupts();
watch_register_interrupt_callback(BTN_MODE, cb_mode_pressed, INTERRUPT_TRIGGER_RISING);
watch_register_interrupt_callback(BTN_LIGHT, cb_light_pressed, INTERRUPT_TRIGGER_RISING);
watch_register_extwake_callback(BTN_ALARM, cb_alarm_pressed, true);
watch_enable_buzzer();
watch_enable_leds();
// pin A0 powers the sensor on this board.
watch_enable_digital_output(A0);
watch_set_pin_level(A0, true);
delay_ms(10);
watch_enable_i2c();
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_SOFTRESET, BME280_SOFT_RESET_CODE);
delay_ms(10);
application_state.dig_T1 = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T1);
application_state.dig_T2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T2);
application_state.dig_T3 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_T3);
application_state.dig_H1 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H1);
application_state.dig_H2 = (int16_t)watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_DIG_H2);
application_state.dig_H3 = watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H3);
application_state.dig_H4 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4) << 4) |
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H4 + 1) & 0xF);
application_state.dig_H5 = ((int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5 + 1) << 4) |
(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H5) >> 4);
application_state.dig_H6 = (int8_t)watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_DIG_H6);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL_HUMID, BME280_CONTROL_HUMID_SAMPLING_NONE);
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_PRESSURE_SAMPLING_NONE |
BME280_CONTROL_MODE_FORCED);
watch_enable_display();
watch_register_tick_callback(cb_tick);
}
/**
* Nothing to do here.
*/
void app_prepare_for_sleep() {
}
/**
* @todo restore the BME280's calibration values from backup memory
*/
void app_wake_from_sleep() {
}
/**
* Displays the temperature and humidity on screen, or a string indicating no measurements are being taken.
*/
bool app_loop() {
// play a beep if the mode has changed in response to a user's press of the MODE button
if (application_state.mode_changed) {
// low note for nonzero case, high note for return to clock
watch_buzzer_play_note(application_state.mode ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 100);
application_state.mode_changed = false;
}
// If the user is not in clock mode and the mode timeout has expired, return them to clock mode
if (application_state.mode != MODE_CLOCK && application_state.mode_ticks == 0) {
application_state.mode = MODE_CLOCK;
application_state.mode_changed = true;
}
// If the LED is off and should be on, turn it on
if (application_state.light_ticks > 0 && !application_state.led_on) {
watch_set_led_green();
application_state.led_on = true;
}
// if the LED is on and should be off, turn it off
if (application_state.led_on && application_state.light_ticks == 0) {
// unless the user is holding down the LIGHT button, in which case, give them more time.
if (watch_get_pin_level(BTN_LIGHT)) {
application_state.light_ticks = 3;
} else {
watch_set_led_off();
application_state.led_on = false;
}
}
switch (application_state.mode) {
case MODE_CLOCK:
do_clock_mode();
break;
case MODE_TEMP:
do_temp_mode();
break;
case MODE_LOG:
do_log_mode();
break;
case MODE_PREFS:
do_prefs_mode();
break;
case MODE_SET:
do_set_time_mode();
break;
case NUM_MODES:
// dummy case, just silences a warning
break;
}
application_state.mode_changed = false;
return true;
}
/**
* Reads the temperature from the BME280
* @param p_t_fine - an optional pointer to an int32_t; if provided, the t_fine measurement
* (required for humidity calculation) will be returned by reference.
* Pass in NULL if you do not care about this value.
* @return a float indicating the temperature in degrees celsius.
*/
float read_temperature(int32_t *p_t_fine) {
// read24 reads the bytes into a uint32 which works for little-endian values (MSB is 0)
uint32_t raw_data = watch_i2c_read24(BME280_ADDRESS, BME280_REGISTER_TEMP_DATA) >> 8;
// alas the sensor's register layout is big-endian-ish, with a nibble of zeroes at the end of the LSB.
