/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if TUSB_OPT_DEVICE_ENABLED && \ (CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC177X_8X || CFG_TUSB_MCU == OPT_MCU_LPC40XX) #include "device/dcd.h" #include "dcd_lpc17_40.h" #include "chip.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ #define DCD_ENDPOINT_MAX 32 typedef struct TU_ATTR_ALIGNED(4) { //------------- Word 0 -------------// uint32_t next; //------------- Word 1 -------------// uint16_t atle_mode : 2; // 00: normal, 01: ATLE (auto length extraction) uint16_t next_valid : 1; uint16_t : 1; ///< reserved uint16_t isochronous : 1; // is an iso endpoint uint16_t max_packet_size : 11; volatile uint16_t buflen; // bytes for non-iso, number of packets for iso endpoint //------------- Word 2 -------------// volatile uint32_t buffer; //------------- Word 3 -------------// volatile uint16_t retired : 1; // initialized to zero volatile uint16_t status : 4; volatile uint16_t iso_last_packet_valid : 1; volatile uint16_t atle_lsb_extracted : 1; // used in ATLE mode volatile uint16_t atle_msb_extracted : 1; // used in ATLE mode volatile uint16_t atle_mess_len_position : 6; // used in ATLE mode uint16_t : 2; volatile uint16_t present_count; // For non-iso : The number of bytes transferred by the DMA engine // For iso : number of packets //------------- Word 4 -------------// // uint32_t iso_packet_size_addr; // iso only, can be omitted for non-iso }dma_desc_t; TU_VERIFY_STATIC( sizeof(dma_desc_t) == 16, "size is not correct"); // TODO not support ISO for now typedef struct { // must be 128 byte aligned volatile dma_desc_t* udca[DCD_ENDPOINT_MAX]; // TODO DMA does not support control transfer (0-1 are not used, offset to reduce memory) dma_desc_t dd[DCD_ENDPOINT_MAX]; struct { uint8_t* out_buffer; uint8_t out_bytes; volatile bool out_received; // indicate if data is already received in endpoint uint8_t in_bytes; } control; } dcd_data_t; CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(128) static dcd_data_t _dcd; //--------------------------------------------------------------------+ // SIE Command //--------------------------------------------------------------------+ static void sie_cmd_code (sie_cmdphase_t phase, uint8_t code_data) { LPC_USB->DevIntClr = (DEV_INT_COMMAND_CODE_EMPTY_MASK | DEV_INT_COMMAND_DATA_FULL_MASK); LPC_USB->CmdCode = (phase << 8) | (code_data << 16); uint32_t const wait_flag = (phase == SIE_CMDPHASE_READ) ? DEV_INT_COMMAND_DATA_FULL_MASK : DEV_INT_COMMAND_CODE_EMPTY_MASK; while ((LPC_USB->DevIntSt & wait_flag) == 0) {} LPC_USB->DevIntClr = wait_flag; } static void sie_write (uint8_t cmd_code, uint8_t data_len, uint8_t data) { sie_cmd_code(SIE_CMDPHASE_COMMAND, cmd_code); if (data_len) { sie_cmd_code(SIE_CMDPHASE_WRITE, data); } } static uint8_t sie_read (uint8_t cmd_code) { sie_cmd_code(SIE_CMDPHASE_COMMAND , cmd_code); sie_cmd_code(SIE_CMDPHASE_READ , cmd_code); return (uint8_t) LPC_USB->CmdData; } //--------------------------------------------------------------------+ // PIPE HELPER //--------------------------------------------------------------------+ static inline uint8_t ep_addr2idx(uint8_t ep_addr) { return 2*(ep_addr & 0x0F) + ((ep_addr & TUSB_DIR_IN_MASK) ? 