/* * MIT License * * Copyright (c) 2020 Joey Castillo * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "watch_adc.h" static void _watch_sync_adc(void) { while (ADC->SYNCBUSY.reg); } static uint16_t _watch_get_analog_value(uint16_t channel) { if (ADC->INPUTCTRL.bit.MUXPOS != channel) { ADC->INPUTCTRL.bit.MUXPOS = channel; _watch_sync_adc(); } ADC->SWTRIG.bit.START = 1; while (!ADC->INTFLAG.bit.RESRDY); return ADC->RESULT.reg; } void watch_enable_adc(void) { MCLK->APBCMASK.reg |= MCLK_APBCMASK_ADC; GCLK->PCHCTRL[ADC_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK0 | GCLK_PCHCTRL_CHEN; uint16_t calib_reg = 0; calib_reg = ADC_CALIB_BIASREFBUF((*(uint32_t *)ADC_FUSES_BIASREFBUF_ADDR >> ADC_FUSES_BIASREFBUF_Pos)) | ADC_CALIB_BIASCOMP((*(uint32_t *)ADC_FUSES_BIASCOMP_ADDR >> ADC_FUSES_BIASCOMP_Pos)); if (!ADC->SYNCBUSY.bit.SWRST) { if (ADC->CTRLA.bit.ENABLE) { ADC->CTRLA.bit.ENABLE = 0; _watch_sync_adc(); } ADC->CTRLA.bit.SWRST = 1; } _watch_sync_adc(); if (USB->DEVICE.CTRLA.bit.ENABLE) { // if USB is enabled, we are running an 8 MHz clock. // divide by 16 for a 500kHz ADC clock. ADC->CTRLB.bit.PRESCALER = ADC_CTRLB_PRESCALER_DIV16_Val; } else { // otherwise it's 4 Mhz. divide by 8 for a 500kHz ADC clock. ADC->CTRLB.bit.PRESCALER = ADC_CTRLB_PRESCALER_DIV8_Val; } ADC->CALIB.reg = calib_reg; ADC->REFCTRL.bit.REFSEL = ADC_REFCTRL_REFSEL_INTVCC2_Val; ADC->INPUTCTRL.bit.MUXNEG = ADC_INPUTCTRL_MUXNEG_GND_Val; ADC->CTRLC.bit.RESSEL = ADC_CTRLC_RESSEL_16BIT_Val; ADC->AVGCTRL.bit.SAMPLENUM = ADC_AVGCTRL_SAMPLENUM_16_Val; ADC->SAMPCTRL.bit.SAMPLEN = 0; ADC->INTENSET.reg = ADC_INTENSET_RESRDY; ADC->CTRLA.bit.ENABLE = 1; _watch_sync_adc(); // throw away one measurement after reference change (the channel doesn't matter). _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_SCALEDCOREVCC); } void watch_enable_analog_input(const uint8_t pin) { gpio_set_pin_direction(pin, GPIO_DIRECTION_OFF); switch (pin) { case A0: gpio_set_pin_function(pin, PINMUX_PB04B_ADC_AIN12); break; case A1: gpio_set_pin_function(pin, PINMUX_PB01B_ADC_AIN9); break; case A2: gpio_set_pin_function(pin, PINMUX_PB02B_ADC_AIN10); break; case A3: gpio_set_pin_function(pin, PINMUX_PB03B_ADC_AIN11); break; case A4: gpio_set_pin_function(pin, PINMUX_PB00B_ADC_AIN8); break; default: return; } } uint16_t watch_get_analog_pin_level(const uint8_t pin) { switch (pin) { case A0: return _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_AIN12_Val); case A1: return _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_AIN9_Val); case A2: return _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_AIN10_Val); case A3: return _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_AIN11_Val); case A4: return _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_AIN8_Val); default: return 0; } } void watch_set_analog_num_samples(uint16_t samples) { // ignore any input that's not a power of 2 (i.e. only one bit set) if (__builtin_popcount(samples) != 1) return; // if only one bit is set, counting the trailing zeroes is equivalent to log2(samples) uint8_t sample_val = __builtin_ctz(samples); // make sure the desired value is within range and set it, if so. if (sample_val <= ADC_AVGCTRL_SAMPLENUM_1024_Val) { ADC->AVGCTRL.bit.SAMPLENUM = sample_val; _watch_sync_adc(); } } void watch_set_analog_sampling_length(uint8_t cycles) { // for clarity the API asks the user how many cycles they want the measurement to take. // but the ADC always needs at least one cycle; it just wants to know how many *extra* cycles we want. // so we subtract one from the user-provided value, and clamp to the maximum. ADC->SAMPCTRL.bit.SAMPLEN = (cycles - 1) & 0x3F; _watch_sync_adc(); } void watch_set_analog_reference_voltage(watch_adc_reference_voltage reference) { ADC->CTRLA.bit.ENABLE = 0; if (reference == ADC_REFERENCE_INTREF) SUPC->VREF.bit.VREFOE = 1; else SUPC->VREF.bit.VREFOE = 0; ADC->REFCTRL.bit.REFSEL = reference; ADC->CTRLA.bit.ENABLE = 1; _watch_sync_adc(); // throw away one measurement after reference change (the channel doesn't matter). _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_SCALEDCOREVCC); } uint16_t watch_get_vcc_voltage(void) { // stash the previous reference so we can restore it when we're done. uint8_t oldref = ADC->REFCTRL.bit.REFSEL; // if we weren't already using the internal reference voltage, select it now. if (oldref != ADC_REFERENCE_INTREF) watch_set_analog_reference_voltage(ADC_REFERENCE_INTREF); // get the data uint32_t raw_val = _watch_get_analog_value(ADC_INPUTCTRL_MUXPOS_SCALEDIOVCC_Val); // restore the old reference, if needed. if (oldref != ADC_REFERENCE_INTREF) watch_set_analog_reference_voltage(oldref); return (uint16_t)((raw_val * 1000) / (1024 * 1 << ADC->AVGCTRL.bit.SAMPLENUM)); } inline void watch_disable_analog_input(const uint8_t pin) { gpio_set_pin_function(pin, GPIO_PIN_FUNCTION_OFF); } inline void watch_disable_adc(void) { ADC->CTRLA.bit.ENABLE = 0; _watch_sync_adc(); MCLK->APBCMASK.reg &= ~MCLK_APBCMASK_ADC; }