// this line shuffles everything back into place (swaps LSB and MSB and shifts the zeroes off the end)
int32_t adc_value = (((raw_data >> 16) | (raw_data & 0xFF00) | (raw_data << 16)) & 0xFFFFFF) >> 4;
// this bit is cribbed from Adafruit's BME280 driver. support their open source efforts by buying some stuff!
int32_t var1 = ((((adc_value >> 3) - ((int32_t)application_state.dig_T1 << 1))) * ((int32_t)application_state.dig_T2)) >> 11;
int32_t var2 = (((((adc_value >> 4) - ((int32_t)application_state.dig_T1)) * ((adc_value >> 4) - ((int32_t)application_state.dig_T1))) >> 12) * ((int32_t)application_state.dig_T3)) >> 14;
int32_t t_fine = var1 + var2;
// if we got a pointer to a t_fine, return it by reference (for humidity calculation).
if (p_t_fine != NULL) *p_t_fine = t_fine;
if (application_state.is_fahrenheit) {
return (((t_fine * 5 + 128) >> 8) / 100.0) * 1.8 + 32;
} else {
return ((t_fine * 5 + 128) >> 8) / 100.0;
}
}
/**
* Reads the humidity from the BME280
* @param t_fine - the t_fine measurement from a call to read_temperature
* @return a float indicating the relative humidity as a percentage from 0-100.
* @todo the returned value is glitchy, need to fix.
*/
float read_humidity(int32_t t_fine) {
int32_t adc_value = watch_i2c_read16(BME280_ADDRESS, BME280_REGISTER_HUMID_DATA);
// again, cribbed from Adafruit's BME280 driver. they sell a great breakout board for this sensor!
int32_t v_x1_u32r = (t_fine - ((int32_t)76800));
v_x1_u32r = (((((adc_value << 14) - (((int32_t)application_state.dig_H4) << 20) - (((int32_t)application_state.dig_H5) * v_x1_u32r)) +
((int32_t)16384)) >> 15) * (((((((v_x1_u32r * ((int32_t)application_state.dig_H6)) >> 10) * (((v_x1_u32r * ((int32_t)application_state.dig_H3)) >> 11) +
((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)application_state.dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)application_state.dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
float h = (v_x1_u32r >> 12);
return h / 1024.0;
}
void log_data() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
uint8_t hour = date_time.time.hour;
int8_t temperature = read_temperature(NULL);
for(int i = 0; i < MAX_DATA_POINTS - 1; i++) {
application_state.logged_data[i] = application_state.logged_data[i + 1];
}
application_state.logged_data[MAX_DATA_POINTS - 1].is_valid = true;
application_state.logged_data[MAX_DATA_POINTS - 1].hour = hour;
application_state.logged_data[MAX_DATA_POINTS - 1].temperature = temperature;
}
void do_clock_mode() {
struct calendar_date_time date_time;
const char months[12][3] = {"JA", "FE", "MR", "AR", "MA", "JN", "JL", "AU", "SE", "OC", "NO", "dE"};
watch_get_date_time(&date_time);
watch_display_string((char *)months[date_time.date.month - 1], 0);
sprintf(buf, "%2d%2d%02d%02d", date_time.date.day, date_time.time.hour, date_time.time.min, date_time.time.sec);
watch_display_string(buf, 2);
watch_set_colon();
}
void do_temp_mode() {
int32_t t_fine;
float temperature;
float humidity;
// take one reading
watch_i2c_write8(BME280_ADDRESS, BME280_REGISTER_CONTROL, BME280_CONTROL_TEMPERATURE_SAMPLING_X16 |
BME280_CONTROL_MODE_FORCED);
// wait for reading to finish
while(watch_i2c_read8(BME280_ADDRESS, BME280_REGISTER_STATUS) & BME280_STATUS_UPDATING_MASK);
temperature = read_temperature(&t_fine);
humidity = read_humidity(t_fine);
if (application_state.show_humidity) {
sprintf(buf, "TE%2d%4.1f#%c", (int)(humidity / 10), temperature, application_state.is_fahrenheit ? 'F' : 'C');
} else {
sprintf(buf, "TE %4.1f#%c", temperature, application_state.is_fahrenheit ? 'F' : 'C');
}
watch_display_string(buf, 0);
watch_clear_colon();
}
void do_log_mode() {
bool is_valid = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].is_valid);
uint8_t hour = (uint8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].hour);
int8_t temperature = (int8_t)(application_state.logged_data[MAX_DATA_POINTS - 1 - application_state.page].temperature);
if (!is_valid) {
sprintf(buf, "LO%2d------", application_state.page);
watch_clear_colon();
} else {
sprintf(buf, "LO%2d%2d%4d", application_state.page, hour, temperature);
watch_set_colon();
}
watch_display_string(buf, 0);
}
void log_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == MAX_DATA_POINTS) application_state.page = 0;
}
void do_prefs_mode() {
sprintf(buf, "PR CorF %c", application_state.is_fahrenheit ? 'F' : 'C');
watch_display_string(buf, 0);
watch_clear_colon();
}
void prefs_mode_handle_primary_button() {
// TODO: add rest of preferences (12/24, humidity, LED color, etc.)