1 : 0); } static void set_ep_size(uint8_t ep_id, uint16_t max_packet_size) { // follows example in 11.10.4.2 LPC_USB->ReEp |= TU_BIT(ep_id); LPC_USB->EpInd = ep_id; // select index before setting packet size LPC_USB->MaxPSize = max_packet_size; while ((LPC_USB->DevIntSt & DEV_INT_ENDPOINT_REALIZED_MASK) == 0) {} LPC_USB->DevIntClr = DEV_INT_ENDPOINT_REALIZED_MASK; } //--------------------------------------------------------------------+ // CONTROLLER API //--------------------------------------------------------------------+ static void bus_reset(void) { // step 7 : slave mode set up LPC_USB->EpIntClr = 0xFFFFFFFF; // clear all pending interrupt LPC_USB->DevIntClr = 0xFFFFFFFF; // clear all pending interrupt LPC_USB->EpIntEn = 0x03UL; // control endpoint cannot use DMA, non-control all use DMA LPC_USB->EpIntPri = 0x03UL; // fast for control endpoint // step 8 : DMA set up LPC_USB->EpDMADis = 0xFFFFFFFF; // firstly disable all dma LPC_USB->DMARClr = 0xFFFFFFFF; // clear all pending interrupt LPC_USB->EoTIntClr = 0xFFFFFFFF; LPC_USB->NDDRIntClr = 0xFFFFFFFF; LPC_USB->SysErrIntClr = 0xFFFFFFFF; tu_memclr(&_dcd, sizeof(dcd_data_t)); } void dcd_init(uint8_t rhport) { (void) rhport; //------------- user manual 11.13 usb device controller initialization -------------// // step 6 : set up control endpoint set_ep_size(0, CFG_TUD_ENDPOINT0_SIZE); set_ep_size(1, CFG_TUD_ENDPOINT0_SIZE); bus_reset(); LPC_USB->DevIntEn = (DEV_INT_DEVICE_STATUS_MASK | DEV_INT_ENDPOINT_FAST_MASK | DEV_INT_ENDPOINT_SLOW_MASK | DEV_INT_ERROR_MASK); LPC_USB->UDCAH = (uint32_t) _dcd.udca; LPC_USB->DMAIntEn = (DMA_INT_END_OF_XFER_MASK /*| DMA_INT_NEW_DD_REQUEST_MASK*/ | DMA_INT_ERROR_MASK); dcd_connect(rhport); // Clear pending IRQ NVIC_ClearPendingIRQ(USB_IRQn); } void dcd_int_enable(uint8_t rhport) { (void) rhport; NVIC_EnableIRQ(USB_IRQn); } void dcd_int_disable(uint8_t rhport) { (void) rhport; NVIC_DisableIRQ(USB_IRQn); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { // Response with status first before changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); sie_write(SIE_CMDCODE_SET_ADDRESS, 1, 0x80 | dev_addr); // 7th bit is : device_enable // Also Set Configure Device to enable non-control endpoint response sie_write(SIE_CMDCODE_CONFIGURE_DEVICE, 1, 1); } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } void dcd_connect(uint8_t rhport) { (void) rhport; sie_write(SIE_CMDCODE_DEVICE_STATUS, 1, SIE_DEV_STATUS_CONNECT_STATUS_MASK); } void dcd_disconnect(uint8_t rhport) { (void) rhport; sie_write(SIE_CMDCODE_DEVICE_STATUS, 1, 0); } //--------------------------------------------------------------------+ // CONTROL HELPER //--------------------------------------------------------------------+ static inline uint8_t byte2dword(uint8_t bytes) { return (bytes + 3) / 4; // length in dwords } static void control_ep_write(void const * buffer, uint8_t len) { uint32_t const * buf32 = (uint32_t const *) buffer; LPC_USB->Ctrl = USBCTRL_WRITE_ENABLE_MASK; // logical endpoint = 0 LPC_USB->TxPLen = (uint32_t) len; for (uint8_t count = 0; count < byte2dword(len); count++) { LPC_USB->TxData = *buf32; // NOTE: cortex M3 have no problem with alignment buf32++; } LPC_USB->Ctrl = 0; // select control IN & validate the endpoint sie_write(SIE_CMDCODE_ENDPOINT_SELECT+1, 0, 0); sie_write(SIE_CMDCODE_BUFFER_VALIDATE , 0, 0); } static uint8_t control_ep_read(void * buffer, uint8_t len) { LPC_USB->Ctrl = USBCTRL_READ_ENABLE_MASK; // logical endpoint = 0 while ((LPC_USB->RxPLen & USBRXPLEN_PACKET_READY_MASK) == 0) {} // TODO blocking, should have timeout len = tu_min8(len, (uint8_t) (LPC_USB->RxPLen & USBRXPLEN_PACKET_LENGTH_MASK) ); uint32_t *buf32 = (uint32_t*) buffer; for (uint8_t count=0; count < byte2dword(len); count++) { *buf32 = LPC_USB->RxData; buf32++; } LPC_USB->Ctrl = 0; // select control OUT & clear the endpoint sie_write(SIE_CMDCODE_ENDPOINT_SELECT+0, 0, 0); sie_write(SIE_CMDCODE_BUFFER_CLEAR , 0, 0); return len; } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { (void) rhport; uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress); uint8_t const ep_id = ep_addr2idx(p_endpoint_desc->bEndpointAddress); // Endpoint type is fixed to endpoint number // 1: interrupt, 2: Bulk, 3: Iso and so on switch ( p_endpoint_desc->bmAttributes.xfer ) { case TUSB_XFER_INTERRUPT: TU_ASSERT((epnum % 3) == 1); break; case TUSB_XFER_BULK: TU_ASSERT((epnum % 3) == 2 || (epnum == 15)); break; case TUSB_XFER_ISOCHRONOUS: TU_ASSERT((epnum % 3) == 0 && (epnum != 0) && (epnum != 15)); break; default: break; } //------------- Realize Endpoint with Max Packet Size -------------// set_ep_size(ep_id, p_endpoint_desc->wMaxPacketSize.size); //------------- first DD prepare -------------// dma_desc_t* const dd = &_dcd.dd[ep_id]; tu_memclr(dd, sizeof(dma_desc_t)); dd->isochronous = (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) ? 1 : 0; dd->max_packet_size = p_endpoint_desc->wMaxPacketSize.size; dd->retired = 1; // invalid at first sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS + ep_id, 1, 0); // clear all endpoint status return true; } void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; if ( tu_edpt_number(ep_addr) == 0 ) { sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS+0, 1, SIE_SET_ENDPOINT_STALLED_MASK | SIE_SET_ENDPOINT_CONDITION_STALLED_MASK); }else { uint8_t ep_id = ep_addr2idx( ep_addr ); sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS+ep_id, 1, SIE_SET_ENDPOINT_STALLED_MASK); } } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t ep_id = ep_addr2idx(ep_addr); sie_write(SIE_CMDCODE_ENDPOINT_SET_STATUS+ep_id, 1, 0); } static bool control_xact(uint8_t rhport, uint8_t dir, uint8_t * buffer, uint8_t len) { (void) rhport; if ( dir ) { _dcd.control.in_bytes = len; control_ep_write(buffer, len); }else { if ( _dcd.control.out_received ) { // Already received the DATA OUT packet _dcd.control.out_received = false; _dcd.control.out_buffer = NULL; _dcd.control.out_bytes = 0; uint8_t received = control_ep_read(buffer, len); dcd_event_xfer_complete(0, 0, received, XFER_RESULT_SUCCESS, true); }else { _dcd.control.out_buffer = buffer; _dcd.control.out_bytes = len; } } return true; } bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { // Control transfer is not DMA support, and must be done in slave mode if ( tu_edpt_number(ep_addr) == 0 ) { return control_xact(rhport, tu_edpt_dir(ep_addr), buffer, (uint8_t) total_bytes); } else { uint8_t ep_id = ep_addr2idx(ep_addr); dma_desc_t* dd = &_dcd.dd[ep_id]; // Prepare DMA descriptor // Isochronous & max packet size must be preserved, Other fields of dd should be clear uint16_t const ep_size = dd->max_packet_size; uint8_t is_iso = dd->isochronous; tu_memclr(dd, sizeof(dma_desc_t)); dd->isochronous = is_iso; dd->max_packet_size = ep_size; dd->buffer = (uint32_t) buffer; dd->buflen = total_bytes; _dcd.udca[ep_id] = dd; if ( ep_id % 2 ) { // Clear EP interrupt before Enable DMA LPC_USB->EpIntEn &= ~TU_BIT(ep_id); LPC_USB->EpDMAEn = TU_BIT(ep_id); // endpoint IN need to actively raise DMA request LPC_USB->DMARSet = TU_BIT(ep_id); }else { // Enable DMA LPC_USB->EpDMAEn = TU_BIT(ep_id); } return true; } } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ // handle control xfer (slave mode) static void control_xfer_isr(uint8_t rhport, uint32_t ep_int_status) { // Control out complete if ( ep_int_status & TU_BIT(0) ) { bool is_setup = sie_read(SIE_CMDCODE_ENDPOINT_SELECT+0) & SIE_SELECT_ENDPOINT_SETUP_RECEIVED_MASK; LPC_USB->EpIntClr = TU_BIT(0); if (is_setup) { uint8_t setup_packet[8]; control_ep_read(setup_packet, 8); // TODO read before clear setup above