/* * MIT License * * Copyright (c) 2020 Joey Castillo * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "watch_rtc.h" ext_irq_cb_t tick_callbacks[8]; ext_irq_cb_t alarm_callback; ext_irq_cb_t btn_alarm_callback; ext_irq_cb_t a2_callback; ext_irq_cb_t a4_callback; bool _watch_rtc_is_enabled() { return RTC->MODE2.CTRLA.bit.ENABLE; } void _sync_rtc() { while (RTC->MODE2.SYNCBUSY.reg); } void _watch_rtc_init() { MCLK->APBAMASK.reg |= MCLK_APBAMASK_RTC; if (_watch_rtc_is_enabled()) return; // don't reset the RTC if it's already set up. RTC->MODE2.CTRLA.bit.ENABLE = 0; _sync_rtc(); RTC->MODE2.CTRLA.bit.SWRST = 1; _sync_rtc(); RTC->MODE2.CTRLA.bit.MODE = RTC_MODE2_CTRLA_MODE_CLOCK_Val; RTC->MODE2.CTRLA.bit.PRESCALER = RTC_MODE2_CTRLA_PRESCALER_DIV1024_Val; RTC->MODE2.CTRLA.bit.CLOCKSYNC = 1; RTC->MODE2.CTRLA.bit.ENABLE = 1; _sync_rtc(); } void watch_rtc_set_date_time(watch_date_time date_time) { RTC->MODE2.CLOCK.reg = date_time.reg; _sync_rtc(); } watch_date_time watch_rtc_get_date_time() { watch_date_time retval; _sync_rtc(); retval.reg = RTC->MODE2.CLOCK.reg; return retval; } void watch_rtc_register_tick_callback(ext_irq_cb_t callback) { watch_rtc_register_periodic_callback(callback, 1); } void watch_rtc_disable_tick_callback() { watch_rtc_disable_periodic_callback(1); } void watch_rtc_register_periodic_callback(ext_irq_cb_t callback, uint8_t frequency) { // we told them, it has to be a power of 2. if (__builtin_popcount(frequency) != 1) return; // this left-justifies the period in a 32-bit integer. uint32_t tmp = frequency << 24; // now we can count the leading zeroes to get the value we need. // 0x01 (1 Hz) will have 7 leading zeros for PER7. 0xF0 (128 Hz) will have no leading zeroes for PER0. uint8_t per_n = __builtin_clz(tmp); // this also maps nicely to an index for our list of tick callbacks. tick_callbacks[per_n] = callback; NVIC_ClearPendingIRQ(RTC_IRQn); NVIC_EnableIRQ(RTC_IRQn); RTC->MODE2.INTENSET.reg = 1 << per_n; } void watch_rtc_disable_periodic_callback(uint8_t frequency) { if (__builtin_popcount(frequency) != 1) return; uint8_t per_n = __builtin_clz(frequency << 24); RTC->MODE2.INTENCLR.reg = 1 << per_n; } void watch_rtc_disable_all_periodic_callbacks() { RTC->MODE2.INTENCLR.reg = 0xFF; } void watch_rtc_register_alarm_callback(ext_irq_cb_t callback, watch_date_time alarm_time, watch_rtc_alarm_match mask) { RTC->MODE2.Mode2Alarm[0].ALARM.reg = alarm_time.reg; RTC->MODE2.Mode2Alarm[0].MASK.reg = mask; RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_ALARM0; alarm_callback = callback; NVIC_ClearPendingIRQ(RTC_IRQn); NVIC_EnableIRQ(RTC_IRQn); RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_ALARM0; } void watch_rtc_disable_alarm_callback() { RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_ALARM0; } void RTC_Handler(void) { uint16_t interrupt_status = RTC->MODE2.INTFLAG.reg; uint16_t interrupt_enabled = RTC->MODE2.INTENSET.reg; if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_PER_Msk) { // handle the tick callback first, it's what we do the most. // start from PER7, the 1 Hz tick. for(int8_t i = 7; i >= 0; i--) { if ((interrupt_status & interrupt_enabled) & (1 << i)) { if (tick_callbacks[i] != NULL) { tick_callbacks[i](); } RTC->MODE2.INTFLAG.reg = 1 << i; break; } } } else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_TAMPER) { // handle the extwake interrupts next. uint8_t reason = RTC->MODE2.TAMPID.reg; if (reason & RTC_TAMPID_TAMPID2) { if (btn_alarm_callback != NULL) btn_alarm_callback(); } else if (reason & RTC_TAMPID_TAMPID1) { if (a2_callback != NULL) a2_callback(); } else if (reason & RTC_TAMPID_TAMPID0) { if (a4_callback != NULL) a4_callback(); } RTC->MODE2.TAMPID.reg = reason; RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_TAMPER; } else if ((interrupt_status & interrupt_enabled) & RTC_MODE2_INTFLAG_ALARM0) { // finally handle the alarm. if (alarm_callback != NULL) { alarm_callback(); } RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0; } } /////////////////////// // Deprecated functions void watch_set_date_time(struct calendar_date_time date_time) { RTC_MODE2_CLOCK_Type val; val.bit.SECOND = date_time.time.sec; val.bit.MINUTE = date_time.time.min; val.bit.HOUR = date_time.time.hour; val.bit.DAY = date_time.date.day; val.bit.MONTH = date_time.date.month; val.bit.YEAR = (uint8_t)(date_time.date.year - WATCH_RTC_REFERENCE_YEAR); RTC->MODE2.CLOCK.reg = val.reg; _sync_rtc(); } void watch_get_date_time(struct calendar_date_time *date_time) { _sync_rtc(); RTC_MODE2_CLOCK_Type val = RTC->MODE2.CLOCK; date_time->time.sec = val.bit.SECOND; date_time->time.min = val.bit.MINUTE; date_time->time.hour = val.bit.HOUR; date_time->date.day = val.bit.DAY; date_time->date.month = val.bit.MONTH; date_time->date.year = val.bit.YEAR + WATCH_RTC_REFERENCE_YEAR; } void watch_register_tick_callback(ext_irq_cb_t callback) { tick_callbacks[7] = callback; NVIC_ClearPendingIRQ(RTC_IRQn); NVIC_EnableIRQ(RTC_IRQn); RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_PER7; }