// for now only one, C or F
}
void prefs_mode_handle_secondary_button() {
application_state.is_fahrenheit = !application_state.is_fahrenheit;
}
void do_set_time_mode() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
watch_display_string(" ", 0);
switch (application_state.page) {
case 0: // hour
sprintf(buf, "ST t%2d", date_time.time.hour);
break;
case 1: // minute
sprintf(buf, "ST t %02d", date_time.time.min);
break;
case 2: // second
sprintf(buf, "ST t %02d", date_time.time.sec);
break;
case 3: // year
sprintf(buf, "ST d%2d", date_time.date.year - 2000);
break;
case 4: // month
sprintf(buf, "ST d %02d", date_time.date.month);
break;
case 5: // day
sprintf(buf, "ST d %02d", date_time.date.day);
break;
}
watch_display_string(buf, 0);
watch_set_pixel(1, 12); // required for T in position 1
}
void set_time_mode_handle_primary_button() {
application_state.page++;
if (application_state.page == 6) application_state.page = 0;
}
void set_time_mode_handle_secondary_button() {
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
const uint8_t days_in_month[12] = {31, 28, 31, 30, 31, 30, 30, 31, 30, 31, 30, 31};
switch (application_state.page) {
case 0: // hour
date_time.time.hour = (date_time.time.hour + 1) % 24;
break;
case 1: // minute
date_time.time.min = (date_time.time.min + 1) % 60;
break;
case 2: // second
date_time.time.sec = 0;
break;
case 3: // year
// only allow 2021-2030. fix this sometime next decade
date_time.date.year = ((date_time.date.year % 10) + 1) + 2020;
break;
case 4: // month
date_time.date.month = ((date_time.date.month + 1) % 12);
break;
case 5: // day
date_time.date.day = date_time.date.day + 1;
// can't set to the 29th on a leap year. if it's february 29, set to 11:59 on the 28th.
// and it should roll over.
if (date_time.date.day > days_in_month[date_time.date.month - 1]) {
date_time.date.day = 1;
}
break;
}
watch_set_date_time(date_time);
}
void cb_mode_pressed() {
application_state.mode = (application_state.mode + 1) % NUM_MODES;
application_state.mode_changed = true;
application_state.mode_ticks = 300;
application_state.page = 0;
}
void cb_light_pressed() {
switch (application_state.mode) {
case MODE_PREFS:
prefs_mode_handle_secondary_button();
break;
case MODE_SET:
set_time_mode_handle_secondary_button();
break;
default:
application_state.light_ticks = 3;
break;
}
}
void cb_alarm_pressed() {
switch (application_state.mode) {
case MODE_LOG:
log_mode_handle_primary_button();
break;
case MODE_PREFS:
prefs_mode_handle_primary_button();
break;
case MODE_SET:
set_time_mode_handle_primary_button();
break;
default:
break;
}
}
void cb_tick() {
// TODO: use alarm interrupt to trigger data acquisition.
struct calendar_date_time date_time;
watch_get_date_time(&date_time);
if (date_time.time.min == 0 && date_time.time.sec == 0) {
log_data();
}
if (application_state.light_ticks > 0) {
application_state.light_ticks--;
}
if (application_state.mode_ticks > 0) {
application_state.mode_ticks--;
}
}
|