dcd_event_setup_received(rhport, setup_packet, true); } else if ( _dcd.control.out_buffer ) { // software queued transfer previously uint8_t received = control_ep_read(_dcd.control.out_buffer, _dcd.control.out_bytes); _dcd.control.out_buffer = NULL; _dcd.control.out_bytes = 0; dcd_event_xfer_complete(rhport, 0, received, XFER_RESULT_SUCCESS, true); }else { // hardware auto ack packet -> mark as received _dcd.control.out_received = true; } } // Control In complete if ( ep_int_status & TU_BIT(1) ) { LPC_USB->EpIntClr = TU_BIT(1); dcd_event_xfer_complete(rhport, TUSB_DIR_IN_MASK, _dcd.control.in_bytes, XFER_RESULT_SUCCESS, true); } } // handle bus event signal static void bus_event_isr(uint8_t rhport) { uint8_t const dev_status = sie_read(SIE_CMDCODE_DEVICE_STATUS); if (dev_status & SIE_DEV_STATUS_RESET_MASK) { bus_reset(); dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true); } if (dev_status & SIE_DEV_STATUS_CONNECT_CHANGE_MASK) { // device is disconnected, require using VBUS (P1_30) dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true); } if (dev_status & SIE_DEV_STATUS_SUSPEND_CHANGE_MASK) { if (dev_status & SIE_DEV_STATUS_SUSPEND_MASK) { dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); } else { dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); } } } // Helper to complete a DMA descriptor for non-control transfer static void dd_complete_isr(uint8_t rhport, uint8_t ep_id) { dma_desc_t* const dd = &_dcd.dd[ep_id]; uint8_t result = (dd->status == DD_STATUS_NORMAL || dd->status == DD_STATUS_DATA_UNDERUN) ? XFER_RESULT_SUCCESS : XFER_RESULT_FAILED; uint8_t const ep_addr = (ep_id / 2) | ((ep_id & 0x01) ? TUSB_DIR_IN_MASK : 0); dcd_event_xfer_complete(rhport, ep_addr, dd->present_count, result, true); } // main USB IRQ handler void dcd_int_handler(uint8_t rhport) { uint32_t const dev_int_status = LPC_USB->DevIntSt & LPC_USB->DevIntEn; LPC_USB->DevIntClr = dev_int_status;// Acknowledge handled interrupt // Bus event if (dev_int_status & DEV_INT_DEVICE_STATUS_MASK) { bus_event_isr(rhport); } // Endpoint interrupt uint32_t const ep_int_status = LPC_USB->EpIntSt & LPC_USB->EpIntEn; // Control Endpoint are fast if (dev_int_status & DEV_INT_ENDPOINT_FAST_MASK) { // Note clear USBEpIntClr will also clear the setup received bit --> clear after handle setup packet // Only clear USBEpIntClr 1 endpoint each, and should wait for CDFULL bit set control_xfer_isr(rhport, ep_int_status); } // non-control IN are slow if (dev_int_status & DEV_INT_ENDPOINT_SLOW_MASK) { for ( uint8_t ep_id = 3; ep_id < DCD_ENDPOINT_MAX; ep_id += 2 ) { if ( tu_bit_test(ep_int_status, ep_id) ) { LPC_USB->EpIntClr = TU_BIT(ep_id); // Clear Ep interrupt for next DMA LPC_USB->EpIntEn &= ~TU_BIT(ep_id); dd_complete_isr(rhport, ep_id); } } } // DMA transfer complete (RAM <-> EP) for Non-Control // OUT: USB transfer is fully complete // IN : UBS transfer is still on-going -> enable EpIntEn to know when it is complete uint32_t const dma_int_status = LPC_USB->DMAIntSt & LPC_USB->DMAIntEn; if (dma_int_status & DMA_INT_END_OF_XFER_MASK) { uint32_t const eot = LPC_USB->EoTIntSt; LPC_USB->EoTIntClr = eot; // acknowledge interrupt source for ( uint8_t ep_id = 2; ep_id < DCD_ENDPOINT_MAX; ep_id++ ) { if ( tu_bit_test(eot, ep_id) ) { if ( ep_id & 0x01 ) { // IN enable EpInt for end of usb transfer LPC_USB->EpIntEn |= TU_BIT(ep_id); }else { // OUT dd_complete_isr(rhport, ep_id); } } } } // Errors if ( (dev_int_status & DEV_INT_ERROR_MASK) || (dma_int_status & DMA_INT_ERROR_MASK) ) { uint32_t error_status = sie_read(SIE_CMDCODE_READ_ERROR_STATUS); (void) error_status; TU_BREAKPOINT(); } } #endif